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Abstract: With recent developments, the performance of automotive radar has improved significantly. 1

The next generation of 4D radar can achieve imaging capability in the form of high-resolution point 2

clouds. In this context, we believe that the era of deep learning for radar perception has arrived. 3

However, studies on radar deep learning are spread across different tasks and a holistic overview 4

is lacking. This review paper attempts to provide a big picture of the deep radar perception stack, 5

including signal processing, datasets, labelling, data augmentation and downstream tasks such 6

as depth and velocity estimation, object detection, and sensor fusion. For these tasks, we focus 7

on explaining how the network structure is adapted to radar domain knowledge. In particular, 8

we summarize three overlooked challenges in deep radar perception, including multi-path effects, 9

uncertainty problems and adverse weather effects, and present some attempts to solve them. We also 10

provide an website for browsing each reference and related codes at https://zhouyi1023.github.io/ 11

awesome-radar-perception. 12

Keywords: automotive radars; radar signal processing; object detection; multi-sensor fusion; deep 13

learning; autonomous driving. 14

1. Introduction 15

As autonomous driving technology progresses from the demonstration stage to the 16

landing stage, it puts forward higher requirements for perception ability. Mainstream 17

autonomous driving systems rely on fusion of cameras and LiDARs for perception. Al- 18

though millimeter wave radar has been widely used in mass-produced cars for active safety 19

functions such as Automatic Emergency Braking (AEB) and Forward Collision Warning 20

(FCW), it is overlooked in autonomous driving. Recently, Tesla announced the removal 21

of radar sensors from its semi-autonomous driving system Autopilot. In the CVPR 2021 22

workshop [1], Tesla’s director of AI Andrej Karpathy explained their reason by presenting 23

three typical scenarios for radar malfunctions, including lost tracking due to significant 24

deceleration of the front vehicle, false slow down under bridges and missed detection of a 25

stationary vehicle parked on the side of the main road. In the first case, radar’s close field 26

detection ability is related to side lobes. Conventional radars with a limited number of 27

channels are not good at side lobe compression. The second case is caused by the fact that 28

conventional radar cannot measure height information and therefore confuses the bridge 29

overhead with static objects on the road. The reason for the third case is that conventional 30
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radar has too low angular resolution to capture the shape of a static vehicle. All these 31

challenges can be solved with next-generation high resolution radar. 32

As a ranging sensor, radar is usually compared to LiDAR. A typical 77 Ghz automo- 33

tive radar has a wavelength of 3.9 mm, while automotive LiDARs have a much smaller 34

wavelength of 905 nm or 1550 nm. For a small aperture radar, most of the reflected signal 35

is not received by the radar sensor because of the specular reflection. Another problem 36

with small aperture is the low angular resolution, so that two close objects cannot be sep- 37

arated effectively. These two features make the radar point cloud much sparser than the 38

LiDAR point cloud. Conventional automotive radars have a low resolution in elevation 39

and therefore return a two-dimensional point cloud. The next generation of high resolution 40

radar achieves higher angular resolution in both azimuth and elevation. Because it can 41

measure 3D position and Doppler velocity, it is always referred to as a 4D radar in the 42

marketplace. In table 1, typical types of radars and LiDARs are compared. We can find that 43

conventional long-range radars have a low angular resolution in horizontal view and no 44

resolution in vertical view. In contrast, 4D radar can achieve an angular resolution of about 45

1°in both horizontal and vertical views. Therefore, the classification of static objects is no 46

longer a limitation for 4D radar. Although 4D radar has much higher angular resolution, as 47

shown in fig. 1, the radar point cloud is still much sparser than the 16-beam LiDAR point 48

cloud. However, radar can measure Doppler velocity and radar cross section (RCS), which 49

is expected to better help classify road users. In addition, 4D radar has the advantages of 50

long detection range (up to 300 meters), all-weather operation, low power consumption 51

and low cost. Therefore, we believe that radar is a good complement to LiDAR and vision. 52

The fusion of these sensors enables all-weather, long-range environment perception. 53

4D Radar Point Cloud 16-Beam LiDAR Point Cloud

Figure 1. Point clouds of a 4D radar and a 16-beam LiDAR from the Astyx dataset [2]

Table 1. Characteristics of typical radars and LiDARs

Conventional Radar1

(Multi-Mode) 4D Radar 16-Beam
LiDAR

32-Beam
LiDAR

Solid State
LiDAR

Max Range f: 250m, n:70m 300m 100m 200m 200m
FoV (H/V) f: 20°, n: 120°/ 7 120°/ 30° 360°/ 30° 360°/ 40° 120°25°

Ang Res (H/V) f: 1.5°, n: 4°/ 7 1°/ 1° 0.1°/ 2° 0.1°/ 0.3° 0.2°/ 0.2°
Doppler Res 0.1m/s 0.1m/s 7 7 7

Point Density Low Medium High High High
All Weather 3 3 7 7 7

Power 5W 5W 8W 10W 15W
Expected Cost Low Low Medium High Medium

1 A typical 77GHz 4Tx-6Rx automotive radar, 2Tx-6Rx for far range and 2Tx-6Rx for near range.



Version May 30, 2022 submitted to Sensors 3 of 43

In recent years, with the trend of open source, more and more datasets, models and 54

toolboxes have been released. According to our statistics, 10 radar datasets were released 55

in 2021 and 2022. Along with these datasets, some seminal papers are proposed to leverage 56

deep learning in radar perception. However, due to the limited sensing capability of 57

conventional radar, the performance of these methods is far from good enough. Since the 58

introduction of 4D radar, we believe that the era of deep radar perception has arrived. With 59

the power of deep learning, we can design a highly reliable perception system based on the 60

fusion of radar and other modalities. 61

The application of deep learning in radar perception has drawn extensive attention 62

from autonomous driving researchers. In the past two years, a number of review papers [3– 63

8] have been published in this field. Zhou et al. [3] categorize radar perception tasks 64

into dynamic target detection and static environment modelling. They also provide brief 65

introductions to radar-based detection, tracking and localization. Abdu et al. [4] summarize 66

the deep learning models for radar perception based on different radar representations, in- 67

cluding occupancy grid maps, range-Doppler-azimuth maps, micro-Doppler spectrograms 68

and point clouds. They also introduces approaches for radar and camera fusion based on 69

the classical taxonomy of data-level, feature-level and decision-level. Scheiner et al. [5] 70

discuss the information sparsity problem and labelling challenge in learning-based radar 71

perception. Three strategies are recommended to increase radar data density, including the 72

use of pre-CFAR data, the use of high-resolution radar sensors, and the use of polarization 73

information. In this paper, we differ from other review papers in three aspects: Firstly, we 74

provide a detailed summary and description of the public available radar datasets, which 75

is very useful for developing learning-based methods. Secondly, this review does not focus 76

on specific tasks, but aims to present a big picture of the radar perception framework, as 77

illustrated in fig. 2. Thirdly, rather than simply presenting the network structure, we focus 78

on explaining why these modules work from the perspective of radar domain knowledge. 79

In this article, we systematically review the recent advancements in deep radar percep- 80

tion. In section 2, we introduce radar signal processing pipeline and different radar data 81

representations. In section 3, we summarize the public-available radar datasets (section 3.1) 82

for autonomous driving, as well as the calibration (section 3.2), labelling (section 3.3) and 83

data augmentation techniques (section 3.4). In the following sections, we introduce dif- 84

ferent radar perception tasks, including radar depth completion (section 4.1), radar full 85

velocity estimation (section 4.2), radar object detection (point-cloud-based in section 5.2 86

and pre-CFAR-based in section 5.3). In section 6, we classify sensor fusion frameworks into 87

four categories: input fusion (section 6.1), ROI fusion (section 6.2), feature map fusion (sec- 88

tion 6.3) and decision fusion (section 6.4). Next, we discuss three challenges toward reliable 89

radar detection, including ghost objects (section 7.1), uncertainty problems (section 7.2), 90

and adverse weather effects (section 7.3). Finally, we propose several interesting research 91

directions in section 8.
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2. Radar Signal Processing Fundamentals 93

Knowledge of radar signal processing is essential for the development of a deep radar 94

perception system. Different radar devices vary in their sensing capabilities. It is important 95

to leverage radar domain knowledge to understand the performance boundary, find key 96

scenarios and solve critical problems. This section outlines the classical signal processing 97

pipeline for automotive radar applications. 98

2.1. FMCW Radar Signal Processing 99
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Figure 3. Radar Tx/Rx signals and the resulted range-Doppler map.

Off-the-shelf automotive radars operate with a sequence of linear frequency-modulated 100

continuous-wave (FMCW) signals to simultaneously measure range, angle and velocity. 101

According to regulations, automotive radar are allowed to use two frequency bands in 102

millimeter waves: 24 GHz (24-24.25 GHz) and 77 GHz (77-79 GHz). There is a trend 103

towards 77 GHz due to its larger bandwidth (76-77 GHz for long-range and 77-81 GHz for 104

short-range), higher Doppler resolution and smaller antennas [9]. As shown in fig. 3, the 105

FMCW signal is characterized by the start frequency (also known as the carrier frequency) 106

fc, the sweep bandwidth B, the chirp duration Tc and the slope S = B/Tc. During one chirp 107

duration, the frequency increases linearly from fc to fc + B with a slope of S. One FMCW 108

waveform is referred to as a chirp, and radar transmits a frame of Nc chirps equally spaced 109

by chirp cycle time Tc. The total time Tf = NcTc is called the frame time, also known as the 110

time on target (TOT). In order to avoid the need of high-speed sampling, a frequency mixer 111

combines the received signal with the transmitted signal to produce two signals with sum 112

frequency fT(t) + fR(t) and difference frequency fT(t)− fR(t). Then a low-pass filter is 113

used to filter out the sum frequency component and obtain the intermediate frequency (IF) 114

signal. In this way, FMCW radar can achieve GHz performance with only MHz sampling. 115

In practice, a quadrature mixer is used to improve the noise figure [10], resulting in a 116

complex exponential IF signal as 117

xIF(t) = Aej(2π fIFt+φIF) (1)

where A is the amplitude, fIF = fT(t) − fR(t) is referred to as the beat frequency 118

and φIF is the phase of the IF signal. Next, the IF signal is sampled Ns times by an ADC 119

converter, resulting in a discrete-time complex signal. Multiple frames of chirp signals are 120
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assembled into a two-dimensional matrix. As shown in fig. 3, the dimension of sampling 121

points within a chirp is referred to as fast time, and the dimension of chirp index within 122

one frame is referred to as slow time. Assume one object moving with speed v at distance r, 123

the frequency and phase of the IF signal are given by 124

fIF =
2S(r + vTc)

c
, φIF =

4π(r + vTc)

λ
(2)

where λ = c/ fc is the wavelength of the chirp signal. From eq. (2), we can find that 125

range and Doppler velocity are coupled. Under the following assumptions: 1. the range 126

variations in slow time caused by target motion can be neglected due to the short frame 127

time. 2. the Doppler frequency in fast time can be neglected compared to the beat frequency 128

by utilizing a wideband waveform. Then, range and Doppler can be decoupled. Range 129

can be estimated from the beat frequency as r = c fIF/2S and Doppler velocity can be 130

estimated from the phase shift between two chirps as v = ∆φλ/4πTc. Next, a range DFT is 131

applied in the fast-time dimension to resolve the frequency change, followed by a Doppler 132

DFT in the slow-time dimension to resolve the phase change. As a result, we obtain a 133

2D complex-valued data matrix called Range-Doppler (RD) map. In practice, a window 134

function is applied before DFT to reduce sidelobes. The range and the Doppler velocity of 135

a cell in RD map are given by 136

rk = k
c

2BIF
, vl = l

λ

2Tf
(3)

where k and l denote the indexes of DFT, BIF is the IF bandwidth, and Tf is the frame 137

time. In practice, FFT is applied due to its computational efficiency. Accordingly, the 138

sequence will be zero-padded to the nearest power of 2 if necessary. 139

Tx1 Tx2

(a) MIMO Radar Antenna

Tx1 Tx2

…

(b) TDM

…

…

Tx1

Tx2

(c) DDM

Figure 4. MIMO radar principles.(a) Virtual array configuration of a 2Tx4Rx MIMO radar (b) In TDM
mode, Tx1 and Tx2 transmit signals by turns. (c) In DDM mode, a Doppler shift is added to Tx2.

