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Introduction

e Spectrum demand growth since early days of radio communication:
— Technology has been evolving accordingly.

— Rather static spectrum management policies:
e Spectrum bands allocated over large geographical areas, long term basis, and exclusive use.
e “Depletion” of bands with commercially attractive radio propagation characteristics.
e Effective control of interference, but non-uniform (inefficient) spectrum usage.
e The owned spectrum allocation policy is outdated: new paradigms are required.

e Dynamic Spectrum Access (DSA) / Cognitive Radio (CR):

- Promising SOIUtion to the eXiSting -Primaryspectmmaccessatfmquencyf1
. |:| Pr?mary spectrum access at frequency f,
CO n fI I Cts b etwe e n : Power [ Primary spectrum access at frequency f,

- Primary spectrum access at frequency f,
[ Primary spectrum access at frequency f,

e Spectrum demand growth.

e Spectrum underutilization.

— Basic underlying idea:

e Opportunistic and non-interfering
“secondary” access to temporarily
unoccupied “primary” licensed bands.

Frequency
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Introduction

e Opportunistic nature of the DSA/CR paradigm.
e Importance of realistic and accurate models of spectrum usage.
e Applications:

— Analytical studies.

— Design and dimensioning of DSA/CR networks.

— Development of innovative simulation tools.

— Development of new and more efficient techniques.

e Existing spectrum models:
— Early models date from the late 1970s: only for HF bands.

— More recent models:
e Limited in scope and based on assumptions/oversimplifications not validated with spectrum data.

— Spectrum usage modeling: rather unexplored area in the context of DSA/CR.

e Thesis objective:

To contribute a holistic set of realistic models capable to accurately capture

and reproduce relevant statistical properties of spectrum usage in real radio

communication systems, in the time, frequency and space dimensions, for its
application to the development and improvement of the future DSA/CR technology.
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Introduction

e Distinguishing feature of proposed models: REALISM.
— Development of realistic models requires validation with empirical spectrum data.
— Empirical spectrum data requires field measurements.

e Two sophisticated measurement equipments:

— Spectrum analyzer-based platform:

e High dynamic range, high sensitivity, and high bandwidth capabilities (wideband measurements).
e Poor time resolution (secs).

=> PART |

— USRP/GNU radio-based platform:

e Lower dynamic range, lower sensitivity, and lower bandwidth capabilities (narrowband measurements).
e Very high time resolutions (usecs/msecs).

=> PART Il
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PART |

Low time-resolution measurements
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_
% Methodology: Motivation @

e Previous spectrum measurement campaigns:
— Based on similar approaches, but
— Lack of common and appropriate evaluation methodology.

e Spectrum analyzer measurements may considerably differ depending on the
selected configuration and data analysis procedures.

— Unified methodological framework desirable to:

e Avoid inaccurate/non-reliable results.
e Enable comparison of results from different sources.

e Motivation of this study:

— Comprehensive and in-depth analysis of several important
methodological aspects that need to be carefully accounted for
when evaluating spectrum occupancy in the context of DSA/CR.
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Methodology: Procedure @

e The methodological measurement and analysis procedures to be
followed were carefully analyzed and studied.

e Every single hardware component, configuration parameter,
and data post-processing procedure, was isolated and its impact
on the obtained occupancy statistics was analyzed and quantified.

e Based on the obtained results, an adequate methodological
framework was defined by selecting the optimum configurations
and procedures that guarantee reliable and accurate results.
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Methodology: Analyzed aspects

e Measurement setup.

— Selection of antennas:
e Narrow-band vs. broad-band.
e Vertical vs. horizontal polarization.
e Omni-directional vs. directive/arrays/beam-forming.

— Selection of amplifiers:
e High/medium/low gain: Tradeoff between sensitivity and dynamic range (SFDR).
e Appropriate amplification configuration.
e Impact of sensitivity on obtained results (up to 29% error).

e Frequency aspects:
— Division of frequency range to be measured: wide vs. narrow bands.
— Impact of frequency resolution (bin) on detected activity.
— Impact of resolution bandwidth (RBW) on obtained results.
e Time dimension:
— Sampling rate and measurement period.
— Long-term vs. short-term measurements.
e Data post-processing:
— Energy detection and selection of the energy decision threshold.

— Trade-off between false alarm (occupancy overestimation) and miss detection
(underestimation).
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Measurement setup

Discone antenna
AOR DN753

FM band stop filter
i Rejection 20 — 35 dB

88 — 108 MHz

75 — 3000 MHz /

Discone antenna
JXTXPZ-100800-P

3000 - 7000 MHz

SPDT switch
DC -18 GHz

Low noise amplifier

==
/'y/

Low pass filter

High pass filter /
3000 — 7000 MHz

DC — 3000 MHz \'

-
==

Gain: 8-11.5dB
Noise figure: 4 — 4.5 dB
20 — 8000 MHz

[

| > //
/4

Spectrum analyzer
Anritsu Spectrum
Master MS2721B
9 kHz-7.1 GHz
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Measurement setup

C m the low-frequency a (75-3000 MHz) K

Discone antenna Discone antenna
AOR DN753 JXTXPZ-100800/P
(75-3000 MHz) (3000-7000 MHz)

Low noise
pre-amplifier

Coaxial cable from 4&‘“’4 B
switch output to .
e s WP SMA-to-N |[ Signal cable to the
- F adapter || spectrum analyzer

FM band stop filter
(88-108 MHz)
inside the tube

Power and signal
cables to the
spectrum analyzer

fl Antenna USB external
connector || storage device

]

Weatherproof box
(pre-amplifier,
switch and filters)

50 Q matched load Power supplies High performance
with adapter and (for the switch and spectrum analyzer
short coaxial cable the pre-amplifier) Anritsu MS2721B
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Measurements: Purpose @

e Extensive broadband spectrum measurement campaign, embracing selected
spectrum bands between 75 MHz and 7 GHz in different specific scenarios and
environments in the metropolitan area of Barcelona (from 2008 to 2010).

e Need for empirical spectrum data:

— Provide a “big picture” and better understanding of how real wireless systems make
use of the allocated spectrum bands.

— Which bands are worth studying and modeling?
- Identification of potential bands of interest for DSA/CR applications.

— Which are the general features of such bands?
- Development of realistic models based on:

e Empirical models obtained from empirical data:
— ldentified spectrum usage patterns.
— Observed statistical properties.

e Theoretical models corroborated/validated with empirical data.
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Measurements: Scenarios

e Urban (UPC’s Campus Nord):

— OQutdoor:
e High points: Roof of Department’s building — LOS conditions (1).
e Narrow streets (3-7).
e Between buildings (8-10).
e QOpen areas (11, 12).

