Initialization of FCME Algorithm for Noise Floor Estimation

Yau Hong Leow^{*} Kenta Umebayashi^{*} Janne Lehtomäki[†] Miguel López-Benítez^{‡§}

*Gradute School of Engineering, Tokyo University of Agriculture and Technology, Japan

[†]Centre for Wireless Communications, University of Oulu, Finland

[‡]Dept. of Electrical Engineering and Electronics, University of Liverpool, United Kingdom

[§]ARIES Research Centre, Antonio de Nebrija University, Spain

1 Introduction

In this paper, we investigate a real-time noise power estimation with Forward Consecutive Mean Excision (FCME) algorithm. In the real-time noise power estimation, the observed samples may include both noise-only samples (H_0) and noise-plus-signal samples (H_1) [1]. The FCME algorithm extracts noise-only samples with an iterative process in which a set of estimated noise-only samples is updated iteratively. We investigate an appropriate size for the initial noise samples set, denoted by $|Q_0|$, in FCME algorithm while $|Q_0|$ is typically assumed to be 10% smallest samples from the total observed samples (N). In this paper, the appropriate size $|Q_0|$ is obtained analytically based on a relationship between false alarm rate (P_{FA}) and $|Q_0|$.

2 Relationship between Noise Floor Estimation Performance and $|Q_0|$

Fig. 1: Average \hat{P}_{FA} with $|Q_0|$ in noise-only case

Fig. 1 shows the average obtained false alarm rate \hat{P}_{FA} as a function of $|\mathbf{Q}_0|$ with N = 100,500 and target false alarm rate $\dot{P}_{FA} = 10^{-3}$. For both N, the average \hat{P}_{FA} become saturated in the region where $|\mathbf{Q}_0| > 20$ and the gap between the average \hat{P}_{FA} and P_{FA} are relatively small. As an indication of the saturated region, we define appropriate $|\mathbf{Q}_0|$ to be the minimum value of $|\mathbf{Q}_0|$ within the saturated region.

3 Approximated Theoretical Average P_{FA}

The average P_{FA} in [2] is approximated by

Average
$$\hat{P_{FA}} \approx \sum_{i=|Q_0|}^{|Q_0|+5} (\alpha_{i-1} - \alpha_i)(\kappa_i) + \left(1 - \sum_{i=|Q_0|}^{|Q_0|+5} (\alpha_{i-1} - \alpha_i)\right) \frac{1}{(1 + T_{\text{CME}}/N)^N}.$$
 (1)

where *i* is the index number of the sorted H_0 samples, α_i is the probability that (i + 1)th H_0 sample being

successfully collected into the assumed noise samples set and κ_i is the biased \hat{P}_{FA} when only *i* samples out of N sorted samples are successfully collected [3]. Let the probability that FCME algorithm succeeds to collect samples up to *i* samples and finally stops at (i + 1)th sample denoted as $(\alpha_{i-1} - \alpha_i)$, average \hat{P}_{FA} can be calculated based on the summation of multiplication between $(\alpha_{i-1} - \alpha_i)$ and the corresponding κ_i from i = $|\mathbf{Q}_0| \sim N$. The appropriate $|\mathbf{Q}_0|$ is obtained based on the relationship between Average \hat{P}_{FA} and $|\mathbf{Q}_0|$. Specifically, the minimum $|\mathbf{Q}_0|$ in the saturated region like in Fig. 1 is chosen as the appropriate $|\mathbf{Q}_0|$.

4 Numerical Evaluation and Conclusion

Fig. 2 shows selected $|\mathbf{Q}_0|$ as a function of N by typical approach, i.e. 10% of N, the proposed appropriate $|\mathbf{Q}_0|$, and simulation result. Specifically, in the $|\mathbf{Q}_0|$ with simulation result, $|\mathbf{Q}_0|$ is chosen empirically from the simulation result in Fig. 1. It can be seen that the proposed appropriate $|\mathbf{Q}_0|$ and simulation result remain relatively constant with N in contrast to the conventional approach which assumes that $|\mathbf{Q}_0|$ is 10% of N.

References

- H. Saarnisaari, P. Henttu, and M. Juntti, "Iterative multidimensional impulse detectors for communications based on the classical diagnostic methods," *IEEE transactions on communications*, vol. 53, no. 3, pp. 395–398, 2005.
- [2] J. J. Lehtomaki, J. Vartiainen, M. Juntti, and H. Saarnisaari, "CFAR outlier detection with forward methods," *IEEE Transactions on Signal Processing*, vol. 55, no. 9, pp. 4702–4706, 2007.
- [3] M. Lops, "Hybrid clutter-map/L-CFAR procedure for clutter rejection in nonhomogeneous environment," *IEE Proceedings-Radar, Sonar and Navigation*, vol. 143, no. 4, pp. 239–245, 1996.