Angle information can be obtained using more than one receive or transmit channel. 140

Single-input multiple-output (SIMO) radars utilize a single transmit (Tx) and multiple 141

receive (Rx) antennas for angle estimation. Suppose one object is located at direction θ. 142

Similar to Doppler processing, the induced frequency change between two adjacent receiver 143

antennas can be neglected, while the induced phase change can be used for calculating 144
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the direction of angle. This phase change is given by ∆φ = 2πd sin θ/λ, where d is the 145

inter-antenna spacing. To achieve maximum unambiguous angle, the spacing can be set to 146

λ/2. Then, a third FFT can be applied to the received antenna dimension. For conventional 147

radar with a small number of Rx antennas, the sequence is often padded with NFFT − NRx 148

zeros to achieve a smooth display of the spectrum. The angle at index η is given by 149

θη = arcsin
ηλ

NFFT
(4)

The angular resolution of a SIMO radar depends on the number of Rx antennas. The 150

maximum number of Rx antennas is limited by the additional cost of signal processing 151

chains on the device [11]. Multiple-input multiple-output (MIMO) radar operates with 152

multiple channels in both Tx and Rx. As illustrated in fig. 4 (a), a MIMO radar with NTx 153

Tx antennas and NRx Rx antennas can synthesize a virtual array with NTxNRx channels. 154

In order to separate the transmit signals at the receiver side, the signals from different Tx 155

antennas should be orthogonal. There are multiple ways to realize waveform orthogonal, 156

such as time-division multiplexing (TDM), frequency-division multiplexing (FDM), and 157

Doppler-division multiplexing (DDM) [12,13]. TDM is widely used for its simplicity. In 158

this mode, different Tx antennas transmit chirp signals by turns, as shown in fig. 4 (b). 159

Therefore, at the receiver side, different Tx waveforms can be easily separated in the time 160

domain. An additional phase shift compensation [14] is required to compensate for the 161

motion of detections during the Tx switching time. Another shortcoming of TDM is the 162

reduced detection range due to loss of transmitting power. DDM is also supported by many 163

radar devices. As shown in fig. 4 (c), DDM transmits all Tx waveform simultaneously and 164

separate them in Doppler domain. In order to realize waveform orthogonality, for the the 165

k-th transmitter, a Doppler shift is added to adjacent chirps as 166

ωk =
2π(k− 1)

N
(5)

where N is usually selected as the number of Tx antennas NTx. One drawback of 167

DDM is its unambiguous Doppler velocity is reduced to 1
N of the original one. Empty- 168

band DDM [15] can achieve more robust velocity disambiguation by introducing several 169

empty Doppler subbands. Some example codes are provided in RADIal dataset [16]. After 170

decoupling the received signals, we can obtain a 3D tensor by stacking RD maps with 171

respect to Tx-Rx pairs. Then, DOA can be estimated through angle FFT along the virtual 172

receiver dimension. Some super-resolution methods, such as MUSIC [17], can be applied 173

to improve angular resolution. The resulting 3D tensor is referred to as Range-Azimuth- 174

Doppler (RAD) tensor or radar tensor. 175

In radar detection pipeline, RD maps are integrated coherently along the virtual 176

receiver dimension to increase SNR. Then, a Constant False Alarm Rate (CFAR) detector [17] 177

is applied to detect peaks in the RD map. Finally, the DOA estimation method is applied 178

for angle estimation. The output is a point cloud with measurements of range, Doppler 179

and angle. For conventional radars, only azimuth angle is resolved, while 4D radars 180

output both azimuth and elevation angles. Since radar is usually used in safety-critical 181

applications, a lower CFAR threshold (≤ 10 dB) is set to achieve high recall. The accuracy 182

of detection is affected by road clutter, interferences and multi-path effects in complex 183

environments. Therefore, additional spatial-temporal filtering is required to improve 184

accuracy. DBSCAN [18] is used to cluster radar detections into object-level targets. Clusters 185

with few detections are considered as outliers and thus be removed. Further, temporal 186

filtering, such as Kalman filtering, is used to filter out outliers and interpolate missed 187

detections. 188

2.2. Radar Performances 189

Performance of automotive radar can be evaluated in terms of maximum range, 190

maximum Doppler velocity and field of view (FoV). Equations for these attributes are 191
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summarized in table 2. According to radar equation, the theoretical maximum detection 192

range is given by 193

Rmax = 4

√
PtG2λ2σ

(4π)3Pmin
(6)

where Pt is the transmit power, Pmin is the minimum detectable signal or receiver 194

sensitivity, λ is the transmit wavelength, σ is the target RCS and G is the antenna gain. The 195

wavelength is 3.9 mm for automotive 77Ghz radar. Target RCS is a measure of ability to 196

reflect radar signals back to the radar receiver. It is a statistical quantity that varies with the 197

viewing angle and the target material. According to the test results [19], smaller objects, 198

such as pedestrian and bike, have a average RCS value of around 2-3 dBsm, whereas 199

normal vehicles have an average RCS value of around 10 dBsm and large vehicles of 200

around 20 dBsm. The other parameters, such as transmit power, minimum detectable 201

signal and antenna gain are design parameters aimed at meeting product requirements as 202

well as regulations. Some typical values for these parameters are summarized in table 3. 203

In practice, the maximum range is limited by the supported IF bandwidth BIF and ADC 204

sampling frequency. The maximum unambiguous velocity is inversely proportional to the 205

chirp duration Tc. For MIMO radar, the maximum unambiguous angle is dependent on the 206

spacing of antennas d. The theoretical maximum FoV is 180° if d = λ/2. In practice, FoV is 207

determined by the antenna gain pattern. Another important characteristic is resolution,i.e., 208

the ability to separate two close targets with respect to range, velocity and angle. As 209

shown in table 2, high range resolution requires a large sweep bandwidth B. High Doppler 210

resolution requires a long integration time, i.e., the frame time NcTc. The angular resolution 211

depends on the number of virtual receivers NR, the object angle θ and the inter-antenna 212

spacing d. For the case of d = λ/2 and θ = 0°, angular resolution is in a simple form of 213

2/NR. From the perspective of antenna theory, angular resolution can also be featured by 214

the half-power beamwidth, i.e., the 3-dB beamwidth [13], which is a function of the array 215

aperture D. 216

Table 2. Equations for radar performance

Definition Equation

Max Unambiguous Range Rm = cBIF
2S

Max Unambiguous Velocity vm = λ
4Tc

Max Unambiguous Angle θFoV = ± arcsin( λ
2d )

Range Resolution ∆R = c
2B

Velocity Resolution ∆v = λ
2NcTc

Angular Resolution ∆θres =
λ

NRdcos(θ)

3-dB beamwidth ∆θ3dB = 2 arcsin 1.4λ
πD

The meaning of parameters are consistent in this section. Refer to appendix A for a quick check the meaning.

Table 3. Typical automotive radar parameters[20]

Parameter Range

Transit power (dBm) 10–13
TX/RX antenna gain (dBi) 10–25
Receiver noise figure (dB) 10–20

Target RCS (dBsm) (-10)-20
Receiver sensitivity (dBm) (-120) - (-115)

Minimum SNR (dB) 10-20

In practice, different types of automotive radar are designed for different scenarios. 217

Long Range Radar (LRR) achieves long detection range and high angular resolution at the 218



Version May 30, 2022 submitted to Sensors 8 of 43

cost of a smaller FoV. Short Range Radar (SRR) uses MIMO techniques to achieve high 219

angular resolution and large FoV. In addition, different chirp configurations [21] are used 220

for different applications. For example, Long Range Radar needs to detect fast-moving 221

vehicles at distances, and therefore utilizes small ramp slope for long distance detection, 222

long chirp integration time to increase SNR, small chirp duration to increase maximum 223

velocity and short chirp duration for high velocity resolution [22]. Short Range Radar 224

needs to detect vulnerable road users (VRUs) close to the vehicle, and therefore utilizes 225

higher sweep bandwidth for high range resolution at the cost of short range. Multi-mode 226

radar [21] can work in different modes simultaneously by sending chirps that are switched 227

sequentially with different configurations. 228

2.3. Open-Source Radar Toolbox 229

Commercial off-the-shelf radar products can only output point clouds. It can be 230

configured to output either raw point clouds, sometimes referred to as radar detections, 231

or clustered objects wit tracked ids. The signal processing algorithm inside it is a black 232

box and cannot be modified. Alternatively, TI mm-wave radars have been widely used in 233

academic research because of their public nature and flexibility. They support configurable 234

chirps [21] and different MIMO modes [11] to adapt to different tasks. TI also provides a 235

mmWave studio which provides GUIs for radar setup, data capturing, signal processing and 236

visualization. In addition, there are some open-source radar signal processing toolboxes 237

for TI devices, for example, RaDICaL SDK [23,24], PyRapid [25], OpenRadar [26] and 238

Pymmw [27]. These toolboxes enable researchers to build their own datasets using TI 239

devices. While there are a growing number of public radar datasets, most of them provide 240

limited information about the radar configurations they use. This makes it difficult to 241

make a fair comparison between algorithms trained on different datasets. Open radar 242

initiative [28] provides a guideline for radar configuration and encourages researchers to 243

expand this dataset by using the radar device with the same configuration. 244

3. Datasets, Labelling and Augmentation 245

Data plays a key role in the learning-based approaches. In the past, radar algorithms 246

were always evaluated on private datasets. Recently, with the trend towards open source, 247

many radar datasets have become publicly available. In this section, we summarize these 248

radar datasets with respect to their data representations, tasks, scenarios, and annotation 249

types, as shown in table 4. To motivate readers to build their own datasets, we also introduce 250

extrinsic calibration and cross-modality labelling techniques. We further investigate data 251

augmentation methods and the potential use of synthetic radar data to improve data 252

diversity. 253

3.1. Radar Datasets 254

Different radar datasets use different types of radar. We can classify radar sensors 255

into Low Resolution (LR) and High Resolution (HR). There are different technical routes to 256

achieve high resolution, such as polarimetric radar [29], cooperative radars [30], multi-chip 257

cascaded MIMO radar [13], synthetic aperture radar (SAR) [31] and spinning radar [32]. 258

Most off-the-shelf radars can output a point cloud with range, azimuth angle, Doppler 259

velocity and RCS. Next-generation 4D radar can also measure elevation angle. Some radar 260

prototypes can be configured to output radar raw data, including ADC data, RA/RD maps 261

and RAD tensors. 262

The role of radar in autonomous driving can be divided into localization and detection. 263

Although this paper focus on radar detection, we also introduce the localization datasets in 264

this section. Since these datasets usually provide synchronized LiDAR and image along 265

with radar data, it is possible to annotate them for detection purpose, as done in [33]. There 266

are various levels of label granularity for radar data. For radar point cloud, it is possible to 267

provide 2D bounding boxes, 3D bounding boxes or point-wise annotations. 2D bounding 268

boxes are labelled in bird’s-eye view (BEV) and with orientation information, hence they 269
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are sometimes referred to as pseudo-3D boxes. 3D bounding boxes further capture height 270

information and pitch angle. If properly annotated, point-wise annotation can provide 271

semantic information at a finer granularity than bounding boxes. In fact, radar detections 272

within the bounding box could also be ghost detection or clutter. Therefore, point-wise 273

annotation is a better way to capture the noisy nature of radar point cloud. Similarly, radar 274

pre-CFAR data, including RA/RD maps and RAD tensors, are also annotated point-wise. 275

Some works dilate the annotated points into a dense mask or a bounding box. However, 276

these dilated patches do not necessarily reflect the shape information. Some techniques for 277

precise dilation will be introduced later in section 4. 278

There are some large scale datasets for autonomous driving which include off-the-shelf 279

2D radars in their sensor suites. NuScenes [34] is the most popular dataset for its large-scale 280

and diverse scenarios. The capturing vehicle is equipped with a 32 beam LiDAR, 6 cameras, 281

5 long-range multi-mode radars and a GPS/IMU system. It provides 3D annotations of 282

23 classes of road users in 1,000 scenes, with a total of 1.3 million frames. However, this 283

dataset is not a good choice for studying the role of radar in perception, because its radar 284

point clouds are too sparse. PixSet dataset [35] also aims at 3D object detection. The vehicle 285

is equipped with a colocated sensor platform consisting of a solid-state LiDAR, a 64-beam 286

LiDAR, a TI AWR1843 radar and a GPS/IMU system. The FoVs of different modalities 287

are largely overlapped and hence are well suited for evaluating sensor fusion algorithms. 288

RadarScenes dataset [36] is a diverse large-scale dataset for instance segmentation of radar 289

point clouds. It uses four 77GHz radars with overlapping FoV in the front of the vehicle. 290

Each radar is in middle-range mode with maximum range of 100m and 60°FoV. Compared 291

to NuScenes dataset, its radar point clouds are much denser. The datasets contains 100km 292

of driving in 158 different scenarios. It provides both point-wise annotations and track 293

IDs for 11 classes of moving road users. All points with zero velocity are labelled as static. 294

Pointillism [37] leverages a multi-radar setup to improve the resolution. Two TI IWR1443 295

radars were placed at the front of the car, facing forward, at a distance of 1.5 meters. The 296

aim is to study the effect of coherently integrate point clouds from two radar sensors. In 297

order provide ground truth of radar point clouds, the sensor suite also include a 16-beam 298

LiDAR and a camera with overlapping FoV. The dataset contains 54K synchronized frames 299

for five typical driving scenarios under different weather conditions. It also provides 3D 300

box annotations of vehicles. Zendar dataset [38] is a high-resolution radar dataset that uses 301

SAR for moving vehicle detection. It provides time-synchronized image, radar ADC data, 302

2D SAR point cloud and projected LiDAR point cloud in BEV. Point-wise annotations of 303

moving vehicles are applied to the SAR point cloud. It also provides an SDK for converting 304

raw ADC data to RD maps and visualization. 305

Several datasets utilize radar sensors in short-range (SR) or ultra-short-range (USR) 306

mode for high resolution close-field imaging. In this mode, close objects will occupy several 307

cells in both range and Doppler dimension (because of the micro-Doppler motion). To fully 308

utilize these spatially spread range and Doppler signatures, annotations are made directly 309

on RA maps or RAD tensors. CARRADA dataset [39] uses TI AWR1843BOOST radar in 310

short-range mode, with a max distance of 50 meters. It provides real-valued RA maps, 311

RD maps and unannotated RAD tensors, as well as synchronized images, for training 312

neural networks. In both RA and RD maps, objects are annotated in point level with a 313

category from pedestrian, car, or cyclist. In addition, the dilated segmentation mask and 314

the bounding box around the cluster are also provided. The data are collected on an empty 315

test track with at most two moving objects in the FoV. RADDet dataset [40] also uses TI 316

AWR1843BOOST radar with a max distance of 50 meters, as well as a stereo camera. It 317

provides 3D bounding boxes for complex-valued RAD tensor and 2D bounding boxes for 318

RA map projected in Cartesian view. The data are captured using a tripod located on the 319

sidewalks and facing the main roads. Therefore, its scenario is much more complex than 320

the CARRADA dataset. CRUW dataset [41] uses a TI AWR1843 radar and a stereo camera 321

for object detection. It adopts a different signal processing pipeline, which directly outputs 322

RA map using range FFT and angle FFT. Then, the object-level point-wise annotation 323
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is applied to complex-valued RA maps. A probabilistic camera-radar fusion approach 324

is used to improve annotation quality. The dataset contains 3.5 hours, 400K frames of 325

camera-radar data in different driving scenarios, including parking lot, campus road, city 326

street, and highway. RaDICaL dataset [42] uses TI IWR1443BOOST radar in multiple 327

configurations for different scenarios, including indoor, parking lot, highway and single 328

human walking. It records radar ADC data together with the RGB-D images and IMU data 329

using ROS. It also provides a signal processing SDK [23] to process and annotate radar data. 330

Ghent VRU dataset [43] collects radar data specifically for VRU detection. The sensor suite 331

includes a TI AWR1243 radar, a camera and a 16-beam LiDAR. The data are recorded by a 332

vehicle driving on public roads in a crowded European city center. It provides radar RAD 333

tensors with segmentation mask annotations for VRUs. To compensate for range-dependent 334

power, many datasets apply logarithmic scaling or normalization to the pre-CFAR data 335

as default. CARRADA dataset [39] and RADDet dataset [40] apply logarithmic scaling 336

to their radar data. The normalization can be applied in different ways, including local 337

power normalizing in Ghent VRU dataset [43], min-max scaling in CRUW dataset [41], and 338

