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Abstract—In many practical application scenarios, radio com-
munication signals are commonly represented as a spectrogram,
which represents the signal strength measured at multiple dis-
crete time instants and frequency points within a specific time
interval and frequency band, respectively. In the context of
spectrum occupancy measurements, the notion of Signal Area
(SA) is defined as the rectangular region in the time-frequency
domain where a signal is assumed to be present. Signal Area
Estimation (SAE) is an important functionality in spectrum-
aware wireless systems where spectrum usage monitoring is
required. However, the conventional approaches to SAE have
a limited estimation accuracy, in particular at low SNR. In this
work, a novel technique for SAE is proposed using Deep Learning
based on Artificial Neural Network (DL-ANN) for enhanced
extraction of SA information from radio spectrograms. The
performance of the proposed DL-ANN method is evaluated both
with software simulations and hardware experiments, and the
results are compared with several conventional methods from the
literature, showing significant performance improvements. A key
feature of the proposed method is the improvement in the SAE
accuracy compared to other existing methods (in particular in
the low SNR regime) and the capability to extract the location of
the detected SAs automatically. Overall, the proposed technique
is a promising solution for the automatic processing of radio
spectrograms in spectrum-aware wireless systems.

Index Terms—Spectrum awareness, signal area estimation,
deep learning, artificial neural network.

I. INTRODUCTION

In many practical application scenarios, radio communi-
cation signals are commonly represented as a spectrogram,
which represents the signal strength measured at multiple
discrete time instants and frequency points within a specific
time interval and frequency band, respectively. Radio spectro-
grams are used for time-frequency signal analysis in spectrum-
aware systems for many purposes, including automatic blind
modulation classification (with heuristic algorithms [1]–[3]
and convolutional neural networks [4]–[6]), radio technology
identification [7], interference detection and mitigation [8],
detection and localisation of radio events [9], radio signal
denoising [10], extraction of frequency hopping signal pa-
rameters [11], [12], spectrum sensing [13], detection of radar
signals [14] and characterisation of the Signal-to-Noise Ratio
(SNR) and Doppler shift [15].

An important aspect in the processing of radio spectrograms
is the region that each individual radio transmission or signal
component occupies in the time-frequency domain within the

spectrogram, which in this work is referred to as the Signal
Area (SA). A SA is defined as a cluster of spectrogram
points within a rectangular shape where a transmitted signal
component is assumed to be present. Thus, each SA detected
in a spectrogram precisely determines the occupied bandwidth
and the start/end times of each individual radio transmission.
The capability to obtain this information accurately from a
radio spectrogram can be useful in many practical applications,
which include spectrum surveillance (both for enforcement
of spectrum regulations and gathering of signal intelligence
in military applications), radio signal interception and iden-
tification, electronic warfare and radio environment spectral
awareness (for instance, in databases for spectrum sharing
systems). Consequently, the process of Signal Area Estimation
(SAE), which entails determining the subsets of spectrogram
points that belong to one or more SAs, is an important function
is spectrum-aware wireless systems.

The interest of this work is in how to accurately determine
the SAs present in a radio spectrogram obtained from radio
spectrum measurements and extract the information about
the coordinates of each SA automatically. Several methods
have been proposed in the literature in order to achieve this
end, however many of such methods have some limitations,
which include one or more of the following issues: are based
on heuristic principles, involve a number of configuration
parameters that need to be tuned individually for each op-
eration scenario, offer a poor performance in the low SNR
regime, or are unable to extract automatically the coordinates
of each SA present in a spectrogram (which is useful for
automatic spectrogram processing in autonomous spectrum-
aware wireless systems). To address these issues, this work
proposes a novel approach for SAE based on the use of widely
known and well-developed deep learning techniques.

The field of Artificial Intelligence (AI) has experienced
a dramatic development associated with past and recent ad-
vances in the areas of Machine Learning (ML) methods in
general and Deep Learning (DL) techniques in particular. DL
is a group of ML techniques that allows computers to learn
and discover complex patterns in large datasets automatically,
taking inspiration from the human brain [16]. DL relies on
Artificial Neural Networks (ANNs), which consist of layers
of nodes (neurons) and synapses inspired by the human
brain. A typical ANN is a simplified computation model with
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Fig. 1: Illustration of the concept of Signal Area (SA) and system model for Signal Area Estimation (SAE).

multiple interconnected layers of neurons [16]. The network
is trained to produce useful predictions based on identification
of patterns in training data. One area were DL techniques
based on ANNs have gained widespread application is in
communication systems [16]–[18]. However, the application of
DL techniques to the particular problem of SAE has received
very limited attention in the existing literature. In this context,
this work proposes a novel approach for SAE that relies on
the use of Deep Learning based on Artificial Neural Network
(DL-ANN). The proposed method addresses the limitations of
existing SAE methods in the literature as mentioned above.
The performance of the proposed DL-ANN method for SAE
is assessed both with software simulations and hardware
experiments, showing that the proposed method provides an
accurate SAE performance – with significant improvements
in the low SNR regime – and offers the interesting feature of
automatically extracting the coordinates of each SA detected
in a radio spectrogram obtained from spectrum measurements.

The main contributions of this work are summarised below:

• A novel approach for SAE based on DL-ANN is pro-
posed. The main advantage of the proposed method is
its ability to overcome the main limitations of existing
SAE methods. In particular, the proposed method can
extract automatically the coordinates of each SA present
in a spectrogram, which is a useful feature for automatic
spectrogram processing in autonomous spectrum-aware
wireless systems. Moreover, it does not require any
human intervention for its configuration or operation and
provides substantial performance improvements in the
low SNR regime compared to existing SAE methods.

• In addition to optimising the network architecture dimen-
sions and hyperparameter configuration, several variants
of the proposed DL-ANN approach are investigated, in-
cluding options with one and two input layers (including
not only the binary spectrogram but also the estimated
SNR at the receiver) as well as different amounts of
available training data, in order to determine the most
convenient design and optimisation of the proposed ap-

proach.
• Given the analogy of the SAE problem with image

processing techniques for the detection of rectangles in
noisy images, the performance of the proposed DL-ANN
when combined with two image processing techniques
(namely morphological operations and edge detection
plus flood fill) is evaluated as well. These image process-
ing techniques are combined with the proposed DL-ANN
method as pre/post-processing stages.