— Indoor: Inside building D4 (2).

e Sub-urban (UPC’s
Campus Castelldefels):

— Qutdoor high point
(building rooftop).

Measurement point Environment
1 Outdoor high point (building root)
2 Indoor (building room)
3-7 Outdoor at ground level in narrow streets
8—10 Outdoor at ground level between buildings
11 -12 Outdoor at ground level in open areas
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Measurements: Results

Fixed links (5875-7075 MHz)

ISM-5800 (wideband data, SRD, RFID and RTTT) (5725-5875 MHz)

Aeronautical and satellite navigation and location, and wireless access to LANs (5000-5725 MHz)
Defense systems (4400-5000 MHz)

Aeronautical radionavigation (4200-4400 MHz)

Analogical links for TV and telephony (3600-4200 MHz)

BWA and military radars (3400-3600 MHz)

Radio navigation and location (defense) and military radars (2700-3400 MHz)

Land mobile, ENG, ISM-2450 and UMTS extension (2290-2700 MHz)

UMTS, DECT and point-to-point fixed links (1880-2290 MHz)

DCS 1800 and microphones (1710-1880 MHz)

Aeronautical and satellite location and navigation, fixed links and broadcasting (960-1710 MHz)
PMR/PAMR and R/E-GSM 900 (870-960 MHz)

Analogical and digital TV, wireless microphones, RFID and SRD (470-870 MHz)

Satellite, PMR/PAMR (TETRA, PMR-446), amateur, ISM-433, SRD and paging (400-470 MHz)
Ministry of Defense and PMR/PAMR (223-400 MHz)

Audio systems (wireless microphones and DAB-T) (174-223 MHz)

Aero nav and comms, maritime (GMDSS), paging (ERMES), fixed links and PMR/PAMR (108-174 MHz)
PMR/PAMR and FM analogical audio broadcasting (75.2-108 MHz)

0 25 50 75 100
Average duty cycle (%)

e  Average duty cycle 75-7075 MHz = 17.78% (most of spectrum is available for DSA/CR).
—  0-1 GHz > Relatively moderate usage (42.00%).
— 1-2 GHz - Low usage (13.30%).
—  2-7 GHz - Mostly underutilized (2.75%) with a few particular exceptions: UMTS, ISM.
e Usage depends on the considered bands:
—  Highest occupancy rates: Broadcast (TV & digitial/analogical audio).
—  Followed by digital cellular services: PMR/PAMR, paging and mobile communications (E-GSM 900, DCS 1800, UMTS).
—  Other services depend on the band: aeronautical radio navigation/location & defense systems.
e  Most of spectrum offers opportunities for secondary DSA/CR usage:
— Even those bands with the highest observed duty cycles (e.g., *80 MHz free in TV band).
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Measurements: Results

e Location 2: Urban indoor locations.

| [ Location 1 [ | Location 2 ‘

Case | Transmitter location | Receiver location TETRA uplink (380-385 MHz)
I Outdoor Outdoor TETRA downlink (390-395 MHz) ;Q_ 5
m Outdoor Indoor TETRA uplink (410-420 MHz) : : :
m Indoor Outdoor TETRA downlink (420-430 MHz)
v Indoor Indoor BWA (3400-3600 MHz)
Aeronautical comms (960-1164 MHz)
TV (470-862 MHz)
E-GSM 900 downlink (925-960 MHz) :
DCS 1800 downlink (1805-1880 MHz) Cases | & Il
UMTS downlink (2110-2170 MHz) :
E-GSM 900 uplink (880-915 MHz)F® @ S
DCS 1800 uplink (1710-1785 MHz) Cases | & Il
UMTS uplink (1920-1980 MHz) 3 :
e  For bands with outdoor transmitters (I/11): DECT (1880-1900 MHz) =, @ g_c_ _IJ-
—  Indoor DC s, in general, lower. ISM-2450 (2400-2483.5 MHz) b ; ; L ase ]
—  When outdoor receivers () > More free spectrum. 0 25 50 75 100

—  When indoor receivers (Il) = Not necessarily. Average duty cycle (%)

e  For bands with indoor transmitters (Ill/IV):
— Indoor DCiis, in general, higher.
—  When indoor receivers (IV) 2 Less free spectrum.
—  When outdoor receivers (Ill) 2 Not necessarily.

e  The particular circumstances of individual bands need to be taken into account = Adequate modeling.
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Measurements: Results

TV (470-862 MHz)

" 260
o 130 173195
65

Abscissa position (meters)

e The spectral activity perceived by a DSA/CR user strongly depends on the user location (even in reduced areas):
—  Occupancy patterns observed at high points are not representative of observations at other locations.

e The perceived occupancy level can be associated to the level of radio propagation blocking:
—  The higher the propagation blocking, the lower the perceived spectrum occupancy.

e All these aspects need to be taken into account in spectrum occupancy modeling.
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Measurements: Results

e Suburban environments.

Urban environment Sub-urban environment
Power spectral density Power spectral density
5 _50_ T PI T T T T T T T T T T T T T T T T T T T T T T T T T T T ] 5 _50_ IJ~I T T T T T T T T T T T T T T T T T T T T T T T T T T T ]
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Instantaneous spectrum occupancy (Start time = 12:00:00 20/10/2010) Instantanecus spectrum occupancy (Start time = 12:00:00 20/10/2010)
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> 4 | ] > % ]
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e 0 500 1000 1500 2000 2500 3000 = 0 500 1000 1500 2000 2500 3000
Frequency (MHz) Frequency (MHz)

e  Spectrum occupancy is lower in sub-urban (15.15%) than in urban (21.21%) environments.
—  Especially for bands with occupancy levels dependent of the number of users (e.g., DCS and UMTS).
— Not a significant difference for bands with independent occupancy levels (e.g., TV and DAB-T).
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@
% Part |: Conclusions @

e Actual utilization of spectrum is not uniform:
— Some bands are subject to intensive or moderate usage levels.
— Some other bands are sparsely used, or not used at all.

e Overall spectrum occupancy is very low.

— Large amount of spectrum opportunities, even in those bands
with the highest observed occupancy levels.

— Observed spectrum occupancy is related to the surrounding
radio propagation environment and, thus, depends on DSA/CR
user location.