Z-score standardization in RADDet dataset [40]. Here we only summarize some operations 339

that are explicitly mentioned. Further checks are needed when benchmarking the algorithm 340

using different datasets. 341

As 4D radar is just entering the market, only a few public datasets are available. 342

Astyx dataset [2] is the first public-available 4D radar dataset. The sensors include a 16- 343

beam LiDAR, a camera and a Astyx 6455 HiRes 4D radar. It provides 3D bounding box 344

annotations of seven classes of road users. Each object is also featured with four levels of 345

occlusion and three levels of uncertainty. The dataset is very small, with only 500 annotated 346

frames of short clips, each clip containing less than 10 frames. The class distribution is very 347

imbalanced, with over 90% annotated objects are car. View-of-Delft (VoD) dataset [44] is a 348

recently published 4D radar dataset especially focus on detection of VRUs. The sensor suite 349

includes a ZF FRGen 21 4D radar, a 64-beam LiDAR and a stereo camera. It provides 8693 350

annotated frames with 3D bounding boxes and tracking ids. Each object is also annotated 351

with two levels of occlusion and four types of activity attribute (stopped, moving, parked, 352

pushed, sitting). The data is collected in campus, suburb and old-town locations, with a 353

preference on scenarios containing VRUs. It provides fine-grained annotations of vehicle, 354

trucks and 10 classes of VRUs. Different classes are equally distributed (21.6% pedestrians, 355

8.8% cyclists and 21.9% cars). RADIal dataset [45] is a 4D radar dataset for vehicle detection 356

and open space segmentation. The sensors include camera, LiDAR, 4D radar, GPS and 357

vehicle’s CAN traces. The 4D radar is a 12Tx 16Rx cascaded radar. A key feature is that 358

they also provide radar raw ADC data, which makes it possible to explore the potential of 359

neural networks in the signal processing stage. This dataset is comparable in size to the 360

VoD dataset, with annotated 8252 frames captured in city street, highway and countryside 361

road. Two kinds of annotation are provided, including vehicle annotations and open space 362

segmentation mask in BEV. The vehicle annotations are in the format of 2D bounding boxes 363

for image and object-level points for LiDAR and radar. Although they do not provide 364

bounding box annotations for the radar point clouds, it is possible for the researchers to 365

annotate them on their own, given the LiDAR point clouds and images. TJ4DRadSet [46] is 366

4D dataset for 3D detection and tracking. The sensor suite includes a 32 beam LiDAR, a 367

camera, a high performance 4D radar (Oculii Eagle) and GNSS. By utilizing Oculii’s virtual 368

aperture imaging technique, this 4D radar can output a much denser point cloud than 369

others. It has a maximum detection range of 400 m and an angular resolution of less than 370

1°in both azimuth and elevation. The data are captured in a wide range of road conditions 371

in urban driving. The dataset contains a total of 40K frames of synchronized data, where 372

7757 frames of them are annotated with 3D bounding boxes and track id. 373

Radar can also be utilized for localization. Compared to camera and LiDAR, radar 374

has advantages of long detection range and robustness to occlusions. Millimeter wave 375

can penetrate certain non-metallic objects, such as glass, Polywood and clay bricks [32], 376

and is less affected by dust, smoke, fog, rain, snow, and ambient lighting conditions [32]. 377
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Therefore, radar has great potential for mapping and localization in adverse weathers. The 378

Oxford radar robotcar dataset [47] is the most popular dataset for radar SLAM. The test car 379

is equipped with a rich set of sensors, including an FMCW spinning radar, two 32 beam Li- 380

DARs, a stereo camera, three monocular cameras, two 2D LiDARs and a GPS/IMU system. 381

The spinning radar can provide a 360° high-resolution intensity map of surrounding envi- 382

ronments. However, it has no Doppler information and is rarely used in production cars 383

due to the high price. Mulran dataset [48] focuses on range-sensor-based place recognition. 384

It uses a spinning radar and a 64 beam LiDAR to capture the surrounding environment. 385

The recorded data are temporally (monthly revisits) and structurally (multi-city) diverse. 386

Borea dataset [49] aims at studying the effect of seasonal variation on long-term localization. 387

The sensor suite includes a spinning radar, a camera, a GPS/IMU system and a 128-beam 388

LiDAR. The data was collected by driving a repeated route over one year, thus capturing 389

seasonal variations and adverse weather conditions. It provides pose ground truth for local- 390

ization task, as well as 3D bounding box annotations for object detection in sunny weather. 391

Similar to Borea dataset, EU long-term dataset [50] aims at localization in highly dynamic 392

environments and long-term autonomy. Its sensor suite includes two stereo cameras, two 393

32 beam LiDARs, two fisheye cameras, a four beam LiDAR and a 77Ghz long-range radar 394

and a 2D LiDAR facing the road. Endeavour dataset [51] adopts 5 multi-mode radar to 395

cover the 360°surrounding environment. It is also equipped with LiDARs and RTK-GPS 396

to provide ground truth for radar odometry. ColoRadar dataset [52] utilizes a compact 397

moving sensor rig, which consists of a 64 beam LiDAR, a TI AWR2243 cascaded 4D radar, 398

a TI AWR1843 radar and an IMU. Three levels of radar data representation are provided, 399

including raw ADC samples, Range-Azimuth-Elevation-Doppler (RAED) tensors from the 400

4D radar and point clouds from the single-chip radar. The data are gathered in a variety of 401

scenarios, including highly diverse indoor environments, outdoor environments and an 402

underground mine. 403

There are also some radar datasets designed for specific tasks. PREVENTION [53] 404

focuses on predicting inter-vehicle interactions. The data collection car is equipped with 405

one frontal long-range radar, two corner radars, one 32 beam LiDAR and two cameras. 406

It provides annotations of 2D bounding boxes, lane change behaviours, and trajectories. 407

SCORP [54] is a radar dataset for open space segmentation in parking scenarios. It provides 408

three kinds of radar data, including RAD tensor, RA map and BEV map. Radar Ghost 409

dataset [55] aims at studying the effect of multi-path propagation in autonomous driving. 410

It provides point-wise annotations of real targets and four types of ghost targets. 411

Robust perception under adverse weather is a popular research topic for safe au- 412

tonomous driving. Although there are some recently published datasets for adverse 413

weather [56–59], only a few include radar in their sensor suite. Dense dataset [60] focus on 414

evaluating multi-modal fusion algorithms under adverse weather. In addition to LiDAR 415

and stereo camera, it is also equipped with several all-weather sensors, including one 416

frontal long-range radar, one gated camera working on NIR band, one FIR camera and 417

one weather station sensor. The data are captured in various natural weather conditions, 418

including rain, snow, light fog and heavy fog, as well as in a controlled lab environment 419

in a fog chamber. However, the dataset only provides sparse radar targets with limited 420

FoV and poor resolution. RADIATE dataset [61] particularly focuses on leveraging radar 421

in adverse weather. The data collection car is equipped with a camera, a LiDAR and a 422

spinning radar. The datasets are captured under different weathers, such as sun, night, rain, 423

fog and snow. It provides annotations for 2D object detection, object tracking and SLAM. 424
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Table 4. Radar Datasets

Name Year Task Radar Type Data Doppler Range Modalities Scenarios Weather Annotations Size
Off-the-shelf Radar Datasets for Detection

nuScenes [34] 2020 DT LR PC 3 SV CLO USH 3 3D L
Dense [60] 2020 D LR PC 3 LR CLO USHT 3 3D L
PixSet [35] 2021 DT LR PC 3 MR CLO USP 3 3D M
RadarScenes [36] 2021 DTS HR PC 3 SV CO USHT 3 Pw L
Pointillism [37] 2020 D 2LR PC 3 MR CL U 3 3D M
Zendar [38] 2020 D SAR ADC,RD,PC 3 MR CLO U 7 Pw S

Radar Pre-CFAR Datasets for Detection
CARRADA [39] 2020 DTS LR RAD 3 SR C R 7 2D,Pw,M M
CRUW [41] 2021 D LR RAD 3 USR C USHP 7 Po L
RADDet [40] 2021 D LR RAD 3 SR C US 7 2D M
RaDICaL [42] 2021 L LR ADC 3 USR,SR CdO USHIP 7 2D L
Ghent VRU [43] 2020 DS LR RAD 3 SR CL U 7 M M

4D Radar Datasets for Detection
Astyx [2] 2019 D HR PC 3 MR CL SH 7 3D S
View-of-Delft [44] 2022 DT HR PC 3 SR CLO U 7 3D,T S
RADIal [45] 2021 DS HR ADC,RAD,PC 3 MR CLO USH 7 Po,M M
TJ4DRadSet [46] 2022 DT HR PC 3 LR CLO U 7 3D, T M

Radar Datasets for Localization
ColoRadar [52] 2021 L HR,LR ADC,PC 3 2USR LO SIT 3 Ps M
Oxford [47] 2020 L SP RA 7 SV CLO U 3 Ps L
RADIATE [61] 2020 LDT SP RA 7 SV CLO USHP 3 2D,T, Ps M
Mulran [48] 2020 L SP RA 7 SV LO US 7 Ps M
Boreas [49] 2022 LD SP RA 7 SV CLO S 3 Ps,3D L
Endeavour [51] 2021 L LR PC 3 5LR LO S 7 Ps M
EU Long-term [50] 2020 L LR PC 3 LR CLO U 3 Ps M

Radar Datasets for Other Tasks
Ghost [55] 2021 DS LR PC 7 LR CLO S 7 Pw M
SCORP [54] 2020 S LR ADC,RAD 3 USR C P 7 M S
PREVENTION [53] 2019 DT LR PC 3 1LR,2SR CLO UH 3 2D L

Task: ’D’, ’T’, ’L’, ’S’ stand for detection, tracking, localization, and segmentation; Type: ’LR’, ’HR’, ’SP’, ’SAR’ stand for low-resolution, high-resolution, spinning, and SAR; 425

Range: ’SV’, ’LR’, ’MR’, ’SR’, ’USR’ stand for surrounding view, long-range (<250m), middle-range (<180m), short-range (<50m), and ultra-short-range (<25m); Modalities: ’C’, 426

’Cd’ , ’L’, ’O’ stand for camera, RGBD camera, LiDAR, and odometry; Scenarios: ’U’, ’S’, ’H’, ’P’, ’T’, ’R’, ’I’ stand for urban (city), suburban, highway, parking lot, tunnel, race track 427

and indoor; Size: ’L’, ’M’, ’S’ stand for large, medium, and small; Weather stands for adverse weather; Label: ’2D’,’3D’,’T’, ’Pw’,’Po’,’Ps’, ’M’ stand for 2D bounding box, 3D 428

bounding box, track ID, point-wise detection, object-level point, pose and segmentation mask. 429



Version May 30, 2022 submitted to Sensors 13 of 43

3.2. Extrinsic Calibration 430

Multi-sensor extrinsic calibration requires calibration targets to be observed simul- 431

taneously by different modalities. The trihedral corner reflector is widely used for radar 432

calibration because of its high RCS. Multiple reflectors are usually placed outdoor to avoid 433

multi-path propagation. The difficulty lies in making the calibration target visible to both 434

radar and other sensors. El Natour et al. [62] builds a calibration facility by placing one 435

Luneburg lens and seven trihedral corner reflectors with known inter-distances. To make 436

the reflectors visually detectable, they paint each surface with different colors. Peršić et al. 437

[63] design a compact calibration target which can be simultaneously detected by camera, 438

radar and LiDAR. As shown in fig. 5 (a), they place a triangle-shaped checkerboard pattern 439

in front of a trihedral corner reflector. The checkerboard is made of styrofoam and is 440

transparent over a large radio frequency range. So that the millimeter wave can penetrate it 441

and detect the corner reflector behind it. In fig. 5 (b), Domhof et al. [64] design a styrofoam 442

board with four circular holes and place a corner reflector at the back. These circular holes 443

are more easily detected by the sparse LiDAR beam since they have no horizontal lines. 444

(a) Triangle target (b) Target with holes

Figure 5. Two types of radar calibration targets [63,64]. The front board is made of styrofoam. The
red triangle is a radar corner reflector.

The extrinsic calibration of a 4D radar and other sensors can be easily done by modi- 445

fying the classical LiDAR to camera calibration methods[65,66]. However, the calibration 446

of conventional radar is a very difficult task, since it returns a 2D point cloud with no 447

elevation resolution. This leads to the problem of vertical misalignment [63], which is 448

defined as the angular deviation between radar plane and ground plane. Sugimoto et al. 449

[67] move a corner reflector up and down to cross radar plane in multiple times. Then, 450

the plane is determined by connecting the peaks with highest intensity in the sequence. 451

Peršić et al. [63] propose a two-step optimization method to mitigate the uncertainty caused 452

by the missing elevation angle. They model radar detections as arcs by extending their 453

elevation angle. Similarly, they also convert 3D detections from other sensors to arcs by 454

neglecting the elevation angle. In the first step, they optimize the reprojection error, which 455

is the Euclidean distance of these projected arcs on the ground plane. In the second step, the 456

parameters related to the elevation measurement are refined according to the RCS error. A 457

second-order RCS model is built by fitting RCS measurements with elevation angles. Then, 458

the L2 distance between the expected and measured RCS is minimized. Experiments show 459

their method enables smaller vertical misalignment than Sugimoto’s method. In order to 460

improve efficiency, some targetless online calibration approaches [68,69] are proposed to 461

leverage target trajectories for extrinsic estimation. 462

3.3. Data Labelling 463

Before introducing the labelling process, we first discuss the time synchronization 464

problem. Different sensors can be synchronised using pulse per second (PPS) triggering 465

signals from the GNSS receiver [70]. However, in most of radar datasets, sensors differ 466

in their triggering time and sampling frequency. Some of them select one sensor as the 467

lead, and choose the closest frames from other modalities for synchronization. Assuming 468

a tolerable time offset of 50 ms, a vehicle with a relative speed of 20 m/s will lead to 469



Version May 30, 2022 submitted to Sensors 14 of 43

an offset of 1 m. Therefore, it is necessary to compensate for synchronization errors in 470

high-speed scenarios. Kaul et al. [71] design a pose chain method to interpolate inter- 471

frame measurements. The translational and rotational transformations are determined by a 472

constant velocity model and Spherical Linear Interpolation (SLERP) [72] respectively. 473