• The performance of the proposed DL-ANN method is
assessed both with software simulations and hardware
experiments, and compared with relevant SAE methods
from the literature. The analysis includes not only the
estimation accuracy of the detected SAs and the com-
putational cost but also the impact of the spectrogram
resolution and channel fading. The obtained results show
that the proposed method provides an accurate SAE
performance with significant improvements over existing
SAE methods, in particular in the low SNR regime.

The remainder of this work is organised as follows. First,
Section II provides a description of the SAE problem ad-
dressed in this work and an overview of the existing SAE
methods. Then, Section III presents the DL-ANN method
proposed in this work based on the use of DL techniques. The
evaluation methodology followed to assess the performance
of the proposed method is outlined in Section IV, while the
obtained simulation and experimental results are presented and
discussed in Section V. Lastly, Section VI summarises the
findings of this work and draws the main conclusions.

II. SIGNAL AREA ESTIMATION

A. Problem Description and Formulation

The problem being addressed in this work is how to
accurately identify the dimensions of each SA present in a
spectrogram and automatically extract such information for
later processing in spectrum-aware systems. In radio commu-
nication signals, the spectrogram is a discrete two-dimensional
(time vs. frequency) representation of the power observed at



various discrete time instants and discrete frequency points.
These power levels that can be observed by means of spectrum
measurements can be compared to a certain decision threshold
(which can be set according to several criteria [19]) to produce
a binary version of the spectrogram where the value of each
point can be either zero (meaning not occupied, if the power
level at that point is below the threshold) or one (meaning
occupied, if the power observed at that point is greater than the
threshold). Such binary matrix is the input information used
by SAE methods to attempt to estimate the presence of SAs
as accurately as possible. Each individual radio transmission
or signal component that is present in a radio spectrogram
is by definition contained inside a rectangular area within
the spectrogram (the SA) that defines precisely the frequency
bandwidth occupied by that signal as well as the start and end
transmission instants1. The main aim of SAE methods is to
identify the dimensions of each SA as accurately as possible.
The process of SAE, however, is not straightforward given
that the spectrum data observed by means of experimental
spectrum measurements are a degraded version of the trans-
mitted signals after having suffered impairments introduced
by radio propagation, the receiver noise and other external
sources of unwanted noise and interference (e.g., out-of-band
transmissions, ambient noise or man-made noise) [22]–[27].
The aim of this work is to accurately determine the time-
frequency region occupied by each radio transmission in a
spectrogram (i.e., the SAs present in a radio spectrogram).
The overall concept and system model are shown in Fig. 1.

SAE methods rely on the output of spectrum sensing (signal
detection) techniques. While there is a strong connection be-
tween the two signal processing steps, it is important to make a
clear differentiation between both techniques since the ultimate
purpose of SAE is different from that of spectrum sensing.
Signal detection (spectrum sensing) techniques are aimed at
accurately detecting the instantaneous presence or absence
of a signal in a certain frequency band and at a particular
time instant. The final output of signal detection techniques is
therefore a binary decision on whether a signal is believed to
be present in a set of digital samples. In this work, a signal
detection stage is applied to power spectrograms in order to de-
cide the binary idle/busy state of each spectrogram point. This
step is necessary as a pre-processing stage since it produces
the binary spectrogram that in this work is fed as an input to
the SAE method. Based on that binary spectrogram, the SAE
method will then attempt to estimate as accurately as possible
the number of SAs present in the spectrogram and their
respective dimensions, which is the final output information
provided by SAE methods. Because SAE methods rely on the
output of spectrum sensing (signal detection) techniques, their
accuracy is conditioned by the performance of the employed

1Certain radio emissions may not lead to rectangular SAs, in particular
electromagnetic emissions from systems that are not intended for wireless
communications, including some types of radars [14, Figs. 1 and 9], mi-
crowave ovens [20, Fig. 2b], and several sources of man-made noise [21, Fig.
4]. Such specific signal formats require a tailored study that is beyond the
scope of this work, whose focus is on wireless communication signals, usually
characterised in radio spectrograms by rectangularly-shaped SAs.

signal detection technique and hence they are also vulnerable
to spectrum sensing errors (i.e., missed detections and false
alarms). However, the impact of such errors has a different
level of severity on the output of each signal processing stage.
While sensing errors can make a signal detection method
fail completely by providing an incorrect idle/busy output
decision for a particular spectrogram point, SAE methods
may still be able to perform their task reasonably well in the
presence of sensing errors (i.e., spectrogram points detected in
an incorrect state by the employed signal detection method).
SAE is concerned with an accurate estimation of the overall
SA, hence the accuracy of every individual spectrogram point
is not relevant per se as long as the overall SA can be estimated
accurately, which in many cases can be possible under a
moderate number of individual sensing errors. This is because
the aim of SAE methods is to establish the time-frequency
region occupied by each SA rather than the instantaneous
signal presence in each time-frequency point of the spectrum,
which is the purpose of signal detection methods. Moreover,
signal detection methods are usually aimed at providing real-
time decisions on the instantaneous spectrum occupancy state
and this information is normally used for short-term decisions
(i.e., transmit or vacate the channel immediately), while SAE
methods are usually not envisaged to be applied in real-
time (which would not be possible due to the time span
needed to capture the amount of data required to complete a
spectrogram). SAE methods are typically employed for offline
processing of spectrum occupancy data and its characterisation
in a longer-term. The information obtained from SAE is
typically useful for optimising spectrum and radio resource
management in the longer-term. Therefore, in SAE the focus
is on determining the spectrum occupancy pattern of spectrum
users in the time-frequency domains and in a medium to long
term. SAE methods rely on the output of signal detection
methods but have a different purpose and objective.

B. Existing SAE Methods

The most simple form of SAE could be considered to be a
simple Energy Detector (ED), which outputs the on/off state of
each point in a spectrogram based on the comparison of each
power level to a decision threshold. However, while simple
and convenient, ED produces no rectangular estimation of the
SAs in the spectrum and therefore cannot be considered a SAE
method; nevertheless, ED will be used in this work as a useful
reference baseline for comparison with other existing SAE
methods (i.e., methods that can provide rectangular estimations
of each SA detected in a radio spectrogram).