— These aspects need to be accounted for in spectrum modeling.

e And will be considered in detail in subsequent quantitative analyses.
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Part |I: Contributions @

e Design and implementation of an advanced radio spectrum
measurement platform, specifically envisaged for the evaluation of
spectrum occupancy in the context of DSA/CR.

e Development of unified methodological framework for spectrum
occupancy evaluation in the context of DSA/CR.

e Evaluation of spectrum occupancy and identification of potential
bands for the deployment of DSA/CR systems.

— (To the best of the author’s knowledge:) The first study of these
characteristics under the scope of the Spanish spectrum regulation,
and one of the earliest studies in Europe.
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PART Il

High time-resolution measurements
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_
% ED performance: Motivation @

e Processing high time-resolution signals = spectrum
sensing in DSA/CR.

e Spectrum sensing determines presence/absence of
primary signals based on captured samples.

e Many spectrum sensing algorithms.
— Different tradeoffs between:

e Required sensing time.
e Complexity.
e Detection capabilities.
— Applicability depends on available information:

e Energy Detection (ED) does not require any prior information.
— ED is the most widely employed spectrum sensing technique.
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_
% ED performance: Motivation @

e ED compares received energy with a decision threshold:
— Received energy > threshold = Channel is busy.
— Received energy < threshold = Channel is idle.

e Operating principle is simple and general
(does not depend on the primary signal to be detected).
— Is its performance independent of the primary signal?

e This study evaluates the performance of ED based on
field measurements of various real-world signals.
— Relevant question in the context of this work.

PhD Thesis presentation, Barcelona, Spain, July 20, 2011.



daughter board

Discone antenna
AOR DN753

USRP

mother board

RF
Front-end

FPGA

Filtering

Decimation

Intermediate Frequency (IF)

ylm]

usB

Laptop

GNU
Radio

controller

Base Band (BB)

TVRX daughter board

(50 - 860 MHz)

DBSRX daughter board
(800-2400 MHz)

~Radio Frequency (RF)

A

\

High-speed 12-bit ADC at 64 MS/s.

Decimates the signal to adapt data rate to the
USB 2.0 and PCs’ computing capability.

USB controller sends base band samples in
16-bit I / 16-bit Q complex data format.
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GNU Radio is
free & open-source

\

Used to collect samples
and save them to a file.




ED performance: Measurement setup

USRP mother GNU Radio
_and daughter l

boards
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ED performance: Results
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ED performance: Conclusions

e ED performance depends on the primary radio technology:
— Short sensing period (N):

¢ High signal variability = Poorer detection performance.

e Low signal variability - Better detection performance.
— Increasing sensing period (N):

e Detection performance converges.

e But there is some loss in time resolution.

e Important practical consequences:

— The classical theoretical results for ED cannot predict the impact of signal variability
on detection performance.
e Need for a more accurate and realistic model of ED performance.

— For fixed operating parameters, detection performance might (NOT) be enough to
reliably detect some primary signals = Impact on the estimation of the ON/OFF
periods and therefore on the accuracy of the spectrum model.

* Need for an improved ED scheme that overcomes this drawback.
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_ |
% ED performance model: Introduction @

e (lassical theoretical result for ED performance:

Py ('}') = Q Q'_l (Pfa) /2N —NY (without noise
1;‘2N(1 + r}:) uncertainty)

P (,Y) — Q aQ_] (Pfﬂ) v ZN_N(T—'_ 1 o (I') 6%’;’ = [G%?aﬁ‘%{?] (with noise
d m(l N 'Y) 6%;, _ (IG%;, uncertainty)

» For agiven set of conditions, P, is unique (theoretical prediction).
* In practice P, varies and depends on the primary signal variability.
* New closed-form expression for P, that accounts for the variability of the primary signal.

e The variability of the primary signal results in a variation of the
instantaneous SNR at the receiver.

e The average P, for an average SNR is:

Pato) = BIPs(Y)] = | Puy ()Y — statsios of 1) 7
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_
ﬁ ED performance model: P, approximation @

e Approximation for Pd:

Q7 (Pra) V2N —N(y+1—0)
Falt) = Q’( V2N(1+7Y) )

Q" (Pra) V2N —N(y+ 1 —a)
B V2N(1+7)

e Development of an approximation for the Gaussian Q-function:

Pa(y) = Q(E(Y) ~— C(V)

Q(x) ~ e_(‘l"zJ“berC}, x>0

where (a,b,c) are determined by minimizing:
— Sum of Square Errors (SSE).
— Maximum Absolute Relative Error (MARE).

* This approximation, along with the modified Gaussian model for f (y), allows
solving the integral, thus yielding a closed-form expression for P, that accounts
for the variability of the primary signal.
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_
% Improved ED scheme: Introduction & CED @

e ED performance depends on primary signal:
— Detection probability may be lower for highly variable signals.
— Can be improved with alternative (more complex) algorithms.
— Objective: Improve performance with similar complexity and costs.

Classical Energy Detection (CED) scheme

Input: Ac RT, Ne N
Output: S; € {Hy, H,}
I: for each sensing event i do
2. T;(¥;) < Energy of N samples
3. if T;(§,;) > A then A
4 Si «— H,
5. else
6 Si < Ho
7. endif
8: end for
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TV8(T;) > A

L L

Tg(if«;) < A

Ti1(¥ic1) < A

Tic1(¥iz1) > /\
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TVE(T) > A

Pri:mary signal is absent

-
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Improved ED scheme: MED

A B
Modified Enerqy Detection (MED) scheme T ' ' ' ' ' ' ' '
T8(T:) > A TI4(T) > A
Input: Ac R", NeN,LecN <~ <~ =
Output: S; € {Hy,H, } | ; | 5
1: for each sensing event i/ do Dedicion threshold i
2:  Ty(¥;) + Energy of N samples o
3 T5(Ty) + Mean of {Tj—y+1 (Fier+1) 5 )
4: if ’H‘,;(j“f,;) > A then ,...,Ti_l(yj_l),Tf(yf)} g . Ti(yi) < A
o :
5 Si — ,‘}[i . D Tisi(Fie1) < A
6:  else Tl /\;
. i—1¥i-1) = A
7 if T"(T;) > A then A
8 S; +— H,
9: else o .
S - % Primary 5|gna?l is present >< Pn:mary signal is absent |
10: i | | | | | | | | | |
11: end if 1 5 10 15 20 25 30 35 40 45
1 end if Sensing event
13: end for
e (Consequences: A—
q PyEszfEDJF(l_PdCED)Q( pavg) CED _ pMED
— P,increases, but Cave P = p s
— Py, also increases. PMED ~ pCED | (1 _ pCED) Q(l_“a"g) PRED < pMED < |
Gavg

e QOverall, MED is worse than CED.
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Improved ED scheme: IED

Improved Energy Detection (IED) scheme

Input: Ac R*, NeN,Lec N
Output: S; € {Hy,H,}
I: for each sensing event i do

2. T(¥;) «+ Energy of N samples

3 T"%(Ti) « Mean of {Ti—r11 (Fimr+1)
4: ifT;(y;) > A then ,...,Ti_l(yi_l),Tf(yE)}
5: S; «— 9,

6. else

7: if T,"%(T;) > A then

3 if T, (375_1) > A then

9: Si + .‘}[1
10: else
11 S; < Hy
12: end if
13: else
14 S; — Hy

15: end if

16:  end if

17: end for

e Qverall, IED is better than CED.