Labelling radar data is a difficult task. Both radar point clouds and pre-CFAR data 474

are hard to interpret by human labellers. To reduce the labelling efforts, most of datasets 475

adopt a semi-automatic labelling framework, which includes two steps: cross-modality 476

pre-labelling and fine-tuning. 477

In the first step, a well-trained detector on other modalities is leveraged for radar 478

labelling. For 3D tasks, radar point clouds can be annotated by 3D boxes predicted by 479

the detector trained with images and LiDAR point clouds [2]. If we want to get point- 480

wise annotations for radar point cloud, we can first predict a dense semantic map for the 481

corresponding image using a visual segmentation network, such as mask R-CNN [73] or 482

DeepLab V3 [74]. To avoid scale ambiguity, it is better to project the masked image to radar 483

frames using depth measured by LiDAR [71] or stereo camera [40,41]. Then, each radar 484

point can be associated with the corresponding semantic labels. Point-wise annotation 485

of RAD tensors or RA maps is in a similar process. We can firstly use CFAR to detect 486

peaks as detections, then annotate these point detections with the aligned visual semantic 487

map. CRUW dataset [41] propose a post-processing method to obtain point-wise object 488

annotations for RA maps. The authors define an object location similarity (OLS) metric 489

which jointly considers the similarities in distance, scale and class. Then, they propose a 490

location-based Non-Maximum Suppression (NMS) method that selects one object point 491

out of the adjacent points based on the OLS metric. Compared to RA map, RD map alone 492

is much more difficult to label. It needs both depth and radial velocity to associate an RD 493

cell to a pixel or a LiDAR point. Radial velocity can be estimated by visual scene flow [75] 494

or by tracking [39]. 495

In the second step, manual inspection is required to correct pre-labelling errors. Identi- 496

fying radar errors involves domain knowledge and therefore requires hiring of radar ex- 497

perts. As a result, building a high-quality, large-scale radar dataset is both time-consuming 498

and financially expensive. To improve labelling efficiency, one way is to reduce the amount 499

of data to be labelled. Dimitrievski et al. [76] leverage a tracking algorithm to interpolate 500

annotations between key frames. The intermediate position is estimated by a Kalman filter 501

with optical flow as measurements. Meyer et al. [2] adopt an active learning [77] framework 502

to reduce labelling efforts in building the Astyx dataset. The core idea is to only label the 503

most informative data. Specifically, they first label a small number of frames and train a 504

detector with this data subset. The trained detector is then used to make predictions on the 505

remaining unlabelled data. Next, the top N uncertain data are again manually labelled and 506

added to the training subset. This process is repeated until convergence of the validation 507

performance. 508

3.4. Data Augmentation 509

Data augmentation plays an essential role in improving generalization of deep learn- 510

ing models. It is well studied for image [78], LiDAR point cloud [79] and audio spec- 511

trogram [80], but overlooked in radar perception. According to the summary report of 512

Radar Object Detection 2021 (ROD2021) Challenge [81], data augmentation techniques 513

significantly improve the performance of RA-map-based radar detection. Considering the 514

radar representation, we can divide the augmentation techniques into spectral and point 515

cloud-based. Augmentation methods can also be featured by local or global depending on 516

whether the entity being augmented is a single object or the entire scene. 517

Spectral augmentation techniques are used for radar pre-CFAR data. DANet [82] 518

adopts several global augmentation techniques borrowed from computer vision to radar 519

RA maps. The methods include mirroring, resizing, random combination, adding Gaussian 520

noise, and temporal reversing. Although physical fidelity is not explicitly considered, the 521

performance gain proves the effectiveness of these augmentation methods. RADIO [83] 522
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implements four types of spectral augmentations, including attenuation, resolution change, 523

adding speckle noise, and background shift. The first two methods are applied to a local 524

patch around each detected object. The attenuation effect is approximated by dampening 525

the cells according to an empirical relationship between the received power and range. 526

The resolution change is modelled by nearest-neighbor interpolation according to the 527

object size. The speckle noise can be approximated as multiplicative truncated exponential 528

distribution [84] or multiplicative Gaussian noise [83]. Background shift is done by adding 529

or subtracting a constant value to background cells. RAMP-CNN [85] applies global 530

geometric augmentations to RA maps. They translate and rotate RA maps in Cartesian 531

coordinate, then project back to the original polar coordinate. The out-of-boundaries 532

areas are cropped off, and the blank areas are filled with background noises. Energy loss 533

and antenna gain loss due to the transformation are compensated according to the radar 534

equation. 535

Point Detection

Range-Azimuth Map

Global Rotation

Augmented RA Map

Local Rotation

Global RotationGlobal Translation

Global Translation

Figure 6. Radar data augmentation techniques. The Doppler velocity measured by radar is a scalar,
so local rotation of the radar detection will cause a misalignment between the Doppler velocity and
the true velocity. Global translation and rotation are free from such misalignment. When augmenting
radar RA map, it is necessary to interpolate the background area and compensate the intensity of
detection.

Point cloud augmentation aims to introduce invariance to geometric transformations 536

and improve the signal-to-clutter ratio. Compared with spectral augmentation, point cloud 537

augmentation methods can be easily extended to multi-modality by properly handling 538

occlusion issues [86,87]. Geometric augmentation can be applied locally or globally, de- 539

pending on whether the transformation is applied to a single target or the entire scene. For 540

radar point cloud, the Doppler velocity and RCS need further consideration. As illustrated 541

in fig. 6, rotating objects locally will affect the radial velocity, and rotating the radar point 542

cloud globally will affect the ego-motion compensated radial velocity if the ego-motion is 543

not rotated accordingly. Therefore, Palffy et al. [44] advise only use mirroring and scaling 544

along the longitudinal axis as augmentation. Another applicable technique is the copy- 545

paste augmentation, which copies the detected object from other frames and pastes it into 546

the same location in the current frame as done in [88]. A limitation of these two methods 547

is that they do not change the distribution of detections, while radar points are actually 548

randomly distributed over the object in different frames. According to experiments [89], 549

most of the radar detections are located in the proximity of the vehicle contour and wheel 550

rims. The number of detections per object is inversely proportional to the distance, and 551

the probability of detection on the contour depends heavily on the orientation. Simulation- 552

based methods, which will be introduced in the next section, is more suitable to capture 553

such randomness. 554

To handle with the sparsity issue, many works utilize augmentation to increase point 555

cloud density. One simple method is accumulating radar points from multiple frames into 556

the current frame. However, accumulation without motion compensation will lead to point 557

cloud aliasing. Long et al. [90] compensates the accumulated radar point cloud with the 558
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estimated full velocity, achieving better performance in bounding box regression. Plaffy et 559

al. [44] augment the accumulated radar point cloud by appending a temporal index to each 560

point as an additional channel. Along with the increased density, this index augmentation 561

is expected to effectively retain the temporal information. Alternatively, Bansal et al. [37] 562

leverages space coherent of two radar sensors to increase the point cloud density. They 563

fuse point clouds from two radars with overlapping FoVs in a probabilistic manner. They 564

firstly cluster the raw point clouds and then associate clusters from two radars by defining 565

a distance-dependent potential function. Points with low confidence are filtered out as 566

outliers, and the remaining points within the same cluster are coherently accumulated. 567

3.5. Synthetic Data 568

Synthetic datasets are widely used in computer vision [91,92] and LiDAR percep- 569

tion [93,94] for autonomous driving. Experiments [95] show the network trained with 570

synthetic data can generalize well in the real-world. By using synthetic radar data, the 571

labelling cost can be completely avoided. Moreover, simulation can be used to generate the 572

safety-critical long-tail scenarios [96]. Physics-based simulation methods, such as ray trac- 573

ing [97,98], are widely applied to generate synthetic radar point clouds. Experiments [98] 574

show that ray tracing can successfully model the multi-path propagation and separability 575

issue of close objects. However, it is difficult to capture the RCS variation in azimuth with 576

current methods. Another type of simulation is to build a probabilistic model of radar 577

detections, also known as model-based augmentation. The spatial distribution of radar 578

detections over the vehicle can be approximated by the surface-volume model, including 579

volcanormal measurement model [99], variational Gaussian mixture model (GMM) [99], 580

and hierarchical truncated Gaussian (HTG) [100]. Model parameters can be learned from 581

data. Using this model, we can augment new synthetic radar detections to real point 582

clouds. It is arguable that what level of fidelity is necessary for downstream tasks. In 583

[101], model-based and ray tracing methods are compared with respect to multiple tar- 584

get tracking. Experiments indicate that the ray-tracing-based model achieves the lowest 585

simulation-to-reality gap. 586

There are some seminal works utilizing learning-based generative models for radar 587

simulation. For example, deep stochastic radar model [102] adopts a conditional-VAE 588

architecture. The encoder consists of two heads, one for RAD tensor and one for object list. 589

The extracted features are concatenated and further processed with an MLP. The decoder 590

generates a radar intensity map in polar grid conditioned on the encoded feature and 591

random noise. Generative models can also be used in cross-modality data generation, 592

for example, GAN-based LiDAR-to-radar generation [103], GAN-based radar-to-image 593

generation [104] and VAE-based radar-to-image generation [105]. 594

4. Radar Depth and Velocity Estimation 595

Radar can measure range and Doppler velocity, but both of them cannot be directly 596

used for downstream tasks. The range measurements are sparse and therefore difficult to 597

associate with their visual correspondences. The Doppler velocity is measured in radial 598

axis and therefore cannot be directly used for tracking. In this section, we summarize depth 599

completion and velocity estimation methods using radar point cloud. 600

4.1. Depth Estimation 601

Recently, pseudo-LiDAR-based visual object detection [106–108] has became a popular 602

research topic. The core idea is to project pixels into a pseudo point cloud to avoid distor- 603

tions induced by inverse projective mapping (IPM). The pseudo LiDAR detection is built on 604

depth estimation. Visual depth estimation is a ill-posed problem because of the scale ambi- 605

guity. However, learning-based methods, either in supervised [109] or self-supervised [110], 606

can successfully predict dense depth maps with camera only. Roughly speaking, these 607

methods learn a priori knowledge of object size from the data and are therefore vulnerable 608

to some data-related problems, such as sensitivity to input image quality [110] and learning 609
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non-causal correlations, such as object and shadow correlations [111]. These limitations can 610

be mitigated with the help of range sensors, such as LiDAR and radar. Depth completion is 611

a sub-problem of depth estimation. It aims to recover a dense depth map for image using 612

the sparse depth measured by range sensors. Compared to LiDAR, radar has advantages of 613

low price, long range and robustness to adverse weather. Meanwhile, it faces the problems 614

of noisy detections, no height measurements and sparsity. As shown in fig. 7, due to 615

multi-path propagation, radar can see the non-line-of-sight highly reflective objects, such 616

as wheel rims and occluded vehicles. In [112], the authors refer this phenomenon as the see 617

through effect. It is beneficial in 3D coordinate, but brings difficulty in associating radar 618

detections with visual objects in image view. 619

Radar

Camera

Radar detection

Real detection

Imaging
plane

Multi-path 
propagation

Radar plane

Specular 
reflection

Figure 7. Radar range measurements. Off-the-shelf radars return detections on a 2D radar plane. The
detections are sparsely spread on objects due to specular reflection. Due to multi-path propagation,
radar can see through occlusions, and meanwhile this can cause some noisy detections.

The two-stage architecture is widely applied for image guided radar depth completion 620

task. Lin et al. [113] adopt a two-stage coarse-to-fine architecture with LiDAR supervision. 621

In the first stage, a coarse radar depth is estimated by an encoder-decoder network. Radar 622

and image are processed independently by two encoders and fuse together in feature-level. 623

Then, the decoder output a coarse dense depth map in image view. The predicted depth 624

with large errors are filtered out according to a range-dependent threshold. Next, the 625

original sensor inputs and the filtered depth map are sent to a second encoder-decoder 626

to output a fine-grained dense map. In the first stage, the quality of association can be 627

improved by expanding radar detections to better match visual objects. As shown in 628

fig. 8 (b), Lo et al. [114] apply height extension to radar detections to compensate for the 629

missed height information. A fixed height is assumed for each detection and is projected 630

onto the image view according to the range. Then, the extended detections are sent to a 631

two-stage achitecture to output a denoised radar depth map. Long et al. [115] propose a 632

probabilistic association method to model the uncertainties of radar detections. As shown 633

in fig. 8 (c), radar points are transformed into a multi-channel enhanced radar (MER) image, 634

with each channel representing the expanded radar depth at a specific confidence level of 635

association. In this way, the occluded detections and imprecise detections at the boundary 636

are preserved but with a low confidence. Gasperini et al. [112] use radar as supervision 637

to train a monocular depth estimation model. Therefore, they apply a strict filtering to 638

only retain detections with high confidence. In the pre-processing, they remove clutters 639

inside the bounding box that exceeded the range threshold, and discard points in the upper 640

50% and outer 20% of the box as well as the overlapping regions to avoid the see-through 641

effect. All the background detections are also discarded. For association, they first apply a 642

bilateral filtering, i.e., an edge preserving filtering, to constrain the expansion to be within 643

the object boundary. They further clip the association map close to the edge to get rid of 644

imprecise boundary estimations. To compensate for height information, they directly use 645

the height of the bounding box as reference. Considering the complexity of the vehicle 646

shape, they extend the detections to the lower third of its bounding box to capture the flat 647

front surface of the vehicle. 648
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(a) Radar detections (b) Height extension (c) Multi-channel (d) Box-based filtering

Figure 8. Radar detection expansion techniques. (b) Extend radar detections in height. (c) Build a
probabilistic map, where the dark/light blue indicates channel with high/low confidence threshold.
(d) Apply a strict filtering according to the bounding box, where only detections corresponding to the
frontal surface are retained.