Several SAE methods have been proposed in the literature
based on various approaches. The work reported in [28]
presents a computer vision approach based on the application
of a fixed threshold to the spectrogram in order to generate
a binary image, which is also processed using morphological
operations as an adaptive threshold approach to remove ex-
traneous detections, and finally extracts the image blobs by
grouping connected components and calculating their bound-
ing boxes. Such method is modified in [29] by introducing an



auto-thresholding method and a bi-directional self-organising
network in order to reduce noise after thresholding. In [30],
the use of a network based on a single shot multibox detector
[31] is proposed for signal component extraction, which is
further extended in [32] by introducing convolution layers in
order to provide a more accurate detection at the expense of an
increased complexity. A different approach based on the Mean-
Shift Clustering (MSC) algorithm is suggested in [33], where
each SA is determined based on the use of a scanning window
whose dimensions are adjusted according to the expected
bandwidth and transmission duration of the signal compo-
nents to be detected. A Transmission Encapsulation based
on the Connected Component Labelling (TECCL) method is
proposed in [34], which performs clustering based on the
connected component labelling algorithm [35] and estimates
the SA of each cluster as its extreme dimensions (bounding
box). This method can be implemented using contour tracing
techniques [36] (see CT-SA in [37] for instance). A so-called
Simple Signal Area (SSA) estimation method is proposed in
[37], which performs a raster scan to find the first corner of
each SA, followed by horizontal scanning to estimate the SA
width and coarse/fine vertical scanning to estimate the SA
height. Some variants to reduce the impact of false alarms are
proposed in [38]–[40]. An approach based on mathematical
morphology principles is proposed and evaluated in [41].

III. PROPOSED DL-ANN METHOD FOR SAE
A. Motivation

The basic problem in SAE is how to detect and estimate a
rectangular grid representing a solid SA in a time-frequency
matrix (spectrogram) of degraded power values (affected by
noise and impaired by the propagation channel). To facilitate
the problem, the continuous-domain power levels are thresh-
olded in order to produce a binary matrix with zero/one values
indicating the idle/busy state of each point in the power spec-
trogram (i.e., absent/present signal component). The problem
of estimating a solid SA in such binary matrix has some
analogies with the problem of recognition of patterns in a noisy
black-and-white image. Therefore, image processing principles
aimed at detecting objects in images can be employed to
address the problem considered in this work by treating the
spectrogram of power values as a greyscale image or its binary
version as a black-and-white image (the latter case is the
one considered in this work), where each spectrogram time-
frequency point represents an image pixel. The problem of
SAE then becomes the problem of detecting rectangular shapes
(i.e., SAs) in a binary noisy image. This viewpoint offers
a new perspective for SAE that enables the application of
a broad range of tools from the field of image processing
[42] to the problem of SAE. For example, the recent work
reported in [43] has investigated the application of the Hough
transform to detect the rectangular shapes of SAs in noisy
radio spectrograms, while [44] has investigated a combined
approach based on edge detection (used to estimate the edges
of the potential SAs in a spectrogram) and flood fill (used to
fill the area inside the detected edges to produce solid SAs) to

address the same problem. While traditional image processing
techniques can provide an interesting approach to the problem
of SAE, more recent approaches from the field of computer
vision and pattern recognition [45], many of which make use
of AI/ML/DL techniques, provide more advanced methods to
address the problem considered in this work from the point
of view of object detection and recognition. This motivates
this work to explore the suitability of using DL techniques to
address the problem of SAE.

It is worth noting that, even though the use of DL techniques
for object detection (e.g., see [46]), and in particular for
the detection of rectangular objects in an image, is not new
(e.g., see [47]) the problem of detecting rectangular SAs in a
radio spectrogram in the context of SAE has some particular
characteristics that require special consideration and hence a
tailored study as the one presented in this work. Concretely,
the problem of SAE has some specific properties, including
the fact that the rectangular objects to be detected (i.e., the
SAs) are aligned with the horizontal and vertical axes of
the spectrogram (in other words, the SAs do not have any
rotation) and moreover the SAs do not overlap among them
(overlapping SAs would mean harmful interference between
radio transmissions and most radio communication systems are
indeed engineered in order to explicitly avoid such scenario).
In general, these two features would mean that the problem
of SAE might be seen as a simplified version of the general
problem of detecting rectangular objects in a noisy image.
However, the detection of SAs in a spectrogram is particularly
challenging due to the degrading effects introduced by the
radio propagation channel and the receiver noise. These two
degrading effects will lead to the appearance of random false
alarms (i.e., time-frequency points where a signal compo-
nent is not present but its power level is observed above
the detection threshold due to increased noise) and random
missed detections (i.e., time-frequency points inside SAs that
are observed below the detection threshold due to a power
reduction caused by the radio propagation channel). These
two types of degradations, as it will be shown, can distort
significantly the SAs present in a radio spectrogram and
their rectangular shapes to the extent that they may become
undistinguishable from the background noise of the receiver
and therefore unrecognisable, in particular when the radio
signals are received at very low SNR (where SAE becomes
extraordinarily challenging). This implies that addressing the
problem of SAE from the point of view of detecting rectangu-
lar objects in an image requires a specific and tailored analysis,
which motivates the study presented in this work.

B. Proposed SAE Approach with DL based on ANN

DL represents a category of ML methods that use a number
of deep layers to transform and process raw input data in
order to extract relevant features. DL models are commonly
based on ANNs, in which model learning can be supervised,
unsupervised, or semi-supervised [48]. ANNs are inspired by
the working of the human brain to process information. With
the advances in DL techniques, ANNs have gained widespread
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Fig. 2: DL-ANN network architecture for SAE.

application in digital image processing [48], [49]. However,
the application of DL techniques in general, and ANNs in
particular, to the specific problem of object detection in the
context of SAE has received little attention. In this context,
this work proposes a novel approach for SAE that relies
on the use of a DL-ANN approach for SAE. The proposed
approach relies on a standard Multi-Layer Perceptron (MLP)
network for SAE, which is a class of feedforward ANN
composed of multiple layers of perceptrons (neurons that use
non-linear activation functions), including an input layer, one
or more hidden layers, and a final output layer. MLPs utilise
a supervised learning technique called backpropagation for
training, where the network is trained using labelled input data
to help recognise the corresponding correct output.