Test statistic

TV8(T;) > A

Tg(if«;) < A

Ti1(¥ic1) < A

Tic1(¥iz1) > /\

Primary signél is present

TE(T) > A
L NN

Decision threshold &

Pri:mary signal is absent

-

b, .
Eaie
|

A
PIED ~ pCED | pCED (| _ pCED) Q,( ,Uavg>

A—u
PP = PP+ PP (1-PFP) Q ( avg)

5 10 15 20 25 30
Sensing event

Gavg

Gavg

35 40 45

PdCED < PdIED < 2PfED_ (PfED)z

CED IED CED CED\2
Pr20 < P 2Py, —(Pfa )
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Theoretical performance
IED vs. CED

SNR = —9.15 dB SNR = —10.06 dB

1 — — =
09 -, 0.9 —
. 0.8 . 0.8
Ay ] ——CED A ; ——CED
0.7} —— IED(M=0)|] 0.7 ——IED (M =0)
— — —IED(M=1) : ———IED(M=1)
0.6 == IED(M=2)|] 061 = —-IED(M=2)
< IED(M=8)  H EPRP IED (M = 8)
0.5 : : : : 0.5 : : : :
0 01 02 03 04 05 0 01 02 03 04 05
Py, Py,
] SNR = —10.83 dB ] SNR = —11.59 dB
0.9 0.9 —
. 0.8 - 0.8
Ry R~
0.7 —— IED (M=0)|] 0.7 ——IED(M=0)
— — —IED (M= 1) ———IED(M=1)
06 = —ED (M=2)|] 0.6 — —IED(M=2)
: < IED (M =8) 4 | IED (M = 3)
0.5— 0.5 —
0 01 02 03 04 05 0 01 02 03 04 05

Py Pra

Py (N =10)

Py (N =100

Py (N = 1000)

Experimental performance
IED vs. CED

An. TV Dig. TV DAB-T TETRA E-GSM 900 DCS 1800 UMTS
1 L 1 ety T === 1 P 1 1r”i"”“;'”'j Tp-meee
0.6 0.6 0.6 0.6— : 0.6 0.6 0.6
0 0.3 0.3 03 0 0.3 0.3 0.3
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Improved ED scheme: Complexity

L = 3: M e [01 L] Pd,target — 091 Pfa.,ta,rget =0.1

1500 . . . .
o CED
< —IED (M =0)
Sample > 21000 . ---IED (M =1)
_ T IED (M =2)
complexity 500l N IED (M = 3)
0 TG s S N
-10 -8 -6 -4 _2 0
SNR (dB)
"M
2 [—— CED ]
-§»§103;+|ED (L=1) ]
Computational y £93 - = IED (L = 100)
. O F R
complexity g5
2E10F .
EE T E .
o ® ] o
@) i
-10 | Ll | PR
10’ 10° 10° 10° 10°
N

e Sample and computational complexities of IED are equivalent to CED.

e |ED outperforms CED with simple approach and similar generality and complexity.
— |ED will be employed to extract ON/OFF periods from empirical data to develop the models.
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Part Il: Conclusions

e ED performance depends on the primary radio technology:
— Short sensing period (N):

¢ High signal variability = Poorer detection performance.

e Low signal variability - Better detection performance.
— Increasing sensing period (N):

e Detection performance converges.

e But there is some loss in time resolution.

e Important practical consequences:

— The classical theoretical results for ED cannot predict the impact of signal variability
on detection performance.

e A more accurate and realistic model of ED performance has been developed.

— Detection probability may be lower for highly variable signals.
e Animproved ED scheme that overcomes this drawback has been developed.
— The proposed IED scheme is a general algorithm, as CED (does not depend on primary signal).
— |ED outperforms CED in terms of Pd/Pfa with similar sample and computational complexities.
e |ED scheme will enable more accurate estimation of ON/OFF statistics from field measurements.
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Part Il: Contributions @

e Assessment of ED performance based on field measurements of
various radio technologies.

e Development of a more realistic and accurate model for ED
performance that accounts for primary signal variability.

e Design and evaluation of an improved ED (IED) scheme:
— Range of applicability similar to classical ED (CED).
— Similar sample and computational complexities.
— Significant detection performance improvements.

e Development of a versatile, accurate and analytically tractable
approximation for the Gaussian Q-function.
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PART Il

Spectrum usage models
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@ JLE
ﬁ Models: Motivation @

e |Importance of realistic and accurate models of spectrum usage.
— Opportunistic nature of the DSA/CR paradigm.

e Existing models:

— Limited in scope and based on assumptions/oversimplifications not
validated with spectrum data.

e Spectrum usage models:
— Time dimension.
— Frequency dimension.
— Space dimension.
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@
% Models: Time dimension @

e Statistical properties of spectrum usage in time domain:
— 1) Average channel occupancy level - Duty Cycle (DC).