As ground truth, LiDAR has some inherent defects, such as sparsity, limited range and 649

holes with no reflections. Long et al. [115] suggest to pre-process LiDAR points for better 650

supervision. They accumulate multiple frames of LiDAR point clouds to improve density. 651

Pixels with no LiDAR reaches are assigned zero values. Since LiDAR and camera do not 652

share the same FoV, the LiDAR points projected to image view also have occlusion problem. 653

Therefore, the occluded points are filtered out by two criterions, one is the difference 654

between visual optical flow and LiDAR scene flow, and the other is the difference between 655

segmentation mask and bounding boxes. Lee et al. [116] suggest to use both visual semantic 656

mask and LiDAR as supervision signals. Visual semantic segmentation can detect smaller 657

objects at a distance, thus compensating for the limited range of LiDAR. To extract better 658

representations, they leverage a shared decoder to learn depth estimation and semantic 659

segmentation concurrently. Both the LiDAR measurement and the visual semantic mask 660

annotations are used as supervision. Accordingly, the loss function consists of three parts: 661

a depth loss with LiDAR points as ground truth, a visual semantic segmentation loss and a 662

semantic guided regularization term for smoothness. 663

Projecting radar to image view will lose the advantages of the see through effect. 664

Alternatively, Niesen et al. [117] leverage radar RA maps for depth prediction. They 665

use a short range radar with maximum range of 40 meters. Because of the low angular 666

resolution, the azimuth smearing effect is obvious,i.e., the detections are smeared as a blurry 667

horizontal line in RA maps. It is expected that fusion of image and RA map can mitigate 668

this effect. Therefore, they use a two branch encoder-decoder network with radar RA map 669

and image as inputs. A dense LiDAR depth map is used as ground truth. Different from the 670

above methods that align LiDAR to image, they crop, downsample and quantize LiDAR 671

detections to match radar’s FoV and resolution. The proposed method is tested with their 672

self-collected data. Although the effectiveness of RA map and point cloud is not compared, 673

it provides a new direction to explore radar in depth estimation task. 674

4.2. Velocity Estimation 675

For autonomous driving, velocity estimation is helpful for trajectory prediction and 676

path planning. Radar can accurately measure the Doppler velocity, i.e., radial velocity in 677

polar coordinate. If a vehicle moves parallel to ego-vehicle at a distance, its actual velocity 678

can be approximated by the measured Doppler velocity. But this only applies in highway 679

scenarios. On urban road, it is possible for an object to move tangentially while crossing 680

the road, then its Doppler velocity will be close to zero. Therefore, Doppler velocity cannot 681

replace full velocity. Recovering full velocity from the Doppler velocity needs two steps: 682

first compensate the ego-motion, then estimate the tangential velocity. In the first step, the 683

ego-motion can be estimated by visual-inertial odometry (VIO) and GPS. Radar-inertial 684

odometry [118,119] can also be used in visual-degraded or GPS-denied environments. 685

Then, the Doppler velocity is compensated by subtracting the ego-velocity. In the second 686

step, the full velocity is estimated according to the geometric constraints. Suppose that 687

radar observes several detections of an object and that the object is in linear motion. As 688
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shown in fig. 9 (a), the relationship between the predicted linear velocity (vx, vy) and the 689

measured Doppler velocity vr,i is given by 690

vr,i = vx cos(θi) + vy sin(θi) (7)

where the subscript i denotes the i-th detection, θi is the measured azimuth angle. 691

By observing N detections per object, we can solve the linear velocity using the least 692

square method. However, the L2 loss is not robust to outliers, such as clutter and mirco- 693

Doppler motion of wheels. Kellner et al. [120] apply RANSAC to remove outliers then use 694

Orthogonal Distance Regression (ODR) to find the optimal velocity. 695

ICRR

(a) Linear motion model (b) Curvilinear motion model

Figure 9. Radar motion model. (a) Linear motion model needs multiple detections for the object. (b)
Curvilinear motion model requires either two radars observe the same objects, or the determination
of vehicle boundary and rear axle.

Although the linear motion model is widely used for its simplicity, it will generate 696

large position errors for motion with high curvature [121]. Alternatively, as shown in fig. 9 697

(b), the curvilinear motion model is given by 698

vr,i = ω(yc − yS) cos(θi)−ω(xc − xS) sin(θi) (8)

where ω is the angular velocity, θ is the angle of the detected point,(xc, yc) represents 699

the position of the instantaneous center of rotation (ICR) and (xS, yS) represents the known 700

radar position. In order to decouple angular velocity and position of the ICR, we need at 701

least two radar sensors that observe the same object. Then, we can transform eq. (8) into a 702

linear form as 703

yS
j cos(θji)− xS

j sin(θji) = yc cos(θji)− xc sin(θji)− vD
ji ω−1 (9)

where the subscript j denotes the j-th radar. Similarly, RANSAC and ODR can be 704

used to find the unbiased solution of both angular velocity and position of the ICR [122]. 705

For single radar setting, it is also possible to derive a unique solution of eq. (8) if we can 706

correctly estimate the vehicle shape. According to the Ackermann steering geometry, the 707

position of the ICR should be located on a line extending from the rear axle. By adding this 708

constraints to eq. (8), the full velocity can be determined in closed form [123]. 709

Above methods predict velocity in object level under the assumption of rigid motion. 710

However, the micro-motion of object parts, such as the swinging arms of pedestrians, are 711

also useful for classification. Capturing these non-rigid motions requires velocity estimation 712

at the point level. It can be achieved by fusing with other modalities or by using temporal 713

consistency between adjacent radar frames. Long et al. [90] estimate point-wise velocity 714

by fusion of radar and camera. They first estimate the dense global optical flow and the 715

association between radar points and image pixels through neural network models. Next, 716

they derive the closed-form full velocity based on the geometric relationship between 717

optical flow and Doppler velocity. Ding et al. [124] estimate the scene flow for 4D radar 718

point cloud in a self-supervised learning framework. Scene flow is a 3D motion field 719

and can be roughly considered as the linear velocity field. Their model consists of two 720

steps: flow estimation and static flow refinement. In the flow estimation step, they adopt a 721
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similar structure with PointPWCNet [125]. To compensate for the positional randomness 722

of detections between frames, a cost-volume layer is utilized for patch-to-patch correlation. 723

The features and correlation maps are then sent to a decoder network for flow regression. 724

In the static flow refinement step, they assume that most radar detections are static and 725

therefore use the Kabsch algorithm [126] to robustly estimate the ego-motion. They then 726

filter out moving objects based on the coarse ego-motion, and apply the Kabsch algorithm 727

again to all static points for fine-grained ego-motion estimation. The self-supervised loss 728

consists of three parts: a radial displacement loss, which penalize errors between the 729

estimated velocity projected along radial axis and the measured Doppler velocity, a soft 730

Chamfer distance loss, which encourage temporal consistence between two consecutive 731

point clouds, and a soft spatial smoothness loss, which encourage the spatial consistence 732

for the estimated velocities with their neighbours. The soft version of loss is used to model 733

spatial sparsity and temporal randomness of radar point cloud. 734

5. Radar Object Detection 735

Due to low resolution, classical radar detection algorithm has limited classification 736

capability. In recent years, the performance of automotive radar has been greatly improved. 737

At hardware level, next generation imaging radars can output high-resolution point clouds. 738

At algorithmic level, neural networks show their potentials to learn better features from 739

the dataset. In this section, we consider a broader definition of radar detection, including 740

point-wise detection, 2D/3D bounding box detection and instance segmentation. We first 741

introduce the classical detection pipeline and recent improvements on clustering and feature 742

selection. As shown in fig. 10, neural networks can be applied to different stages in the 743

classical pipeline. According to input data structure, we classify the deep radar detection 744

into point-cloud-based and pre-CFAR-based. Radar point cloud and pre-CFAR data are 745

similar to LiDAR point cloud and visual image respectively. Accordingly, architectures for 746

LiDAR and vision tasks can be adapted for radar detection. We focus on how knowledge 747

from the radar domain can be incorporated into these networks to address the low SNR 748

problem. 749
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Figure 10. Overview of radar detection frameworks: Blue boxes indicate classical radar detection
modules. Orange boxes represent AI-based substitutions.

5.1. Classical Detection Pipeline 750

As shown in fig. 10, conventional radar detection pipeline consists of four steps: CFAR 751

detection, clustering, feature extraction, and classification. Firstly, a CFAR detector is 752

applied to detect peaks in RD heatmap as a list of targets. Then, the moving targets are 753

projected to Cartesian coordinate and clustered by DBSCAN [18]. Static targets are usually 754

filtered out before clustering because they are indistinguishable from environmental clutter. 755

Within each cluster, hand-crafted features, such as statistics of measurements and shape 756

descriptors, are extracted and sent to a machine learning classifier. Improvements can be 757
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made upon each of these four steps. CFAR is usually executed in an on-chip DSP, so the 758

choice of method is restricted by hardware support. Cell-Averaging (CA) CFAR [17] is 759

widely used due to its efficiency. It estimates the noise as the average power of neighbouring 760

cells around the cell under test (CUT) within a CFAR window. A threshold is set to achieve a 761

constant false alarm rate for Rayleigh distributed noise. The next generation high-resolution 762

radar chips also support Order-Statistics (OS) CFAR [17]. It sorts neighbouring cells around 763

the CUT according to the received power, and selects the k-th cell to represent the noise 764

value. OS-CFAR has advantages in distinguishing close targets, but introduces a slightly 765

increased false alarm rate and additional computational costs. More sophisticated CFAR 766

variants are summarized in [127], but are rarely used in automotive applications. Deep 767

learning methods can be used to improve noise estimation [128] and peak classification [127] 768

in CFAR. Clustering is the most important stage in radar detection pipeline, especially for 769

the next generation high resolution radar [129]. DBSCAN is favored for several reasons: 770

It does not require a pre-specified number of clusters, it fits arbitrary shapes, and it runs 771

fast [130]. Some works improve DBSCAN by explicitly considering characteristics of radar 772

point cloud. Grid-based DBSCAN [131] suggests clustering radar points in a RA grid map 773

to avoid the range-dependent resolution variations in Cartesian coordinate. Multi-stage 774

clustering [132] proposes a coarse-to-fine two-stage framework to alleviate the negative 775

impact of clutter. It applies a second cluster merging based on the velocity and spatial 776

trajectory of clusters estimated from the first stage. 777

With the improvement of automotive radar resolution, radar target classification has 778

become a hot research topic. For moving objects, the micro-Doppler velocity of moving 779

components such as wheels and arms, can be useful for classification. To better observe 780

these micro-motion, short-time Fourier transform (STFT) is applied to extract Doppler 781

spectrograms. Different types of VRUs can be classified according to their micro-Doppler 782

signatures[133,134]. For static objects, Cai et al. [135] suggest the use of statistical RCS and 783

time-domain RCS as useful features for classification of vehicles and pedestrians. Some 784

researchers work on exploiting a large number of features for better classification. Scheiner 785

et al. [136] consider a large set of 98 features and use the heuristic-guided backward 786

elimination for feature selection. They find range and Doppler features are most important 787

for classification, while angle and shape features are usually discarded, probably because 788

of the low angular resolution. Schumann et al. [137] compares the performance of random 789

forest and LSTM for radar classification. Experiments show that LSTM with an input of 8- 790

frame sequences performs slightly better than random forests, especially in the classification 791

of classes with similar shape, such as pedestrians and pedestrian groups, and for false 792

alarms. But LSTM is more sensitive to the amount of training examples. To cope with 793

class imbalance in radar datasets, Scheiner et al. [138] suggest using classifier binarization 794

techniques, which can be divided into two variants: one-vs-all (OVA) and one-vs-one 795

(OVO). OVA trains N classifiers to separate one class from the other N − 1 classes, and 796

OVO trains (N
2 ) classifiers for every class pair. During inference, the results are decided by 797

max-voting. 798

5.2. Point Cloud Detector 799

End-to-end object detectors are expected to replace the conventional pipelines based 800

on hand-crafted features. However, convolutional neural network is not well designed for 801

sparse data structure[139]. It is necessary to increase the input density of radar point cloud 802

for better performance. Dreher et al. [140] accumulate radar points into an occupancy grid 803

mapping (OGM), then apply YOLOv3 [141] for object detection. Some works [142–144] 804

utilize point cloud segmentation networks, such as PointNet [145] and PointNet++ [146], 805

followed by a bounding box regression module for 2D radar detection. The original 3D 806

point cloud input is replaced by a 4D radar point cloud with two spatial coordinates in x-y 807

plane, Doppler velocity and RCS. Scheiner et al. [144] compare performances of two-stage 808

clustering method, OGM-based method and PointNet-based method with respect to 2D 809

detection. Experiments show that OGM-based method performs best, while PointNet- 810
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based method performs far worse than others probably due to sparsity. Liu et al. [147] 811

suggest that incorporating global information can help with the sparsity issue of radar point 812

cloud. Therefore, they add a gMLP [148] block to each set abstraction layer in PointNet++. 813

The gMLP block is expected to extract global features at an affordable computational cost. 814

Most radar detection methods only apply to moving targets, since static objects are 815

difficult to classify due to low angular resolution. Schumann et al. [149] propose a scene 816

understanding framework to detect both static and dynamic objects simultaneously. For 817

static objects, they first build a RCS histogram grid map through temporal integration of 818

multiple frames, and send it to an fully convolutional network (FCN) [150] for semantics 819

segmentation. For dynamic objects, they adopt a two-branch recurrent architecture: one is 820

the point feature generation module, which uses PointNet++ to extract features from the 821

input point cloud. The other is the memory abstraction module, which learns temporal 822

features from the temporal neighbors in the memorized point cloud. The resulted features 823

are concatenated together and sent to a instance segmentation head. In addition, a memory 824

update module is proposed to integrate targets into the memorized point cloud. Finally, 825

static and dynamic points are combined into a single semantic point cloud. The proposed 826

framework can successfully detect moving targets such as cars and pedestrians, as well as 827

static targets like parked cars,infrastructures, poles and vegetation. 828

As 4D radars have gradually come to the market, radar point cloud density has 829

increased considerably. A major advantage of 4D radar is that static objects can be classified 830

based on elevation measurements without the need to build an occupancy grid map. 831

Therefore, it is possible to train a single detector for both static and dynamic objects. Plaffy 832

et al. [44] applies PointPillars [151] to 4D radar point clouds for 3D detection of multi-class 833

road users. They find the performance can be improved by temporal integration and by 834

introducing of additional features, such as elevation, Doppler velocity and RCS. Among 835

them, the Doppler velocity is essential for detecting pedestrians and bicyclists. However, 836

the performance of the proposed 4D radar detector (mAP 47.0) is still far inferior than 837

their LiDAR detector on 64-beam LiDAR (mAP 62.1). They argue this performance gap 838

comes from radar’s poor ability in determining the exact 3D position of objects. RPFA-Net 839

[152] improves PointPillars by introducing a Radar Pillar Features Attention (PFA) module. 840