The proposed DL-ANN model is depicted in Fig. 2. As
discussed earlier, the main input information is a binary
spectrogram, which is composed of zero/one values indicating
where a signal component is observed above a given power
threshold. This binary spectrogram is obtained by thresholding
a power spectrogram (obtained by the receiver from spectrum
measurements) with a properly set decision threshold. Several
methods to set such threshold in the context of SAE were
investigated in [19], where it was concluded that a threshold
set for a low Constant False Alarm Rate (CFAR), such as 0.01,
provides a good performance in SAE. Two different scenarios
are considered regarding the input information provided to the
DL-ANN. In the first scenario, only the binary spectrogram
obtained from thresholded spectrum measurements is provided
as input information, while in the second scenario the SNR
value at which the provided spectrogram was generated2 is
also fed to the network as a second input parameter. It is
well-known that ANNs can learn better when additional input
information is provided (assuming that the input parameters

2This work assumes, for performance evaluation purposes and without loss
of generality, that all the SAs in the same spectrogram have the same SNR.
This approach will allow determining in a clear and unambiguous manner the
relation between the performance of the proposed SAE method and the SNR
of the signals present in the spectrogram.

are independent), therefore the approach considered in this
second scenario is investigated to determine whether it can
provide better performance than the more simple approach
proposed in the first scenario. The main drawback of this
second approach in a practical system implementation is that
the SNR needs to be estimated and any inaccuracies in such
estimation may also affect the accuracy of the SAE process.
However, this extra cost may be worth if it enables a more
accurate SAE, which makes the consideration of this second
approach interesting.

The output information provided by the DL-ANN needs to
identify unambiguously the location and dimensions of each
SA detected in the input spectrogram. To this end, four output
parameters are considered for each SA as illustrated in Fig. 2:

• x: Abscissa of the SA’s top-left corner.
• y: Ordinate of the SA’s top-left corner.
• w: SA’s width.
• h: SA’s height.

The tuple (x, y, w, h) univocally identifies the bounding box
within which each SA is contained and therefore provides
sufficient information to unambiguously characterise each de-
tected SA. Notice that this output information means that the
DL-ANN is able to automatically extract the relevant infor-
mation related to each detected SA. The DL-ANN will detect
automatically the number of SAs present in the spectrogram
provided as input and will provide one tuple for each detected
SA with the corresponding information of the bounding boxes.

The complete definition of the proposed DL-ANN involves
the specification of the network architecture (number of hidden
layers and neurons per layer), the tuning/optimisation of the
network hyperparameters and the used training procedure.
These aspects are discussed in more detail in the following
section as part of the methodology followed in this study.

IV. METHODOLOGY

In order to train, validate and test the proposed DL-ANN
method, spectrum occupancy data were generated by means
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Fig. 3: Example of a randomly generated time/frequency test grid:
(a) Clean test grid, (b) Test grid with noise (SNR = –7 dB).

of both software simulations and hardware experiments. This
section provides details of the methodology employed in both
cases as well as how the proposed DL-ANN was optimised.

A. Simulation Procedure

Simulations were performed following the same procedure
employed in [19], [41], which is discussed below:

Step 1. Creation of the time-frequency test grids: In the
first step, rectangular time-frequency grids (representing the
measured spectrograms) were created using a predefined time-
frequency resolution. In this work, a resolution of 50×100
points was selected, which can be considered as a medium
spectrogram resolution [19]. The vertical value (50 points)
represents the time resolution while the horizontal value (100
points) represents the frequency resolution of the spectrogram.
The total frequency span of the spectrogram was divided into
three channels with equal bandwidth (1/3 of the spectrogram
width with 5% reserved for guardbands). However, for sim-
plicity and clarity of graphical representation, only the central
channel was assumed to carry actual data traffic3, which was
modelled as a sequence of on/off transmissions randomly
drawn from exponential distributions with a minimum duration
of 10/5 spectrogram points, respectively, and rate parameter
0.5 points−1 (since transmission durations are generated in
terms of the number of spectrogram points, the rate parameter
of the corresponding exponential distribution has units of
points−1). The bounding boxes of each generated SA were
saved as labels for training. Fig. 3a shows a sample test grid
containing three SAs and their corresponding bounding boxes.

Step 2. Addition of signal detection errors to the test
grid: For each test grid (spectrogram) generated in Step 1,
random errors were generated and introduced to emulate the
errors suffered by practical signal detection (spectrum sensing)
methods. This step aims to emulate the degrading effects of
the channel propagation (by introducing random misdetections
inside SAs) and the receiver noise (by introducing random
false alarms outside SAs). In this process, points inside SAs
can change from busy to idle state with a random probability
of misdetection (Pmd) while points outside SAs can change
from idle to busy state with a random probability of false
alarm (Pfa). The value of these probabilities depends on the
criterion employed to set the energy/power decision threshold.

3Notice that this choice is made simply for visual clarity in the graphical
representation of the spectrograms and does not imply any assumption or any
prior knowledge of the frequency extent of the signals to be measured. In this
work, no prior information is assumed to be known about the time/frequency
extent of the signals that may be present in a spectrogram.

Following the findings of the study presented in [19], a CFAR
criterion with Pfa = 0.01 was assumed, which results in
an SNR-dependent value of Pmd. The relation between the
detection probability Pd = 1−Pmd and the experienced SNR
is given by [50, eq. (7)] for an Additive White Gaussian Noise
(AWGN) channel and by [51, eq. (22)] for a Rayleigh fading
channel4. As stated in footnote 2, all the SAs in the same
spectrogram are assumed to have the same SNR and therefore
are subject to the same probability of misdetection. For a
detailed performance evaluation, an SNR range from –20 dB to
+5 dB was considered, and simulations were repeated for each
individual SNR value within that range in 1-dB increments.
Fig. 3b shows how the spectrogram shown in Fig. 3a would be
observed at the receiver according to the employed simulation
procedure when the SNR at the receiver is –7 dB (at which
Pmd ≈ 0.61), which would be the input spectrogram available
for SAE.

Step 3. Application of the considered SAE method: This
step involves the application of a SAE method to the test grid
(spectrogram) obtained from Step 2 in order to attempt to
estimate the SAs present in the spectrogram. The proposed
DL-ANN method presented in Section III was applied in this
step. For comparison purposes, the CT-SA and SSA methods
presented in Section II-B were also evaluated and used as
a reference benchmark; these two methods were selected as
a benchmark for comparison due to the objectivity of their
respective algorithm formulations and their reproducibility. A
simple ED method was also included in the comparison for
reference. The impact of using several techniques from the
field of image processing along with the proposed DL-ANN
method was also investigated, which will be further discussed
in more detail in Section V.