— 2) Distribution of busy and idle periods.
— 3) Time-correlation properties (ON/OFF, ON/ON, OFF/OFF).

e Model commonly used:

— Markov chain model.
e Discrete-time.

e Continuous-time.
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e Two-state Discrete-Time Markov Chain (DTMC):

— Stationary / time-homogeneous DTMC:

P — { Poo Po1 }
Pio P11

e  Which properties of spectrum usage can be described with DTMC model?
— 1) Duty Cycle (DC):
e Probability or fraction/percentage of time that a channel is busy.

e Fora DTMC, the DCis given by:

T = Po1 pP— [
Po1 + P1o

1 —-w
1—-w

v

e The DTMC model can be configured to reproduce any DC.
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Models: Time dimension (DTMC)

e  Which properties of spectrum usage can be described with DTMC model?
— 2) Length of busy/idle periods (distributions).
e This aspect is not explicitly modeled by the DTMC model.
e Itis not expected to reproduce busy/idle period lengths.

e Empirical verification:

Channel with varying load pattern Channel with constant load pattern
Busy periods Idle periods 0 Busy periods . Idle periods
a 0
10 T T 10 oy 10_1 . IR T 10_1 S Al [
10_1 ) 10_1 10_2 ..... 10_2 _____ .
LOL 10_2 LOL 10_2 LOL 10_3 ..... LOL 10_3 -
O _3 O _3 O 10_4 ..... O 10—4 .......
o 10, o 10 p O 10 fin R O 10 ot SRR
107" i 107 e 107} [=— cpross —— — omw 10 [~ cmpiroa — — ~ o]
10 0 1 2 3 4 10 0 1 2 3 I4 10 1} 1 | 2 10 0 1 | 2
10 10 10 10 10 10 10 10 10 10 10 10 10 10 10 10
Period duration (secs) Period duration (secs) Period duration (secs) Period duration (secs)
Average duty cycle = 0.49 Average duty cycle = 0.30
D | _1E ' IS OO U U " ]
> >
@ [
$.05 7 9 0.5F .
o o
2_-, - WMW/VWW\—‘
& a
0 e . : . e 0 e
0 24 48 72 96 120 144 168 0 o4 48 72 96 120 144

Time, t (hours) Time, t (hours)
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e The probabilities of the transition matrix depend on the DC.

— If the DCis constant with time = Stationary DTMC is valid.
— If the DCis NOT constant = Stationary DTMC is NOT valid.

-0 W : 1 — Wt
lel—w w] P(t) = 1-@8

e Duty Cycle (DC):
— Stationary case: constant parameter V.
— Non-stationary case: time-dependent function ‘Y(t).
— DC Y(t) needs to be characterized 2 DC models.
— Two different DC patterns:
e Deterministic pattern.

e Stochastic pattern.
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Models: Time dimension (DTMC)

e Channel load is in general random: Incoming/outgoing users, RRM policies, etc.

e In some cases, strong deterministic component: Social behavior, common habits, etc.

— Good example: cellular mobile communication systems.

Low/medium average loads Medium/high average loads
(N4 V(N4
1 [¢2
A [ A
Oy Ay A, %% A,
\-.... q‘m:'n \_ -
T 0 T T, T ht 0 T T ht
T (T —w,. ) i 27 (1 - %)  foiit, T,
\I](t) ~ ‘I]mzn _I_ ( ) . f;e/xp (ta Tm? U) \Ij(t) ~ 1 o ( ) m;)h( T U)
v FL (T, Ty 0) ovm  frMNT, T 0)
M—1 ( )2
é:)/cm(ta Tm:U) = e o 2
’ m=0 fg’:}éh(tﬂTa O-) - 6_( 7 )
M—1
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Models: Time dimension (DTMC)

e Validation of deterministic DC models.

Low/medium average loads Medium/high average loads
, Busy periods . Idle periods . Busy periods . Idle periods
10— 10— 10 ; 10
-1 -1 -1 -1
L 10_2 w 10_2 w 10 W 10
o 107} Q10 Q 492 S 107
O 10,3 v osaa .‘.‘ . O 1073 a a - :.:‘ O i~ U . . . --...
O Empirical |- O ——— Empirical (&) Empirical O -3|| —— Empirical
10-4 - --DTMC | A\ 1074l[---pommc | - . 10 7|| - - —pTM™MC - 10 7| - - -p™M™C S
100 == DTMC+DC| =@ 1o 5lE== DTMC+DC|. . = o= DTMC+DC[, - . .. 1o l== DTMC+DC| .~ = %\
10° 10 10° 10° 10" 10° 10° 10° 10" 10° 10® 10* 10° 10’ 10°
Period duration (secs) Period duration (secs) Period duration (secs) Period duration (secs)
Average duty cycle = 0.40 Average duty cycle 0. 90
'I_l I R I I .I. ! Empirical .
= —— DC model =
=gl >
[} @
g 0.5 <]
[&] [&]
2 =
= =0
(] \ ] (] Empirical
0 24 48 72 26 120 144 168 0 24 48 72 96 120 144 168
Time, t (hours) Time, t (hours)
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Models: Time dimension (DTMC)

e Channel load pattern cannot be considered to be deterministic in some cases:
— Channel load itself is in general random: Incoming/outgoing users, RRM policies, etc.
— Even in deterministic cases, channel load may vary randomly over short time periods.
e Stochastic modeling approach is needed:
— DCcan be considered as a stochastic process whose values are drawn from:

e Beta distribution:

l

B(a,) (=" xe(0.D) B(a,p)= .E 7 (1-2)"dz

fixa, p)=

e Kumaraswamy distribution:
fE(xa,b) =abx"'(1-x)"", xe(0,])

— Any arbitrary mean channel DC can be obtained by configuring as:

o

a+ [

for beta distribution

il
I

a

bB (1 + 1 , b) for Kumaraswamy distribution
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Models: Time dimension (DTMC)

e Distribution parameters have a direct impact on resulting DC pattern in time-domain.
e Definition of 6 archetypes based on:

— Load level =2 L: low / M: medium / H: high

— Load pattern = type I: very bursty / type |l: moderately bursty, but not constant

Also for Kumaraswamy for type | cases.
Difficult to control in type-Il cases. Low (L) Medium (M) High (H)
Type | a<1, f>1 a<1, B<1 a>1, B<1
Type Il 1<a<f o>1, B>1, a~p o>p>1
M.I M.II
15 : : : : 20 : : . .
[ ]Empirical (Mean DC = 0.48) [ ]Empirical (Mean DC = 0.41) }
——Beta (xe=0.22, = 0.29) 15+ —Beta (m = 34.34, } = 49.42)
;nl_ a O Kumaraswamy (a =0.17, b = 0.35) , w O Kumaraswamy (a = 8.60, b = 1591.54)

Duly vyule, ‘¥ Duly cyule, ‘¥

- if : ; . ~ 1}

£ o8l W N T o8

= .lr N

g 06f | | g 06) ]

g | = Ak,

S 0.2t [N 5oz ]

(=]

0 24 48 72 96 120 144 168 0 24 48 72 96 120 144 168

Time, t (hours) Time, t (hours)
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Models: Time dimension (DTMC)

e Validation of stochastic DC model.