It leverages self-attention to extract the global context feature from pillars. The global 841

features are then residually connected to the original feature map and sent to a CNN-based 842

detection network. The idea behind is to explore the global relationship between objects 843

for a better heading angle estimation. In fact, self-attention is basically an set operator, so 844

it is well suited for sparse point clouds. Radar transformer et al. [153] is a classification 845

network constructed entirely by self-attention modules. The 4D radar point cloud is first 846

sent to an MLP network for input embedding. The following feature extraction network 847

consists of two branches. In the local feature branch, it uses three stacked set abstraction 848

modules [146] and vector attention modules [154] to extract hierarchical local features. In 849

the global feature branch, the extracted local features at each hierarchy are concatenated 850

with global feature map at the previous hierarchy and fed into a vector attention module 851

for feature extraction. In the last hierarchy, a scalar-attention, i.e., the conventional self- 852

attention, is used for feature integration. Finally, the feature map is sent to a classification 853

head. Experiments show the proposed radar transformer outperforms other point cloud 854

networks in terms of classification. The above two attention-based approaches show their 855

potential in modeling the global context and extracting semantic information. Further 856

works should focus on combine these two advantages into a fully attention-based detection 857

network. 858

5.3. Pre-CFAR Detector 859

There are some attempts to explore the potential of pre-CFAR data for detection. Radar 860

pre-CFAR data encode rich information of both targets and backgrounds, but is hard to 861

interpret by human. Neural network is expected to better utilize these information. One 862

option is to use neural network to replace CFAR [155] or DOA estimation[75,156]. Readers 863
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can refer to [157] for a detailed survey of learning-based DOA estimation. Alternatively, 864

there are also some efforts to perform end-to-end detection through neural networks. Deep 865

radar detector [158] jointly trains two cascaded networks for CFAR and DOA estimation 866

respectively. Zhang et al. [159] use stacked complex RD maps as input to a FCN for 867

3D detection. In order to remove the DC component in phase, they perform a phase 868

normalization by using RD cells in the first receiver as normalizers. They argue that phase 869

normalization is crucial for successful training. Rebut et al. [45] design a DDM-MIMO 870

encoder with complex RD map as input. In DDM configuration, as illustrated in fig. 3, all 871

Tx antennas transmit signals at the same time. Instead of performing waveform separation, 872

they directly apply range FFT and Doppler FFT to ADC signals received by Rx antennas. 873

In this way, targets detected from different Tx antennas should be located separately with a 874

fixed Doppler shifts in RA map. To extract these features, they design a two-layer MIMO 875

encoder, consisting of a dilated convolutional layer to separate Tx channels, followed by a 876

convolutional layer to mix the information. This MIMO encoder are jointly trained with 877

the following RA encoder, detection head and segmentation head. 878

In close-field applications that require large bandwidth and high resolution, RD maps 879

are not suitable because the extended Doppler profile can lead to false alarms. RA map, on 880

the other hand, does not suffer from the same problem. For each detection point on RA 881

map, the micro-Doppler information in the slow time can be utilized for better classification. 882

RODNet [41] uses complex RA maps as input for object detection. It performs range FFT 883

followed by angle FFT to get a complex RA map for each sampled chirp. It is difficult to 884

separate static clutter and moving objects using RA map alone without Doppler dimension. 885

To utilize the motion information, it samples a few chirps within a frame. Then, the 886

sequences of RA maps corresponding to these chirps are sent to a temporal convolution 887

layer. Specifically, it first uses 1x1 convolutions along the chirp dimension to aggregate 888

temporal information. Then, a 3D convolution layer is used to extract temporal features. 889

Finally, the features are merged along the chirp dimension by max-pooling. Experiments 890

indicate sampling 8 chirps out of 255 can achieve a comparable performance with using the 891

full chirp sequences. 892

Training neural network to utilize phase information in complex RA or RD map is 893

a difficult task. Alternatively, some works attempt to use the real-valued RAD tensor as 894

input. A key issue in using the 3D RAD tensor as input is the curse of dimensionality. 895

Therefore, many techniques are proposed to reduce the computational cost of 3D tensor 896

processing. RADDet [40] normalizes and reshapes the RAD tensor to an image-like data 897

structure. The Doppler dimension is treated as channel of 2D RA maps. Then, YOLO is 898

applied to the RA map for object detection. One disadvantage is that this method fails 899

to utilize the spatial distribution of Doppler velocities. Alternatively, 3D convolution can 900

be used to extract features from all three dimensions in a 3D tensor, but requires huge 901

computation and memory overheads [160]. RODNet [41] samples chirp sequences, as 902

described above, to reduce input dimensionality. RTCNet [161] reduces tensor size by 903

cropping a small cube around each point detected by CFAR, and then uses 3D CNN to 904

classify these small cubes. However, its detection performance is limited by the CFAR 905

detector. To fully exploit the information encoded in RAD tensors, some works [85,162,163] 906

adopt the multi-view encoder-decoder architecture. Major et al. [162] and Ouaknine et al. 907

[163] both utilize a similar multi-view structure. The RAD tensor is projected into three 2D 908

views. Then, three decoders extract features from these views respectively. To fuse these 909

features, Ouaknine et al. direclty concatenate three feature maps. Major et al. recover the 910

tensor shape by duplicating these 2D feature maps along the missing dimension, then use a 911

3D convolution layer to fuse them. Next, the Doppler dimension is suppressed by pooling 912

to recover the shape of RA feature map. Finally the fused feature maps are sent to a decoder 913

for downstream segmentation tasks. Another difference is Major et al. use skip-connection 914

while Ouaknine et al. adopt a ASPP [74] pathway to encode information from different 915

resolutions. RAMP-CNN et al. [85] is also built in a multi-view architecture, but it uses three 916
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encoder-decoders for feature map extraction. Their fusion method is similar to Major’s but 917

in 2D. 918

Radar pre-CFAR data are captured in a polar coordinate. For object detection, polar- 919

to-Cartesian transformation is necessary to obtain the correct bounding box. Major et al. 920

[162] compare three configurations for coordinate transformation: pre-processed input 921

transformation, learning from neural networks, and transformation on middle-layer fea- 922

ture map. Experiments show applying explicit polar-to-Cartesian transformation to the 923

last-layer feature map achieves the best performance, the implicit learning-based transfor- 924

mation is slightly worse and the pre-processed transformation is far inferior than other 925

two. They attribute this poor performance to distorted azimuth side-lobes in the input. 926

In fact, conventional 2D convolution is not the best choice for radar pre-CFAR data, since 927

range, Doppler and azimuth dimension vary in their dynamic ranges and resolutions. 928

Instead of 2D convolution, PolarNet [164] uses cascade of two 1D convolutions, including 929

a column-wise convolution to extract range-dependent features, followed by a row-wise 930

convolution to mix information from spatial neighbours. A similar idea is used in google’s 931

RadarNet [165] for gesture recognition. They first extract range-wise features then summa- 932

rized them together in the later stage. Meyer et al. [166] use a isotropic graph convolution 933

network (GCN) [167] to encode the RAD tensor and achieves more than 10% improvement 934

in AP for 3D detection. They argue that the performance gain comes from the ability of 935

GCN to aggregate information from neighboring nodes. 936

Incorporating temporal information is an effective way to improve the performance of 937

pre-CFAR detectors. There are multiple ways to add temporal information to the network. 938

Major et al. [162] use a convolutional LSTM layer to process a sequence of feature maps 939

from the encoder network. Experiments indicate the temporal layer enables more accurate 940

detection and significantly better velocity estimation. Ouaknine et al. [163] compare the 941

performance between the static model with accumulated inputs and the temporal model 942

with stacked inputs. For the static model, RAD tensors within 3 frames are accumulated 943

into one single tensor, and fed to a multi-view encoder-decoder for segmentation. For the 944

temporal model, RAD tensors within 5 frames are stacked to form a 4D tensor and then 945

sent to a multi-view encoder-decoder. In each branch, multiple 3D convolution layers are 946

used to leverage spatial-temporal information. The results show that the introduction of 947

the temporal dimension can significantly improve detection performance. Pervsic et al. 948

[68] discuss the effect of the number of stacked radar frames. They find too long frames 949

will introduce many background clutter, which in turn makes the model difficult to learn 950

target correspondences. According to their experiments, stacking of 5 frames is the most 951

suitable choice. RODNet [41] investigate on stacking multiple frames on feature-level. It 952

concatenates the extracted per-frame features and sends them to a 3D CNN layer. For 953

motion compensation, they apply deformable convolution [168] on the chirp dimension 954

in the first few layers. In addition, an inception module with different temporal length 955

are used in the later layers. Despite the introduction of additional computational costs, 956

these two temporal modules significantly improve the average precision. Li et al. [169] 957

explicitly model the temporal relationship between features extracted from two consecutive 958

frames using a attention module. Firstly, they stack RA maps in two orders, i.e.current 959

frame on top and previous frame on top. Then, they use two encoders to extract features 960

from these two inputs and concatenate the features together. A positional encoding is 961

further added to compensate the positional imprecision. Next, the features are sent to a 962

masked attention module. The mask is used to disable cross-object attention in the same 963

frame. Finally, the temporally enhanced features are sent to a encoder for object detection. 964

This attention-based approach is more semantically interpretable and avoids the locality 965

constraint induced by convolution. 966
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6. Sensor Fusion for Detection 967

Different sensors observe and represent an object with different features. Sensor fusion 968

can be considered as the mapping of different modalities into a common latent space 969

where different features of the same object can be associated together. In this section, we 970

focus on sensor fusion for detection. We argue that the conventional taxonomy of fusion 971

architectures into early (input), middle (feature) and late (decision) fusion is ambiguous for 972

neural network based detection. For example, in the definition of late fusion, we cannot 973

distinguish between ROI-level (without category information) fusion and object-level (with 974

category information) fusion. Therefore, we explicitly classify fusion methods according to 975

the fusion stage. This is beneficial because different fusion stages correspond to different 976

levels of semantics, i.e., the classification capabilities. As shown in fig. 11, we classify fusion 977

architectures into four categories: input fusion, ROI fusion, feature map fusion and decision 978

fusion.
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Figure 11. Overview of radar and camera fusion frameworks. We classify the fusion frameworks
into input fusion, ROI fusion, feature map fusion and decision fusion. For ROI fusion, we further
investigate two architectures: cascade fusion which projects radar proposals to image view, and
parallel fusion which fuses radar ROIs and visual ROIs.

979

6.1. Input Fusion 980

Input fusion is applied to radar point cloud. It projects radar points into a pseudo- 981

image with range, velocity, and RCS as channels [170,171]. Then, similar to a RGB-Depth 982

image, the radar pseudo-image and the visual image are concatenated as a whole. Finally, a 983

visual detector can be applied to this multi-channel image for detection. Input fusion does 984

not make independent use of the detection capability of radar. In other words, the radar 985

and vision modalities are tightly coupled. Assuming good alignment between modalities, 986

it makes the network easier to learn joint feature embeddings. However, an obvious 987

disadvantage is that the architecture is not robust to sensor failures. 988

The fusion performance depends on the alignment of radar detections with visual 989

pixels. As mentioned in section 4.1, the difficulties lie in three aspects: Firstly, the radar 990

point cloud is highly sparse. Many reflections from the surface are bounced away due 991

to specular reflections. As a result, the detected points are sparsely distributed over the 992

object. In addition to the sparsity, the lateral imprecision of radar measurements leads to 993

further difficulties. The radar points can be out of the visual bounding box. The imprecision 994

comes from different aspects, e.g. , imprecise extrinsic calibration, multi-path effects and 995
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low angular resolution. The third limitation is that low-resolution radar does not provide 996

height information. To address these difficulties, some association techniques are required. 997

Relying on the network to implicitly learn association is a hard task, because the network 998

tends to simply ignore the weak modality such as radar. The expansion methods described 999

in section 4.1 can be applied as a pre-processing stage for input fusion. However, object 1000

detection does not require such a strict association as depth completion, so some of the 1001

expansion methods are too costly for real-time processing. Nobis et al. [170] utilize the light- 1002

weight height extension as pre-processing. Both Chadwick et al. [171] and Yadav et al. [172] 1003

add a one-layer convolution to radar input before concatenation. This convolutional layer 1004

can be considered as a lightweight version of the association network. Radar detections at 1005

different ranges requires different size of receptive field for association. Therefore, Nobis et 1006

al. [170] concatenate the radar pseudo-image with image feature maps at multi-scales. 1007

6.2. ROI Fusion 1008

ROI fusion is adapted from the classical two-stage detection framework [173]. Region 1009

of Interests (ROIs) can be considered as a set of object candidates without category infor- 1010

mation. The fusion architecture can be further divided into cascade fusion and parallel 1011

fusion. In cascade fusion, radar detections are directly used for region proposal. Radar 1012

points are projected into image view as the candidate locations for anchors. Then, the ROI 1013

is determined with the help of visual semantics. In the second stage, each ROI is classified 1014

and its position is refined. Nabati et al. [174] adopt two techniques to improve the anchor 1015

quality. They add offsets to anchors to model the positional imprecision of radar detections. 1016

To mitigate the scale ambiguity in the image view, they rescale anchor size according to the 1017

range measurements. In their following work [175], they directly propose 3D bounding 1018

boxes and then map these boxes to the image view. In this way, the rescaling step can be 1019

avoided. It is also possible to propose region on radar point cloud using visual ROIs. For 1020

example, CenterFusion [176] propose a frustum-based association to generate radar ROI 1021

frustums using visual bounding boxes. 1022

Cascade fusion is particularly well suited for low-resolution radars, where the radar 1023

point cloud has a high detection recall but is very sparse. However, there are two potential 1024

problems with the cascade structure. Firstly, the performance is limited by the completeness 1025

of proposed ROIs in the first stage. In other words, if an object is missed, we cannot recover 1026

it in the second stage. The second problem is that the cascade structure cannot take 1027

advantage of modality redundancy. If the radar sensor is nonfunctional, the whole sensing 1028

system will fail. Therefore, it is necessary to introduce a parallel structure to ROI fusion. 1029

Nabati et al. [175] adopt a two-branch structure for ROI fusion. The radar and visual 1030

ROIs are generated independently. Then, the fusion module merges radar ROIs and visual 1031

ROIs by taking an set union, while the redundant ROIs are removed through NMS. To 1032

enable adaptive fusion of modalities, Kim et al. [177] propose a Gated Region of Interest 1033