Step 4. Assessment of the SAE accuracy: An ideal SAE
method would produce in Step 3 an output spectrogram that
would be identical to the one generated in Step 1, however
in practice SAE methods are imperfect and therefore the
estimated SAs will in general not be identical to the original
ones. Therefore, this stage entails validating the accuracy of
the considered SAE method by comparing the output of Step
3 to the original spectrogram generated in Step 1.

B. Experimental Platform

The obtained simulation results were validated against ex-
perimental results obtained with the hardware platform shown
in Fig. 4, which was composed of a Signal Hound VSG25A
vector signal generator (acting as the signal transmitter), a
short coaxial cable along with a 20 dB attenuator (acting as
the transmission channel), and a Tektronix RSA306B real-
time spectrum analyser (acting as the signal receiver or spec-
trum monitoring system). To prevent transmission interference
from nearby electronic devices, a wired connection was used.
The transmitter and receiver were connected via USB to
the same computer, where a Matlab control program was

4Note that the expressions provided in [50, eq. (7)] and [51, eq. (22)]
assume real sampling. For complex sampling, the factors of 2 that appear in
such equations should be replaced with 1.



Fig. 4: Hardware prototype used in this work: vector signal
generator (left), coaxial cable and attenuator (middle), and
spectrum analyser (right).

executed to coordinate the operation of both transmitter and
receiver to ensure that the data were correctly synchronised
for subsequent comparison later on. The control program was
implemented using Matlab’s Instrument Control Toolbox along
with the libraries and Application Programming Interfaces
(APIs) provided by the manufacturers of the vector signal
generator and the spectrum analyser.

The settings of the experimental platform were configured
to closely reflect the simulation environment. A multi-tone
signal was generated at the transmitter with an OFDM-like
spectral shape generated by 1001 unmodulated tones with
random phase spaced at 10 kHz around a central frequency of
1 GHz, with a total signal bandwidth of 10 MHz. The centre
frequency of the receiver was also configured to 1 GHz with
a frequency span of 30 MHz (i.e., signal bandwidth was 1/3
of the frequency span). The relation between the transmission
power configured at the signal generator and the SNR observed
at the spectrum analyser was carefully calibrated to enable a
fair comparison between simulation and experimental results.

C. Performance Metrics

Several performance metrics were used in this work both for
DL-ANN training and optimisation as well as for evaluation
of the final SAE accuracy, which are described below.

Mean Squared Error (MSE): The average squared differ-
ence between estimated and actual values is a popular metric
commonly employed to assess the training of ANNs [52]
and is also employed in this work. The MSE metric here
employed is calculated based on the four output parameters
of the proposed DL-ANN model shown in Fig. 2 as follows:

MSE =
1

4

(
(x− x̃)2 + (y − ỹ)2 + (w − w̃)2 + (h− h̃)2

)
where m ∈ {x, y, w, h} denotes the true value of parameter
m and m̃ represents its estimated value. The closer to zero the
value of this metric, the more accurate the SAE.

I
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Fig. 5: Illustration of the IOU concept.

Intersection over Union (IOU): This metric is commonly
used to measure the accuracy of a model on a given dataset,
especially in the context of object detection [53]. For each
estimated SA, this metric is calculated based on the areas
of the ground-truth and the estimated bounding boxes. In the
particular case of SAE, the bounding box of each SA coincides
with the SA edges and therefore the area of the bounding box
equals the area of the SA itself. The IOU metric is defined as
the quotient between I (the area of intersection of the actual
and estimated bounding boxes) and U (the area of the union
of the actual and estimated bounding boxes), as illustrated in
Fig. 5. Mathematically, it can be calculated as IOU = I/U ,
where I = Iw · Ih, with the width Iw and height Ih of the
intersection area obtained as:

Iw = min(x+ w, x̃+ w̃)−max(x, x̃) (1)

Ih = min(y + h, ỹ + h̃)−max(y, ỹ) (2)

and the union area is obtained as U = w · h + w̃ · h̃ − I .
The IOU metric takes values within the interval [0, 1], with
zero indicating the worst possible accuracy and one indicating
a perfect SAE accuracy. The closer to one the value of this
metric, the more accurate the SAE.

F1 score: The MSE and IOU metrics described above place
the focus on the location and dimension of the estimated SAs
with respect to the true SAs, but do not pay attention to what
occurs outside those regions. It is worth noting that some SAE
methods can detect SAs in regions where no true SA is present,
in particular at low SNR, where a large number of missed
detections and false alarms can be expected. To include the
impact of these artefacts in the performance of SAE methods,
the F1 score metric is also evaluated, which compares the
output spectrogram to the ground-truth spectrogram on a point-
by-point basis, thus taking into account the behaviour of the
SAE method not only in the regions where SAs are present
but also in the rest of the spectrogram. As opposed to other
metrics that could be used for point-by-point comparison, the
interest of the F1 score is that its calculation accounts for (and
therefore is not biased by) the possible imbalance between the
number of spectrogram points in the idle and busy states in
the original test grid. The F1 score is defined as [54]:

F1 =
2× TP

2× TP + FP + FN
, (3)

where TP , FP and FN represent the number of true positive,
false positive and false negative detections, respectively [54].



The F1 score takes values within the interval [0, 1], with zero
indicating the worst possible accuracy and one indicating a
perfect SAE accuracy. Therefore, the closer to one, the more
accurate the SAE.

Computation time: The broad heterogeneity of SAE meth-
ods available in the literature and the inherent characteristics
of the principles on which they rely makes it difficult to
adopt a common definition of computational complexity that is
applicable to all possible cases and enables a fair comparison
among different SAE methods. This problem is resolved by
assessing and comparing the computational cost or complexity
of different methods by means of the computation time,
measured as the time required to execute each SAE method
in an actual processor. This is a common approach widely
used in other SAE studies and is also employed in this work.
Therefore, the computation time of each SAE method is also
evaluated in this study. This measure is important because it
affects the overall performance of the SAE method when it is
practically implemented. For the proposed DL-ANN method,
the computation time refers to the time required to execute the
DL-ANN model once it has been trained. The training time,
which is significantly longer than the execution time, is not
included since in a practical system implementation the model
would normally be trained only once and offline before it is
deployed in a real implementation.

In this work, the MSE and IOU metrics are mainly used for
model training and configuration (along with the F1 score as
well), while the F1 score and the computation times are mainly
used for assessment of the final SAE accuracy. As it will be
shown, the F1 score provides a suitable metric that follows
a similar trend as the MSE and IOU metrics while providing
a more complete characterisation of the output spectrogram
generated by SAE methods.