o Busy periods o Idle periods
10 ; - ! 10 i
-1 j\ -1 DTN
L 10 R : L 10 ”3
8 1072} 4 NG 8 T R R
107 oo | ° 107 T ome |
A i DTMC+DC |11 K i A DTMC+DC| @i oy
10 0 I 1 I 2 I 3 I 4 10 0 ‘ 1 I 2 | 3 4
i00 10 10 10 10 i0- 10 10 10 10
Period duration (secs) Period duration (secs)

Average duty cycle = 0.49

| T HM"

__ ||‘ Rl

0 24 48 7 96 120 144 168
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I
| we—F mpirical
DC model
Il

—k

Duty cycle, F(t)
o
(&)}

o
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o
ﬁ Models: Time dimension (CTMC/CTSMC)

e Two-state Continuous-Time Markov Chain (CTMC):

— The model is characterized by ON/OFF distributions = Exponential.
— Exponential distribution of state holding times is NOT valid in reality (unrealistic)
e Works by Geirhofer, Stabellini and Wellens.
— Other distributions have been shown to be more appropriate.
e Continuous-Time Semi-Markov Chain (CTSMC) model is more adequate (w).
— The model reproduces:
e Statistical distribution of busy/idle periods (EXPLICITLY).
e Average channel occupancy / duty cycle (IMPLICITLY).

_ E{T"}
- E{To} + E{Tl}
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o
ﬁ Models: Time dimension (CTMC/CTSMC)

e Objective: Find probability distributions that best fit busy/idle durations:

— Based on empirical measurements :
e Low time-resolution measurements.

e High time-resolution measurements.

— Analyzed radio technologies/services:
e Amateur, paging, TETRA UL/DL, E-GSM 900 UL/DL, DCS 1800 UL/DL, DECT and ISM.

— Considered distributions:

e Exponential (E), generalized exponential (GE), Pareto (P), generalized Pareto (GP), log-normal (LN),
gamma (G) and Weibull (W).

— Parameter fitting/inference methods:
e Maximum Likelihood Estimation (MLE).
e Method Of Moments (MOM).

— Goodness-of-fit metrics:
e Kolmogorov-Smirnov (D,,) distance.
e Symmetric Kullback-Leibler (D, ™) divergence.

e Bhattacharyya distance (D).
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% Models: Time dimension (CTMC/CTSMC) @

e Results from low time-resolution measurements:

— Generalized Pareto (GP) is an adequate model for both busy and idle periods and for all the
radio technologies considered in this study.

E |[GE| P [GP|LN| G | W
o | D, MOM | 020 | 023 | 035 | 0.18 | 0.21 | 022 | 0.19
- MLE | 0.20 | 0.19 | 0.23 C0.16 D 0.20 | 0.19 | 0.43
2 | pow [MOM [ 2.00 | 232 [ 255 (1.96 111.88 D2.29 | 2. L
> MLE | 2.00 | 1.89 | 2.22 | 1.93 | 1.94 | 1.91 | 2.63
= 5. [ [MOM | 025 | 0.30 | 0.32 | 024 | 0.32 | 030 | 0.27
[ MLE [ 025 ¢0.23029 0.24 p0.28 | 0.24 | 0.34

Dy | MOM | 0.23 | 0.26 | 039 | 017 | 0.19 | 0.25 | 0.16

- MLE | 0.23 | 0.15 | 020 {0.11 D0.14 | 0.15 | 0.26
g pyn | MOM [ 150 | 188 | 241 [ 139 | 134 | 1.82 | 1.46
° MLE | 1.59 [ 1.38 | 1.64 €C1.29 D 1.32 [ 1.38 | 1.70
= | , [ MOM | 0.19 028|031 ]0.17]023]027]0.19
® "MLE | 0.19 [ 0.18 [ 023 ¢0.16 D020 | 0.18 | 0.22
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% Models: Time dimension (CTMC/CTSMC) @

e Results from high time-resolution measurements:

— The best fitting distribution depends on the considered radio technology.

t(irt:?oizygﬁiﬁd Idle periods Busy periods
Amateur GP, W, GE, G GP
Paging P W.GE. G
TETRA W or GP, P GP.Por W
GSM/DCS GE. G Gp

— For time-slotted systems, alternative (discrete-time) modeling based on the distribution of the
number of slots per busy/idle period:

e For example, for GSM/DCS - Negative binomial distribution.
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% Models: Time dimension (CTMC/CTSMC)

e Combined low/high-time resolution modeling approaches:

. T P FNT) FYT) FU(T,)
Amateur, i‘ : . V: ' 'i
paging, _ ___ i ——— L,
PMR/PAMR T L ) t (secs)
and cordless - b ! :
phones. FS(T") QS_(TL) & __(TQ

'.' '. '_'. l-' '-' Illl '_' li
f (msecs) f (msecs)
(a)

GSM/DCS
systems.

»

-,

Pay ) T opay

f (msecs)

(b)

t (secs/hours)
FS(T, )

f (msecs)
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Models: Time dimension (Correlations)

e 3) Time-correlation properties:
— The length of busy and idle periods can be correlated in real systems.
— DTMC/ CTMC / CTSMC models cannot reproduce this property.
— Specific models for ON/OFF, ON/ON and OFF/OFF correlations.

Representative example for other radio
technologies, not only DCS 1800

— Correlation between busy / idle periods: N —

DCS 1800 DL

\

e Tends to be negative in general.

[]
=]

L T T
o __—Pearson
e Correlation levels are not very high E'E;
& 50r
(close to zero, but NON-zero). = MLL
£
* In some cases there are significant - —8.4 0.3 -0.2 -0.1 0 0.1
i — w 100 T T T
correlation levels, up to —0.64. S — rondal
g so
a
— Correlation between periods of the g 9 B N
-0.4 -0.3 -0.2 -0.1 0 0.1
i : w 100 .
same type (autocorrelation) R [
e Periodic behavior. 8 sof
e Non-periodic behavior. L%L L R TS P
82 -0.3 -0.2 -0.1 0 0.1

Correlation coefficient
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Periodic autocorrelation

1,

(L5, Liim) = .
ps( ) Jmin 4 4o~

Models: Time dimension (Correlations)

0.5 , :
g : g : : Empirical
T 025 - e —Fitted model
E
< -0.25¢
05 ; i i i ; ; i ;
0 1000 2000 3000 4000 5000 6000 7000 8000
Lag m (number of idle periods)
M
m =0
m_1)2 _(m_M_1)9
o + Ae o o 1<m< M

Non-periodic autocorrelation

0.5 [
Empirical

= 025 1 -« -Fitted model
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pe(Ti, Tiym) = § pre (¥=2), 1<m<M
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o
ﬁ Models: Time dimension (Correlations)

e Simulation of time-correlation properties:

Algorithm 1 Proposed simulation method

—> Il‘lpllt: FU('), Fl('), ’T(Tg,Tl) or pS(T(),Tl), ’T(T(],T()',m) or
ps(Lo. To:m)
— QOutput: 1, 7}
p(To. Th) <= f({7(To. 1) | ps(To. T1)})
22 p(Lo. To:m) < f ({7 (Lo, Toim) | ps(To, Toim)})
3: for every block of M values do
Generate ) = 1,0, ..., 0y ~ CN(0,1)

4

5 fo — Re{FHoo \/|f{p To,To:m)}H}}
6:  Generate Y = Y1, Y2,.... XM N(O,l)

7. & <—p(To Tv) - &+ \/1 — [p(To,T7)]* -
8

9

10:

To + Fy ( (50))

Ty + Fy ' (@ (&)
end for
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Models: Time dimension (Correlations)

e Simulation of time-correlation properties:

— Selected parameters:
e F,(-)and F,(-) are generalized Pareto distributions configured according to measurements.
e Desired correlation busy/idle =-0.3

e Autocorrelation function of idle periods:
— Periodic: min=-0.1, A=0.4, M = 1000, o = 250.

—  Non-periodic: smax =-0.25, M = 3000. e \dle periods .o Busy periods
5 124 5 122
8 10:3" - == Lac-rr?f;eriodic N 8 10:3’ -—- = L?}rr?—e::eriodic
_ h d si lati 10_gf|------ Periodic 10_gp|------- Periodic
The proposed simulation 10 . . 10 .
10° 10 10> 10° 10° 10’ 10°
method reprod uces any: Period duration (secs) Period duration (secs)
—— 0‘5 T | T T I I
* Distribution busy & idle periods. g 0 72 ] S
e ; : : : §
e Correlation busy/idle periods. E‘; O R IR . : : . ““Wﬂﬂ
o 17 4 P S R Target M
e Autocorr. (busy) idle periods. S i | | | | — — — Simuation
0 1000 2000 3000 4000 5000 6000 7000
— 0.5 T T T T T |
S 025K
E-wﬂ OF-
SHPYA ~Target
':Dui 05 i i ; ; : - = I—Simulation
0 1000 2000 3000 4000 5000 6000 7000
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_ . .
ﬁ Models: Frequency dimension

e Two Important properties in the frequency domain:

— 1) Duty cycle distribution over frequency (channels in the same band).

e Beta and Kumaraswamy distributions are adequate.

Y ‘ —— Empirical - — —Beta fit: Kumaraswamy fit

St e e

CDF
COO0O000000
o-LhNwPrUON®D©O =

0O 01 02 03 04 05 06 07 08 09 1
Duty cycle

e Beta vs. Kumaraswamy expressions.

1

P (@, f) = 2 (1 - 2)” ! 0.1

f:r (:E‘!CE..B) B({E,B)m ( -T) s X E( . ) B N |
U = —bB (14,0

fE(w5a,b) = abe® (1 =271 2 € (0,1) a+p a
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_ . .
% Models: Frequency dimension @

e Two Important properties in the frequency domain:

— 2) Duty cycle clustering.

e Duty cycle is clustered over frequency.

e Number of channels per cluster ~ Geometric distribution.

TETRA DL

N - -
LTI 0 FUTNE Y

GO em

A |-!1'|il|ll|'l||-|||1 ikt llllllllfm
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1
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1O |
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Channel index
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_ . .
% Models: Frequency dimension

e Simulation method for generating artificial time-frequency data:

— Phase 1: Generation of DC values

¢ Generation of DC values based on beta/Kumaraswamy distribution.

— Phase 2: Assign DC values to channels

e Define DC archetypes and then compute probability of occurrence of each archetype.
e C(Classify the generated DC values into subsets, one per DC archetype.
e [terative method:
— Select DC archetype for the next cluster based on probabilities of each archetype.
— Select cluster size y as a geometric random number (adjust if necessary).
— Select y DC values from the corresponding DC archetype and allocate them.

— Repeat until all channels are assigned a DC value.

— Phase 3: Generation of time-domain occupancy sequences

¢ Select distributions for busy/idle periods.
e For each channel, configure distribution parameters so that the assigned DC is met.

e For each channel, generate busy/idle periods based on proposed time dimension models.
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_
% Models: Space dimension

e Particularity of space-dimension models:

— Time / frequency models reproduce properties of primary transmission
patterns in the time / frequency domains.

— Space models characterize the local occupancy perception of secondary
users at various locations.

e Proposed models

— Models for average spectrum occupancy perception

— Models for concurrent snapshots observations

&
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Models: Space dimension (average DC)

Spectrum occupancy is described in terms of DC:
— Summarizes spectrum occupancy in time/frequency range within single numerical value.

— Quantify / compare spectrum occupancy among various bands, locations and operating conditions.

Activity Factor (AF) # Duty Cycle (DC):
— Transmitter’s AF is unique.

— DSA/CR’s perceived DC may change among locations.

Model = Spatial DC distribution:
— As afunction of propagation conditions.

— As a mean to characterize spectrum occupancy perceived at various locations.

Assuming energy detection: rTTT 1 +Ir o Hy

l | . : Iy ! Decision
Pr=gm [ PR 2 AT ihreshold
I . .__l__. =T ! Ho
Average \ Sensing Instantaneous
received power period received power
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% Models: Space dimension (average DC) @

e Constant-power continuous transmitter:

Decision threshold
Sn(PyN) : fs(Ps)
AveraQMna power
B #}N )l\ #}s
> 1 1 PS‘!*S)2 /\—Ms)
- Pr)dPp = / e (7)) apy =
/)\ fr(Pr)dPr 5ros ) S Q( -
o0 Par— 2 .
Pro= —— / (T apy = 0 ()‘ ‘“’N)—> N=Q N (Pra) on + in
Vamon Ja ON
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e Constant-power continuous transmitter:

Duty cycle

1.5}

Analogical TV (Ch. 59)

o

Duty cycle

5 0 05 1 15 2
SNR (dB)

Digital TV (Ch. 66)

+ Empirical (PFA 1%) 2
Model (PFA 1%)
o Empirical (PFA 10%) 1.9
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* Empirical (PFA 1%)
Model (PFA 1%)
o Empirical (PFA 10%)
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2

e Constant-power discontinuous transmitter:

Models: Space dimension (average DC) @

[\ " tn(PR)dPR
(1—a) f:o Fn(Py)dPy + oz/:o Fo(Ps)dPs

1l —«

\V2ToN

«

\/27’(‘0’3
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A Models: Space dimension (average DC)

e Constant-power discontinuous transmitter:
TETRA (Ch. 331)

TETRA (Ch. 69)
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ﬁ Models: Space dimension (average DC)

e Variable-power discontinuous transmitter:

— We assume discrete set of K average power levels:
e Avariable-power transmitter whose PDF can be describe by K discrete values.
e K constant-power transmitters time-sharing the channel.
e A combination thereof.