Fusion (GRIF) module for ROI fusion. It first predicts a weight for each ROI through a 1034

convolutional-sigmoid layer. Then, the ROIs from radar and vision are multiplied by their 1035

corresponding weights and element-wise added together. 1036

6.3. Feature Map Fusion 1037

Feature-map fusion leverage the semantics from both radar and image. From sec- 1038

tion 5.3, we find that high resolution radars can provide sufficient semantic cues for 1039

classification. Therefore, feature-map fusion utilizes two encoders to map radar and image 1040

into the same latent space with high-level semantics. The detection frameworks are flexible, 1041

including one stage methods [178,179] and two-stage methods [33,180,181]. The one-stage 1042

method leverage two branches of neural networks to extract feature maps from radar and 1043

image respectively, and then concatenate the feature maps together. The two-stage fusion 1044

methods are adapted from the classical fusion architecture AVOD [182]. It firstly fuses 1045

the ROIs proposed from radar and image in the first stage. In the second stage, the fused 1046

ROIs are projected to radar and visual feature maps respectively. The feature maps inside 1047
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the ROIs are cropped and resized to an equal-sized feature crop. The feature crop pairs 1048

from radar and image are then fused by element-wise mean and sent to a detection head. 1049

Generally speaking, the two-stage method has better performance, but it is much slower 1050

than the one-stage method. Anchor free methods [183,184] further avoid the complicated 1051

computation related to anchor boxes, such as calculating IOU score during training. 1052

Feature-map fusion allows the network to flexibly combine radar and visual semantics. 1053

However, the fusion network may face the problem of overlooking weak modalities and 1054

modality synergies [185]. Some training techniques are needed to force the network to 1055

learn from radar input. Nobis et al. [170] adopt a modality-wise dropout approach that 1056

randomly deactivates image branch during training. Lim et al. [178] use a weight freezing 1057

strategy to fix the weights of the pre-trained feature extractors when training the fusion 1058

branch. Experiments show that freezing only the image branch works best. However, 1059

fusion of multiple modalities is not guaranteed to always be better than using single 1060

modality. Sometimes we want the network to lower the weight of radar branch if it gives 1061

noisy inputs. To achieve adaptive fusion, Cheng et al. [186] adopt self-attention and global 1062

channel attention [187] in their network. The self-attention is used to enhance real target 1063

points and weaken clutter points. Then, the global attention module is applied to estimate 1064

modality-wise weights. Bijelic et al. [60] estimate the sensor entropy as the modality weight. 1065

For each modality, the entropy is evaluated pixel-wise as a weight mask. Then these weight 1066

masks are multiplied with the corresponding feature maps at each fusion layer. 1067

6.4. Decision Fusion 1068

Decision fusion assumes that objects are detected independently by different modali- 1069

ties and fuses them according to their spatial-temporal relationships. This structure realizes 1070

sensing redundancy at the system level and is therefore robust to modality-wise error. Due 1071

to the low resolution of radar, most existing studies do not explicitly consider the category 1072

information estimated by radar. In other words, they only fuse the location information 1073

from radar and vision branches, while retaining the category information estimated by vi- 1074

sion. Since the next generation 4D radar can provide classification capabilities, it is expected 1075

that future fusion frameworks should consider both location and category information. 1076

The location can be optimal fused in a tracking framework. Different objects are first 1077

associated and then sent to a Bayesian tracking module for fusion. Due to the low resolution 1078

of radar, association is difficult to achieve in some scenarios, e.g. , a truck splitting into 1079

two vehicles or two close objects merging into one. Such association ambiguity can be 1080

mitigated using a track-to-track fusion architecture [188]. By estimating tracks, temporal 1081

information can be leveraged to filter out false alarms and interpolate missed detections. 1082

Some researchers exploit deep learning to make a better association between radar and 1083

other modalities. RadarNet [183] propose an attention-based late fusion to optimize the 1084

estimated velocity. Firstly, they train a fiver-layer MLP with softmax to estimate the 1085

normalized association scores between each bounding box and its nearby radar detections. 1086

Then, they predict the velocity by weighted averaging the radar-measured velocities using 1087

the association scores. AssociationNet [189] attempts to map the radar detections to a better 1088

representation space in contrastive learning framework. It first projects radar objects and 1089

visual bounding boxes to the image plane as pseudo images. To utilize the visual semantics, 1090

they concatenate these pseudo images with the original image. Next, the concatenated 1091

images are sent to an encoder-decoder network to output a feature map. Representation 1092

vectors are extracted from the feature map according to the locations of radar detections. A 1093

contrastive loss is designed to pull together the representation vectors of positive samples 1094

and push away the representation vectors of negative examples. During inference, they 1095

compute the Euclidean distance between the representation vectors of all possible radar- 1096

visual pairs. The pairs with distance below the threshold are considered associative. 1097

Category information, especially the conflict in category predictions, is difficult to 1098

handle in sensor fusion. BayesOD [190] proposes a probabilistic framework for fusing 1099

bounding boxes with category. The locations of bounding boxes are modelled by Gaussian 1100
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distributions. The category prior is modelled as a Dirichlet distribution, thereby allowing 1101

a Dirichlet posterior to be computed in closed form. Then, the bounding box with the 1102

highest categorical score is considered as the cluster center, while the other bounding boxes 1103

are treated as measurements. Finally, Bayesian inference is used to optimally fuse the 1104

location and category information of these bounding boxes. Probabilistic methods have 1105

their inherent shortage in modelling the lack of knowledge [191]. For example, a uniform 1106

distribution brings confusion of either the network has no confidence in its prediction or the 1107

input is indeed ambiguous for classification. In contrast, set-based methods have no such 1108

problem. Chavez et al. [192] leverage the evidential theory to fuse LiDAR, camera and radar. 1109

They consider the frame of discernment, i.e., the set of mutually exclusive hypotheses, as 1110

Ω = {pedestrains(p), bikes(b), cars(c), truck(t)}, and assign each possible hypothesis, i.e., 1111

a subset of Ω, with a belief. In the case of object detection, possible hypotheses are selected 1112

according to sensor characteristics. For example, a car is sometimes confused as part of a 1113

truck. Thus, if a car is detected, evidence should be also put into the set {c, t} and the set of 1114

ignorance Ω. Accordingly, we can assign the belief m to a car detection as 1115

m({c}) = γcαc, m({c, t}) = γc(1− αc), m(Ω) = 1− γc (10)

where γc is a discounting factors to model the uncertainty of misdetection, and αc is 1116

the accurateness, i.e., the rate of correct predictions in car detecting. Suppose there are two 1117

sources of evidence S1 and S2 from different modalities. Each of these sources provides 1118

a list of detections as A = {a1, a2, ..., am} and B = {b1, b2, ..., bn}. Then, three propositions 1119

can be defined regarding the possible association of two detections ai and bj as 1120

• {1} if ai and bj are the same object; 1121

• {0} if ai and bj are not the same object 1122

• {0, 1} for the ignorance of association. 1123

The belief of association can be determined according to both location and category 1124

similarities. The evidence for location similarity is defined according to the Mahalanobis 1125

distance as 1126

mp
ai ,bj

({0}) = α(1− f (dai ,bj
))mp

ai ,bj

mp
ai ,bj

({1}) = α f (dai ,bj
) mp

ai ,bj
({1, 0}) = 1− α

(11)

where f (dai ,bj
) = exp(−λdai ,bj

) ∈ [0, 1] measure the similarity with respect to the 1127

Mahalanobis distance dai ,bj
and a scaling factor λ, and α is an evidence discounting factor. 1128

For the category similarity, two detections belong to the same category is too weak to 1129

provide evidence that they are the same object. However, if two detections are of different 1130

categories, it is reasonable to assign evidence to the proposition that they are not the same 1131

object. Accordingly, the evidence for category similarity is given by 1132
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where the mass evidences are fused if no common category hypothesis is shared, 1133

i.e., A ∩ B = ∅. And the rest of the evidence are placed in the ignorance hypothesis. 1134

Finally, for each detection pairs, the category similarity and the location similarity are 1135

fused according to Yager’s combination rule [193]. Evidential fusion provides an reliable 1136

framework for information fusion. However, it cannot be directly applied to neural- 1137

network-based detectors that make predictions on a single hypothesis. To address this 1138

problem, conformal prediction [194] can be used to generate confidence sets from a trained 1139

network using a small amount of calibration data. 1140
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7. Challenges 1141

Although deep radar perception shows good performance on datasets, there are 1142

few studies investigating the generalization of these methods. In fact, some challenging 1143

situations are overlooked, but may prohibit the use of these methods in real-world scenarios. 1144

For example, the ghost objects caused by multi-path propagation are common in complex 1145

scenarios. Over-confidence is a general problem with neural networks. Since radar is always 1146

used for safety-critical applications, it is important to calibrate the detection network and 1147

output the predictive uncertainty. Even though we always refer to radar as an all-weather 1148

sensor, robustness in adverse weather is not well tested in many radar fusion methods. 1149

In this section, we present these three challenges and summarize some recent works that 1150

attempts to solve them. 1151

7.1. Ghost Object Detection 1152

Multi-path is a phenomenon in the physics of waves where a wave from a target 1153

travels to a detector through two or more paths. Because of the multi-path propagation, 1154

radar receives both direct reflections and indirect time-shifted reflections of targets. If the 1155

target reflections and the multi-path reflections occupy the same RD cell, the performance 1156

of DOA estimation is affected. Otherwise, if they occupy different cells, it can produce 1157

ghost targets in multi-path directions. In the latter case, since ghost detection has similar 1158

dynamics to the real target, it is difficult to eliminate them in the traditional detection 1159

pipeline. The multi-path effect can be classified into three types [195]. The first type is the 1160

reflection between ego-vehicle and targets. Therefore, the distance and velocity of clutter 1161

should be multiple times of the true measurement. The second type is the underbody 1162

reflection. It usually happens under the truck, resulting in points with longer distances. 1163

This see-through effect is sometimes beneficial, since occluded vehicles can be detected. 1164

The third type is mirrored ghost detections caused by the reflective surface. Because of the 1165

large wavelength of automotive 77GHz radar, many flat facilities, such as concrete walls, 1166

guardrails and noise cancellation walls, can be regarded as reflective surfaces. As shown 1167

in fig. 12, this kind of multi-path effect can be further categorized into type 1 and type 2 1168

depending on whether the final reflection occurs on the target or the surface [196]. The 1169

number of reflections is referred to as the order of the multi path. Usually, only orders 1170

below 3 need to be considered, since higher order reflections return little energy due to 1171

signal diffusion. 1172
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Figure 12. Multi-path effect: The solid orange box is the real object. Dotted boxes are ghost objects
caused by multi-path propagation.

A high quality dataset is necessary for the performance evaluation of ghost detection. 1173

However, the labelling of ghost objects is a difficult task and requires expert knowledge. 1174

Chamseddine et al. [88] propose a method to automatically identify radar ghost objects by 1175

comparing with the LiDAR point cloud. However, LiDAR measurements are not perfect. It 1176

has its own inherent defects, such as sparsity, limited range and holes with no reflections. 1177
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Therefore, using LiDAR as ground truth could be sometimes problematic. In the Radar 1178

Ghost dataset [55], ghost objects are manually annotated with the help of a helper tool. This 1179

tool can automatically calculate the locations of potential ghosts based on real objects and 1180

reflective surfaces. As a result, four types of multi-path effects are annotated, including 1181

type-1 second-order bounces, type-2 second-order bounces, type-2 third-order bounces, 1182

and the other higher-order bounces. In addition, they also provide a synthetic dataset by 1183

overlaying objects from different frames within the same scene. 1184

Unlike clutter, ghost objects cannot be filtered by temporal tracking because they 1185

have the same kinematic properties as real targets. Instead, they can be detected by 1186

geometric methods [195,197]. With a radar ghost dataset, it is also possible to train a neural 1187

network for ghost detection, such as PointNet-based methods [88] and PointNet++-based 1188

methods [196,198]. Because of the signal diffusion, the higher order reflections can be 1189

safely ignored. Thus, ghost objects usually occur in a ring-shaped region with the similar 1190

distance as the real target. Accordingly, Griebel et al. [198] design a ring grouping to replace 1191

the multi-scale grouping in PointNet++. The scene structure and relationship between 1192

detections are important cues to identify ghost objects. Garcia et al. [199] suggest the 1193

occupancy grid map can provide information of scene structure. Therefore, they use the 1194

occupancy grid map and the list of moving objects as inputs to FCN, to predict a heatmap 1195

of moving ghost detections. Wang et al. [200] propose to use multimodal transformers to 1196

capture the semantic affinity between ghost objects and real objects with LiDAR as reference. 1197

They design a multimodal attention block, which consists of two modules. The first one 1198

is a self-attention module for radar point cloud. It is expected to model the similarities of 1199

real objects and mirrored ones. The feature maps from the radar and LiDAR branches are 1200

then fused by a second multimodal attention module. This fusion module can be seen as 1201

calculating the correlation between LiDAR detections and real radar detections. 1202

7.2. Uncertainty in Radar Detection 1203

Learning-based radar detection shows its potential in classifying different road users. 1204

However, the performance evaluated on research datasets could be biased due to class 1205

imbalance and simple scenarios. Palffy et al. [44] summarize some failure cases for radar 1206

detection in VoD dataset: Two close pedestrians can be detected as one bicyclist. One large 1207

object, for example a truck or a bus, can be split into two smaller ones. Distant objects 1208

with few reflections may be missed by the detector. Strong reflections from metal poles 1209

and high curbs can mask real objects. Most of these failures come from the imperfec- 1210

tion of radar sensors with respect to angular resolution and dynamic range. To make it 1211

worse, neural networks tend to be overconfident in their incorrect predictions [201]. For 1212

autonomous driving, the misspecified confidence in perception can leak to downstream 1213

tasks like sensor fusion and decision making, potentially leading to catastrophic failure. 1214