D. DL-ANN Model Training and Configuration

Raw Dataset Construction: Raw datasets were generated
based on software simulations and hardware experiments as
explained in Sections IV-A and IV-B, respectively. For each
SNR value, a total of 60,000 independent test grids (i.e.,
original spectrograms) were generated and the corresponding
features and labels were extracted in order to construct the
required dataset, which was divided into separate subsets
used for training (60%), validation (20%) and testing (20%).
As explained in Section III-B, two different scenarios are
considered regarding the input information provided to the DL-
ANN model. In the first scenario only the binary spectrogram
obtained from spectrum measurements is provided, while in
the second scenario the SNR value at which the provided
spectrogram was generated is also fed to the network as a
second input parameter. The raw data generation process for
both scenarios is illustrated in Figs. 6 and 7, respectively. The
only difference is the fact that the SNR value at which each
test grid (original spectrogram) is generated is not considered
as an input feature in scenario 1 (Fig. 6) while it is considered
as an input feature in scenario 2 (Fig. 7).
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Fig. 6: Construction of DL-ANN raw dataset for scenario 1.
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Fig. 7: Construction of DL-ANN raw dataset for scenario 2.

Before using the datasets for training, validation or testing,
they must be preprocessed in order to extract the relevant
features and corresponding labels. Python is utilised to this
end because of the availability of several tools and advanced
DL libraries (e.g., TensorFlow [55], Keras [56] and PyTorch
[57]) that help not just with the dataset preparation, but also
with the construction, training and testing of the DL model.
After this, the prepared dataset is ready for training of the DL-
ANN model and its validation (which is important to ensure
that the ANN can generalise to new data and avoid the over-
fitting problem) before the final testing is carried out.

Hyperparameter Tuning and DL-ANN Optimisation: After
the data preparation process, the DL-ANN model is trained
to help it learn the optimum hyperparameter values. Table I
shows a summary of the main hyperparameters considered and
their selected values. Among the numerous hyperparameters
that are amenable to optimisation, several hyperparameter
settings were tested for the number of hidden layers, num-
ber of neurons per layer and batch size (with the selected
values shown in bold font), while other relevant parameters
were set to standard and commonly used values [58]. The
approach used in this study was to optimise the first three
hyperparameters shown in Table I based on the MSE as the
performance metric as a function of the number of epochs.
The hyperparameter optimisation was carried out based on a
manual grid search method and the Adaptive Experimentation
Platform (Ax). This approach was chosen because it allows
an intelligent selection of properties in the search space when



TABLE I: Hyperparameter tuning settings

Hyperparameter Settings
Number of hidden layers [1, 2, 3, 4]

Number of neurons [16, 32, 64, 128, 256]

Batch size [5, 10, 15, 20, 25]

Epoch 100

Optimiser Adam

Learning rate 0.001

Dropout regularisation 0.4

Activation function ReLU, Sigmoid (output)

there is no opportunity for explicit choice of properties [59].
The results of the optimisation process are shown in Fig. 8 and
the corresponding optimised DL-ANN models for scenarios 1
and 2 are shown in Figs. 9 and 10, respectively. Notice that
the number of hidden layers and their dimensions correspond
to the selected values shown in boldface in Table I. The
input information provided to the DL-ANN model is a binary
spectrogram that, as discussed in Section IV-A, has a default
size of 50×100 points, which corresponds to an input size
of 5000 elements as shown in the input layer of Figs. 9 and
10. On the other hand, the output of the last layer (i.e., the
final output of the DL-ANN model) has a total size of 80
elements, which corresponds to a matrix of 4×20 elements.
This provides enough capacity to store information of the
bounding boxes for up to 20 SAs, given that each bounding
box is defined by a four-element tuple as discussed in Section
III-B (see also Fig. 2). This was observed to be sufficient in all
our experiments. The DL-ANN will detect automatically the
number of SAs present in the spectrogram and fill the values
of one tuple in the 4×20 matrix for each detected SA. The
rest of positions of the output matrix will be filled with zeros.
Counting the number of non-zero tuples in the output matrix
provides the information about the number of detected SAs,
while the values contained in the used positions of the output
matrix provide the information of the corresponding bounding
boxes for the detected SAs. Notice that if the output matrix
is configured with a capacity that is not large enough, then
the information of some SAs will be lost, however this can be
easily found out by simply checking whether all the positions
have been filled and increasing the size if needed.

Training, Validation and Testing Options: For the DL-ANN
to provide accurate results, it first needs to be trained with
labelled data. The labels for training are provided as a matrix
similar to the one provided by the DL-ANN as an output,
with one tuple (x, y, w, h) for each generated SA and zeros
in the remaining empty positions. The labels were added to
the training data set in the same order in which the SAs
were generated and added to the spectrogram produced in
Step 1 of Section IV-A, which in this work is in increasing
order of frequency and time. As a result, the network tends
to provide an output matrix where the detected SAs tend to
appear in similar order, however this is not necessarily the
only correct output (any permutation of the order of detected
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Fig. 8: DL-ANN hyperparameter optimisation based on MSE: (a)
using different numbers of hidden layers (with 256 neurons per layer
and 25 batch size), (b) using different numbers of neurons per layer
(with 4 hidden layers and 25 batch size), (c) using different batch
sizes (with 4 hidden layers and 256 neurons per layer), and (d) using
the Adaptive Experimentation (Ax) platform.
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Fig. 9: Optimised DL-ANN model for scenario 1.

SAs is still valid). In any case, notice that the order in which
the detected SAs are provided by the DL-ANN in the output
matrix is irrelevant when it comes to the SAE accuracy – it is
the accuracy of the parameters (x, y, w, h) estimated for each
detected SA what counts.

For the DL-ANN model training and validation, four options
were considered, the first three related to scenario 1 (one input
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Fig. 10: Optimised DL-ANN model for scenario 2.

layer for the input spectrogram) and the last one related to
scenario 2 (with two input layers including the estimated SNR
at the receiver):

• Option 1: Single input layer for input spectrograms
generated at –5 dB SNR.

• Option 2: Single input layer for input spectrograms
generated at –10 dB, –7 dB and –5 dB SNR.

• Option 3: Single input layer for input spectrograms
generated at SNR values from –20 dB to +5 dB in 1-
dB increments.