Zmﬂ <1t — [r(Pr) = (1 - Zak) In(PN)+ D ag fs,.(Ps,)

Yk = HS, — UN
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Models: Space dimension (average DC)

e Variable-power discontinuous transmitter:

TETRA (Ch. 318)

TETRA (Ch. 189)
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Models: Space dimension (average DC)

e Proposed modeling approach:

n L | 5| 7

P » Radio » Dllf}’
P: 1% propagation ﬁ’; : cycle
oy L model PIVE model
Duty cycle =

probability that the
channel is busy

Operating frequency,

distance,
path loss exponent, AL
scenario aspects, Vs ~
other environmental % o
conditions, etc Q7Y Pr,) on — i
o 0= (1D o) e w0 (S
Sk
k=1 k=1

Spatial duty cycle model

These parameters are
model-specific.
Model is not constrained.
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Coordinate y (m)
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Binary modeling approach
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% Models: Space dimension (snapshots) @

e Average DC perception may not be enough in some cases.
— Simultaneous observations may be important (e.g., cooperative sensing).
e Concurrent snapshot observations can be modeled in terms of:
— Joint probabilities P(s,s;").
— Conditional probabilities P(s,lsj*).

Si | 8 P(si,s5) P(si|s})
so | 5 (1—Pra)(1 — W) =P,

st | sg Pra(1 =) Prq

so | 57| 1= —(1—Pp)(1 —9%) 1_‘{'_(1;}&&(1—‘1’*)
51| s W — Po(1— W) ‘P—Pff{g—‘i’*)

PhD Thesis presentation, Barcelona, Spain, July 20, 2011.



Joint probabilities
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Conditional probabilities
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ﬁ Models: Unified approach @

e Proposed models have analyzed independently:
— Time dimension.
— Frequency dimension.
— Space dimension.

e But they can be integrated into a unified approach.
— Theoretical study:
* Models provide closed-form expressions that can be combined (problem-specific aspect).

— Simulation study:
e Models and simulation methods can be gathered into a complete simulation approach.
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Models: Unified approach
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e

Describes the transmission
pattern for each channel




Models: Unified approach
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Part lll: Conclusions @

e Opportunistic nature of the Dynamic Spectrum Access / Cognitive
Radio (DSA/CR) paradigm.
— Importance of realistic and accurate models of spectrum usage.

e Time-dimension models:

— Important characteristics:
e (1) Average channel occupancy level (duty cycle).
e (2) Statistical distribution of the length of busy / idle periods.
® (3) Time-correlation structures.

— Discrete-Time Markov Chain (DTMC) model:
e Stationary DTMC - Only (1).
¢ Non-stationary DTMC + DC models = (1) + (2)

— Continuous-Time Semi-Markov Chain (CTSMC) model:
e Reproduce (1) implicitly and (2) explicitly.
— Time-correlation properties require specific approaches and algorithms:

e Correlation between periods of different types - Tends to be negative.
e Autocorrelation between periods of the same type = Periodic and non-periodic behaviors.

PhD Thesis presentation, Barcelona, Spain, July 20, 2011.



@
ﬁ Part Ill: Conclusions @

e Frequency-dimension models:

— Important characteristics:
¢ (1) Duty cycle distribution over frequency = Beta or Kumaraswamy distributions.
e (2) Duty cycle clustering = No. of channels per cluster ~ Geometric distribution.

e Space-dimension models:

— Modeling approaches:
e Binary perception busy/idle by comparing average power vs. decision threshold.
— Simple but unrealistic.
e Probabilistic approach based on propagation models + spatial duty cycle model.

— Slightly more complex but more realistic and accurate.
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Part lll: Contributions @

e Development of realistic and accurate discrete-time models with
deterministic and stochastic DC models.

e Development of realistic and accurate continuous-time models, at
both short and long time scales, along with a combined modeling
approach.

e Development of realistic and accurate time correlation models.

e Development of realistic and accurate time-frequency models.

e Development of realistic and accurate spatial models.
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General conclusions

e Development of holistic set of spectrum occupancy models for its application in the
study of DSA/CR systems.

— Realistic models derived from, or validated with, empirical measurements.

e Low time-resolution measurements:

— Methodological study of important aspects for spectrum occupancy evaluation in DSA/CR.

e Measurement setup (antennas, amplifiers, filters, etc.), time-dimension aspects, frequency-dimension aspects and data

post-processing aspects.

— Evaluation of spectrum occupancy in real systems.

e Broadband study (75-7075 MHz) in urban/sub-urban and outdoor/indoor environments.

e High time-resolution measurements:
— Performance evaluation of ED with field measurements of various radio technologies.
— Development of a more realistic and accurate ED performance model.
— Development of an improved ED scheme with enhanced detection capabilities but similar levels
of complexity, computational costs and range of applicability.
e Spectrum usage models:

— Time (discrete and continuous), frequency and space dimensions + Unified modeling approach.
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Future work

e Impact of time resolution of measurements on the observed spectrum occupancy.

— Tradeoff between accuracy/time-resolution and amount of data.

Two-level modeling approach proposed in this thesis is based on separate measurements with different time
resolutions.

— Desirable: long-term measurements at high time resolution.

e Drawback: Huge amount of spectrum data and huge computational costs.

e New spectrum sensing methods.

Occupancy statistics extracted from field data based on spectrum sensing techniques.

Advanced techniques are complex, computationally costly and of limited applicability.
— New spectrum sensing techniques aimed at:

¢ Not only improving detection performance, but

Bearing in mind the need to preserve field of application and reasonable computational costs.

e Technology-specific models.

Models developed in this thesis, based on generic approaches, applicable to wide range of radio technologies
by changing models’ parameters.

New technology-specific models based on particular aspects of physical and higher layers.

e Application of models to novel emerging concepts.

Prediction of primary spectrum occupancy patterns to anticipate the behavior of the primary network.

Key element of the Radio Environment Map (REM) concept in order to optimize utilization of radio resources.
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Thank you for your attention

Could you explain
that again
in simple words?
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