Patel et al. [202] investigate the class uncertainty of a learning-based radar classifier under 1215

different perturbations, including domain shift, signal corruptions and out-of-distribution 1216

data. Experiments indicate their baseline network are severely over-confident under these 1217

perturbations. 1218

There are two kinds of uncertainty: Data uncertainty, also known as aleatoric uncer- 1219

tainty, is caused by noisy input. Model uncertainty, also known as epistemic uncertainty, 1220

is caused by insufficient or inappropriate training of the network. Sources of model un- 1221

certainty include three cases: covariate shift (p(x) changes), label shift (p(y) changes) and 1222

open set recognition (unseen y) [203]. The sum of data uncertainty and model uncertainty 1223

is referred to as predictive uncertainty. For the task of probabilistic object detection [204], 1224

uncertainties of two parameters are of interest: class uncertainty, which encodes the con- 1225

fidence in the classification, and spatial uncertainty, which represents the reliability of 1226

the bounding boxes. Class uncertainty can be seen as model uncertainty, while spatial 1227

uncertainty is more relevant to data uncertainty introduced by noisy input. 1228

For classification tasks, the simplest way is to learn a function that maps the pseudo 1229

probability output by softmax layer into true probability. The true probability is defined 1230
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as the class-wise accuracy on the training set. This process is usually called network cal- 1231

ibration. Since it is a post-processing method, both the model size and inference time 1232

are not affected. The calibration method is mainly concerned with the aleatoric part of 1233

the overall uncertainty [191]. To calibrate the radar classifier, Patel et al. [205] compares 1234

different post-processing techniques, including temperature scaling [201], latent Gaussian 1235

process (GP) [206] and mutual information maximization [207]. Mutual information maxi- 1236

mization achieves the best balance between performance and inference time. Some recent 1237

researches indicate that soft-label augmentation techniques, such as label smoothing [208] 1238

and mixup [209,210], can effectively mitigate the over-confidence problem, thus helps 1239

network calibration. Patel et al. [205] suggests the use of label smoothing regularization 1240

in radar classification. The core idea is that the classifier should give lower confidence to 1241

distant objects with low received power. Therefore, they propose two label smoothing tech- 1242

niques to generate soft labels according to the range and the received power respectively. 1243

Experiments show that both of them can significantly improve the calibration performance. 1244

In addition to calibrating the class uncertainty, we are also interested in estimating the 1245

spatial uncertainty in bounding box regression. Monte-Carlo Dropout [211] and Deep En- 1246

sembles [212] are popular in estimating predictive uncertainty. However, experiments [213] 1247

show that these methods only provide marginal improvements in object detection, but at 1248

a high cost. Direct modelling [214] is widely used to estimate the aleatoric uncertainty in 1249

bounding box regression. The idea is to let the network estimate both mean and variance 1250

of a prediction. The loss is constructed as 1251

L(θ) = 1
N

N

∑
i=1

1

2σ(xi)
2 ‖yi − f (xi)‖2 +

1
2

log σ(xi)
2 (13)

where σ(xi) is the estimated variance which reduces the penalty with high variance 1252

and penalises high variance at the same time. Dong et al. [215] estimate the spatial 1253

uncertainty in radar detection using direct modelling. Experiments indicate that adding 1254

variance prediction for bounding box parameters can improve detection performance, 1255

especially under high IoU threshold. 1256

7.3. Fusion in Adverse Weather 1257

Adverse weather conditions, such as heavy rain, snow and fog, can be a significant 1258

threat to safe driving. Different sensors operate in different electromagnetic wavebands, 1259

thus having different robustness to environments. A comparison of the weather effects on 1260

different sensors can be found in [216]. Visual perception is susceptible to blur, noise, and 1261

brightness distortions [217,218]. In adverse weather, LiDAR suffers from reduced detection 1262

range and blocked view in powder snow [219], heavy rain [220], and strong fog [220]. In 1263

contrast, radar is more robust under adverse weather. The effect of weather on radar can 1264

be divided into attenuation and backscattering [221]. The attenuation effect decreases the 1265

received power of the signal, and the backscattering effect increases the interference at 1266

the receiver. Experiments [60,222–224] reveal attenuation and backscattering under dust, 1267

fog and light rain are negligible for radar, while the performance of radar degrades under 1268

heavy rainfall. Zang et al. [221] summarize the mathematical models for attenuation and 1269

backscattering effects of rain. They suggest the detection range of radar can be reduced by 1270

up to 45% under severe rainfall conditions (150 mm/h). For close targets with small RCS, 1271

the backscattering effect is more severe and can cause additional performance degradation. 1272

Driving in adverse weather can be considered as a corner case [225] for autonomous 1273

driving. The concept of operational design domain(ODD) [226] is proposed to define 1274

the conditions under which autonomous vehicles are designed to operate safely. If the 1275

monitoring system [227] detects a violation of OOD requirements, control will be handed 1276

over to the driver. However, changes in the operational environment are usually rapid 1277

and unpredictable. Therefore, the hand-over mechanism is controversial in terms of safety. 1278

In the future, a fully autonomous vehicle (SAE Level 5) is expected to work under all 1279

environmental and weather conditions. However, most fusion methods are not designed 1280
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to explicitly consider weather effects. Networks trained in good weather may experience 1281

performance degradation in adverse weather. 1282

There are some possible ways to adapt the network to different weather conditions. 1283

One way is to add a scene switching module [228], then use different networks for different 1284

weathers. This method is straightforward but introduces additional computational and 1285

memory costs. The other option is to add some dynamic mechanisms into the network. 1286

Qian et al. [33] add a two-stage attention block in the fusion module. They first apply self- 1287

attention to each modality and then mix them through cross attentions. Experiments show 1288

that the fusion mechanism performs robustly in foggy weather. They further investigate 1289

the domain generalization problem, i.e., training with a good-weather dataset and inference 1290

in foggy weather. The result shows a significant accuracy drop compared with training 1291

with data in both good and foggy weather, indicating that their model relies on data to 1292

generalize. Malawade et al. [229] propose a gating strategy to rank each modality and 1293

pick the top 3 reliable modalities for fusion. They compares three types of gating methods: 1294

knowledge-based, CNN-based and attention-based gating. Knowledge-based gating use a 1295

set of pre-defined modality-wise weights for each weather condition, while CNN-based 1296

and attention-based learn the weights from data. Experiments on RADIATE dataset [61] 1297

indicate gating methods outperform fusion methods under adverse weather, and attention- 1298

based gating can achieve the best performance. Alternatively, Bijelic et al. [60] proposes an 1299

entropy-steered fusion network which uses the sensor entropy as modality-wise weights. 1300

Specifically, they use a deep fusion architecture that continuously fuses feature maps from 1301

different modalities. The pixel-wise entropy is used as the attention map for each sensor 1302

branch.Since the entropy map is conditioned only on sensor inputs, the fusion network 1303

can perform robustly in unseen adverse weather. According to uncertainty theory, sensor 1304

entropy can be considered as a measure of data uncertainty. To utilize both data and model 1305

uncertainties, Ahuja et al. [230] propose an uncertainty-aware fusion framework. They 1306

leverage a decision-level fusion architecture and expect each branch to output both data 1307

uncertainty and model uncertainty. A gating function is used to apply a weighted average 1308

to each modality according to the predicted uncertainty. Then, they design two modules 1309

to handle the data with high uncertainty. One for failure detection. A sensor with data 1310

uncertainty consistently above a threshold is considered to be malfunctioning. The other 1311

is used for continuous learning. Data with model uncertainty above a threshold will be 1312

added to the training set for continuous learning. 1313

8. Future Research Directions 1314

In this paper, we summarize the recent developments on deep radar perception. As 1315

we can see, many research efforts have focused on developing models for detection tasks. 1316

However, there are also some unexplored research topics or fundamental questions to 1317

be addressed. In this section, we propose some interesting research directions to the 1318

automotive radar community. 1319

8.1. High Quality Dataset 1320

Deep learning revolution started with the introduction of ImageNet dataset [231]. 1321

However, radar perception has not yet seen its ImageNet moment. Although many datasets 1322

exist, they differ in scale, resolution, data representation, scenario, and labelling granularity. 1323

The granularity and quality of labelling is also a key issue for radar datasets. Therefore, it is 1324

hard to fairly compare different models trained on different datasets. Since the introduction 1325

of 4D imaging radar to the market, we anticipate an urgent need for datasets with high 1326

quality annotations and diverse scenes. 1327

8.2. Radar Domain Knowledge 1328

In the absence of high-quality datasets, we need to avoid treating AI in radar as a 1329

data fitting game. It is essential to exploit domain knowledge to develop a generalizable 1330

perception model. Radar domain knowledge need to be considered at many stages, such as 1331
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labelling, data augmentation, model structure, training techniques and evaluation metrics. 1332

Take ghost detection as an example. From a data perspective, we need to use our expert 1333

knowledge to label ghost objects [55]. From a network perspective, we can design an 1334

attention module [200] or utilize graph convolution [166] to model the relationship between 1335

real and ghost objects. We hope that researchers put more focus on solving these critical 1336

problems in radar perception. 1337

8.3. Uncertainty Quantification 1338

As introduced in section 7.2, uncertainty quantification is important for applying AI 1339

in safety-critical applications. Due to the low SNR of radar data and the small size of 1340

radar datasets, both high data and model uncertainties are expected for CNN-based radar 1341

detectors. However, there is still very little work touching on this topic. Although many 1342

uncertainty quantification methods have been proposed, they are not necessarily helpful 1343

for a specific task. For example, Feng et al. [232] find that sampling-based methods are not 1344

useful for visual object detection. Similarly, we need empirical experiments and theoretical 1345

explanations to demonstrate the necessity and effectiveness of uncertainty quantization 1346

methods for radar perception. 1347

8.4. Motion Forecasting 1348

An overlooked feature of radar is Doppler velocity. In addition to being a feature of 1349

moving road users, Doppler velocity is valuable for motion forecasting. Motion forecasting 1350

is a popular research topic in autonomous driving [233]. By accurately estimating the 1351

motion of road users, the down-stream path planning module can better react to future 1352

interactions. Lin et al. [234] predict trajectories by building a constant velocity model 1353

with binarized RA maps as input. However, experiments show that the constant velocity 1354

model performs poorly in predicting vehicle trajectories [233]. As mentioned in section 4, 1355

a second-order nonlinear motion model can be developed using the measured Doppler 1356

velocity. We believe that radar has great potential to play an important role in motion 1357

forecasting. 1358

8.5. Interference Mitigation 1359

For FMCW radar, mutual interference is a challenging task to solve. It occurs when 1360

multiple radars operate simultaneously in direct line of sight [235]. Depending on if the 1361

chirp configuration, i.e.slope and chirp duration, is same between interferer and victim 1362

radar, interference can be classified as coherent and incoherent [236]. Coherent interference 1363

occurs when the same chirp configuration is used and leads to ghost detections. Incoherent 1364

interference is caused by different types of chirps, resulting in significantly increased noise 1365

floor, masked weak target and thus reduced probability of detection. In reality, partially 1366

coherent interference is more widely seen where interferer has a slightly different chirp 1367

configuration. Oyedare et al. [237] summarize deep learning methods for interference 1368

mitigation. Although these methods achieve better performance than classical zeroing 1369

methods, they are generally designed for specific types of disturbances and require sig- 1370

nificant computational costs. Future research should consider interference mitigation and 1371

downstream tasks (e.g., detection) as a whole, and build an end-to-end learning framework 1372

to optimize them together. 1373

9. Conclusions 1374

The purpose of this review article is to provide a big picture of deep radar perception. 1375

We first summarize the principles of radar signal processing. Then, we present a detailed 1376

summary of radar datasets for autonomous driving. To encourage researchers to build 1377

their own datasets, we also present methods for calibration and labelling. We further 1378

investigate data augmentation and synthetic radar data to improve data diversity. Radar 1379

can be used for depth completion and velocity estimation. For ease of depth completion, 1380

several expansion methods are introduced to better associate the radar detections with the 1381
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image pixels. The full velocity can be recovered as a geometric optimization problem or in 1382

a self-supervised learning way. 1383

Radar detection is the main focus of this paper. We classify deep radar detectors 1384

into point-cloud-based and pre-CFAR-based. PointNet variant networks and multi-view 1385

encoedr-decoders are popular choices for radar point clouds and radar tensors respectively. 1386

By increasing spatial density and exploiting temporal information, significant performance 1387

improvements can be achieved. Some new operators, such as depth-wise convolution, 1388

attention and graph convolution, are leveraged for larger receptive field. In practical ap- 1389

plications, radar is often fused with cameras and LIDAR. We classify fusion frameworks 1390

into four categories. Input fusion requires a lightweight pre-processing to explicitly handle 1391

radar position imprecision. Cascaded ROI fusion is not robust to sensor failures, while 1392

parallel ROI fusion improves it. Feature map fusion provides the network with greater 1393

flexibility to combine radar and visual semantics, but requires specific training techniques 1394

for effective learning. Decision fusion takes advantage of modal redundancy and is there- 1395

fore popular in real-world applications. Location information can be robustly fused in a 1396

track-to-track architecture or with the help of network semantics. Category information 1397

can be fused with Bayesian inference or evidence theory. 1398

We summarize three challenges for deep radar perception. Firstly, multi-path effects 1399

need to be explicitly considered in object detection. Secondly, we need to alleviate the 1400

problem of overconfidence in radar classification and estimate the uncertainty in bounding 1401

box regression. Thirdly, the fusion architecture should have adaptive mechanisms to take 1402

full advantage of radar’s all-weather capabilities. Finally, some future research directions 1403

are proposed. There is an urgent need for high quality radar datasets. Radar domain 1404

knowledge and uncertainty quantification can help us to develop a generalizable AI model. 1405

Considering the perceptual system as a whole, we can extend the end-to-end learning 1406

framework forward, i.e., joint learning with interference mitigation, or backward, i.e., 1407

predicting motion. 1408
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RA Range-Azimuth
RD Range-Doppler
RAD Range-Azimuth-Doppler
RCS Radar Cross Section
FoV Field of View
BEV Bird’s Eye View
FMCW Frequency-Modulated Continuous-Wave
IF Intermediate Frequency
TDM Time-Division Multiplexing
DDM Doppler-Division Multiplexing
SNR Signal-to-Noise Ratio
VRU Vulnerable Road User
ICR Instantaneous Center of Rotation
OGM Occupancy Grid Mapping
FCN Fully Convolutional Network
ROI Region of Interest
NMS Non-Maximum Suppression
ODD Operational Design Domain
RFS Random Finite Set

1420

Appendix A 1421

Table A1. Parameters used in the radar signal processing section.

Parameter Meaning Parameter Meaning

c Light Speed (m/s2) NTx
Number of Tx

Antennas

λ Wavelength (m) NRx
Number of Rx

Antennas

fc
Carrier Frequency

(Hz) d Inter Antenna
Spacing (m)

B Sweep Bandwidth
(dB) D Array Aperture (m)

S Chirp Slope Pt
Transmit Power

(dBW)
Nc Number of Chirps G Antenna Gain (dB)

Tc Chirp Duratoin (s) Pmin
Minimum Detectable

Power (dBw)

Tf Frame Duration (s) σ
Radar Cross Section

(dBm2)

BIF IF Bandwidth (dB) SNR Signal-to-Noise
Ration
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