• Option 4: Same as Option 3 with a second input layer
that provides the SNR at which the input spectrogram
provided in the first input layer was obtained.

In training option 1, the DL-ANN model was trained based on
input spectrograms generated at –5 dB SNR (which represents
a case of low SNR), while in option 2 the model was trained
using input spectrograms generated at three different SNR
values, namely –10 dB, –7 dB and –5 dB (which represents a
larger training data set but still a limited one compared to the
full SNR operational range from –20 dB to +5 dB). Option
3 trains the model with data generated at all possible SNR
values from –20 dB to +5 dB in 1-dB increments. These three
options were considered to determine the degree to which
the amount of data available for training can help the DL-
ANN model produce accurate SAE outputs and is motivated
by the fact that in some practical application scenarios it may
not be possible to acquire data for training at all the SNR
levels that may be experienced once the model is deployed
in regular working conditions. Finally, option 4 is considered
to determine the degree to which providing additional input
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Fig. 11: DL-ANN training performance for different training options:
(a) option 1, (b) option 2, (c) option 3, and (d) option 4.

information to the model (namely, the SNR value at which
the input spectrogram was obtained) can help produce more
accurate outputs. The results of the DL-ANN training for these
four options can be seen in Fig. 11 in terms of the IOU and
F1 score metrics. As it can be observed, the trends are similar
for the IOU and F1 score. For simplicity, the remainder of the
performance analysis will focus on the F1 score only, which
is in line with previous work in [19], [41], [43], [44].

Once trained and validated, the DL-ANN model was tested
using the same kind of data. However, in the testing stage
only the input features (spectrogram only in options 1–3 and
also the receiving SNR in option 4) were fed to the DL-ANN
to predict its output, while labels were used to quantify the
accuracy of the SAE result. It is worth noting that in all
cases the input spectrograms employed in the testing stage
were generated for all SNR values from –20 dB to +5 dB
regardless of what data were used in the training/validation
stage (including the testing of options 1 and 2). The results of
this testing are presented and discussed in Section V.

V. PERFORMANCE EVALUATION

A. Performance of DL-ANN

In order to illustrate the output produced by the proposed
DL-ANN model under the four different training options
described in Section IV-D, Figs. 12–15 show some examples
of the estimated SAs for various spectrograms under three
different SNR values, namely –5 dB, –7 dB and –10 dB
(notice that all these cases correspond to a low SNR regime,
where SAE becomes more challenging). The figures show the
spectrograms observed at the receiver along with the estimated
SAs, which are depicted as red rectangles. Moreover, the



(a) (b) (c)

Fig. 12: Example of SAE for Option 1: (a) SNR = –10dB, (b) SNR
= –7dB, and (c) SNR = –5dB.

(a) (b) (c)

Fig. 13: Example of SAE for Option 2: (a) SNR = –10dB, (b) SNR
= –7dB, and (c) SNR = –5dB.

original (ground truth) SAs are also shown in the figures as
blue rectangles in order to clearly visualise the IOU.

The results shown in Fig. 12 for option 1, where the DL-
ANN model is trained using only spectrograms observed at
–5 dB SNR, suggest that the SAs in the received spectrogram
can be detected with a reasonable degree of accuracy at the
SNR level at which the model is trained (i.e., – 5 dB) and
also at slightly lower SNRs (i.e., –7 dB), but fails to produce
satisfactory results at a much lower SNRs (i.e., –10 dB). This
suggests that the network can perform well when operating
at the same SNR at which it was trained and also at slightly
different SNR values, but fails to deliver satisfactory results
when it operates at SNR values that are substantially different
from those at which it was trained. To confirm this, the DL-
ANN model was also trained at the three tested SNR values in
option 2 and, as it can be appreciated in Fig. 13, in this case
the model also provides a reasonable detection performance
at lower SNR values (–10 dB) once it has been trained for
those particular operating conditions. It is interesting to note
that, even though the presence of SAs at –10 dB SNR is
hardly recognisable for the human eye, the DL-ANN model
can identify correctly the number of SAs and their locations
with a remarkable level of accuracy once it has been trained
with data observed at such low SNR level (see Fig. 13a).

(a) (b) (c)

Fig. 14: Example of SAE for Option 3: (a) SNR = –10dB, (b) SNR
= –7dB, and (c) SNR = –5dB.

(a) (b) (c)

Fig. 15: Example of SAE for Option 4: (a) SNR = –10dB, (b) SNR
= –7dB, and (c) SNR = –5dB.

Moreover, it is also worth noting that training the network
with additional data at lower SNR values such as –10 dB
also makes the network perform better at higher SNR values
such as –7 and –5 dB, as it can be appreciated by comparing
Figs. 13b and 13c with Figs. 12b and 12c, respectively, which
suggests that the network will experience an improved learning
process from any training data even when operating at other
SNR levels. The results in Fig. 14 correspond to option 3,
where the model is trained with data generated at all the
possible SNR values considered in this study (from –20 dB
to +5 dB in 1-dB increments); in this particular case, there
is no significant difference with respect to Fig. 13, since in
both cases the network has been trained with data generated
at the three SNR values shown in these examples. In Fig. 15,
the network is also trained with spectrogram data generated
at all the possible SNR values and, in addition to that, is also
trained with a second input feature which is the actual SNR
value at which the spectrogram is generated. This additional
input information would in principle be expected to produce a
more accurate detection of the SAs present in the spectrogram.
However, as it can be observed by comparing Figs. 14 and
15, there does not seem to be a significant difference, which
suggests that providing the SNR as a second input feature may
not have a relevant impact on the model performance.
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Fig. 16: Performance comparison of options 1–4 in terms of: (a) F1
score, and (b) computation time.

To verify the above statements and assess the performance
of the DL-ANN model in a more quantitative manner, Fig.
16 shows the performance of the four considered training
options in terms of the F1 score as a function of the SNR
along with the corresponding computation time. The figure
also includes the performance of the two selected benchmark
methods (namely CT-SA and SSA) and the performance of
a simple energy detector (ED), which cannot be considered
as a SAE method in strict sense but provides an interesting
baseline for comparison purposes (ED is the signal detection
step needed to generate the binary spectrogram previous to
the SAE process). Fig. 16a corroborates the observations
made above based on Figs. 12–15. It can be noticed that
the performance of the DL-ANN model when trained as in
option 1 starts to degrade significantly for SNR values below
–5 dB, which is the SNR at which the employed training data
were generated. Similarly, when trained as in option 2, the
performance starts to degrade significantly when the operating
SNR falls below the lowest SNR used for training (i.e., –10
dB). When the DL-ANN model is trained as in option 3 with

spectrogram data generated at all the SNR values at which
the model operates, the performance is significantly improved
over the whole SNR range and, even though the performance
experiences a natural degradation as the SNR decreases, the
degradation in this case is significantly less accentuated than
in the other two training options. It is also worth noting that
the training considered in option 4, where also the actual SNR
value is provided as an input feature, provides only a marginal
performance improvement with respect to the training based
on option 3, where only spectrogram data (without actual
SNR information) are used. Therefore, this suggests that the
training in option 3 can be considered as a preferred option
since it does not require the estimation of the receiving SNR,
which would imply additional complexity in a practical system
implementation. When the DL-ANN model is trained based
on spectrograms generated at all the possible SNR values
as in option 3, the proposed system provides an excellent
performance over the whole SNR range, comparable to that
attained with option 4, but with a much simpler system
implementation (where the receiving SNR does not need to
be estimated). Moreover, it is worth noting that the DL-ANN
model trained as in option 3 outperforms both SAE benchmark
methods (i.e., CT-SA and SSA) over the whole SNR range.
While the SAE accuracy is similar at relatively high SNR
values (at around –7 dB and above), there is a significant
performance improvement attained with the DL-ANN method
at lower SNR values. In particular, at SNR values as low
as –20 dB, the DL-ANN model can provide an estimation
accuracy (based on the F1 score) of about 73% (for option
3) while the benchmark methods would provide an estimation
accuracy of 5–7% for the same SNR level. This significant
performance improvement results in a noticeable extension of
the SAE detection sensitivity (i.e., the ability to accurately
detect SAs at lower SNR values). The price to be paid for this
significant performance improvement, as observed in Fig. 16b,
is a higher computational cost in terms of the computation time
required to run the DL-ANN SAE method. Fig. 16b indeed
shows the existence of a trade-off between SAE accuracy and
required computation time, with the two benchmark methods
(CT-SA and SSA) requiring the lowest computation time but
also providing the lowest SAE accuracy, and the proposed
DL-ANN method (training options 3 and 4) providing the
best SAE accuracy at the expense of a higher computation
time. However, with the availability of powerful processors
nowadays (and presumably more powerful ones in the future),
this is an affordable cost that is worth paying for the significant
performance improvements that can be attained with the DL-
ANN model, in particular in the low SNR regime.

The results shown in Fig. 16 correspond to an AWGN
channel. The performance under Rayleigh fading is illustrated
in Fig. 17. By comparing Figs. 16a and 17 it can be noticed
that the impact of fading is in general a slight degradation
of the SAE accuracy for all the considered methods, which
is a consequence of the lower probability of correct signal
detection at each spectrogram point due to fading. However,
the degrading effect is more severe for the ED curve than
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Fig. 17: Performance of the proposed and reference SAE methods
in terms of F1 score vs. SNR under Rayleigh fading.

for the SAE methods. This can be explained by the fact that
SAE methods, as opposed to ED, combine the states detected
in various spectrogram points to estimate the present SAs,
which can help overcome the degrading effects of a higher
probability of misdetection at individual spectrogram points
caused by fading. More importantly, it can also be observed
that the proposed DL-ANN method outperforms the reference
SAE methods not only in an ideal AWGN channel but also in
a more realistic wireless communication channel that includes
fading in addition to noise.

The results presented so far have been obtained for a
spectrogram resolution of 50×100 points, which is the default
resolution considered in this work unless otherwise stated (see
Section IV). The impact of the spectrogram resolution on the
performance of SAE methods was investigated in [19], where
it was observed that modifying the spectrogram resolution
does not have a significant impact on the SAE accuracy in
general, except for the SSA method where it was observed
that employing excessively high spectrogram resolutions may
result in a degradation of the SAE accuracy (this could be
because the SSA method may require some parameter optimi-
sation procedure as a function of the employed spectrogram
resolution, which has not been investigated and is beyond the
scope of this research). This is illustrated in Fig. 18, where the
impact of the spectrogram resolution on the SAE accuracy5 is
shown as a function of the SNR. As it can be appreciated, the
performance of the proposed DL-ANN method is not signif-
icantly affected by the employed spectrogram resolution and,

5Recall from Section IV-A (Step 4), that the SAE accuracy is evaluated by
comparing the spectrograms obtained in Steps 1 and 3, both of which have a
discrete domain. In a real system implementation, obtaining the spectrogram
of Step 1 would require sampling and digitising the analogue radio-frequency
signals and the selected sampling resolutions in the time and frequency
domains would introduce some error component in the spectrogram of Step
1. Such error component is independent of the SAE method subsequently
employed and therefore is not included in these results in order to provide
a fair comparison. The results presented in this work quantify the difference
between the spectrograms described in Steps 1 and 3 of Section IV-A; such
error component is due solely to the employed SAE method.

(a) (b)

(c) (d)

Fig. 18: Impact of the spectrogram resolution on the SAE accuracy
for: (a) energy detection (ED), (b) CT-SA, (c) SSA, and (d) DL-ANN.

more importantly, the relative performance improvement of
the proposed DL-ANN method with respect to the benchmark
methods is maintained regardless of the considered resolution.

B. Performance with Image Processing Techniques

As discussed in Section III-A, the problem of SAE can
be addressed from the point of view of image processing
by looking at binary spectrograms as binary images where
each time-frequency point represents an image pixel, which
allows the application of image processing techniques. This
section explores the performance of the proposed DL-ANN
method when combined with some popular image processing
techniques. In particular, two image processing techniques
are considered here, namely morphological operations and a
combination of edge detection and flood fill. These image
processing techniques are combined with the proposed DL-
ANN method by using them as pre/post-processing stages,
where they can be applied only before (pre-processing), only
after (post-processing) or both before and after (pre- and post-
processing) the DL-ANN model is run.

Morphological Operations (MO) are carried out by moving
a small (typically squared or rectangular) filter template re-
ferred to as Structuring Element (SE) over the binary image
by centering it at every image pixel (based on the defined SE’s
origin, which is usually its geometric centre) and performing
some logical operation between the SE pixels and the image
pixels that fall within the SE template. The basic MOs
include erosion, dilation, opening and closing [60], [61]. In
morphological erosion (dilation) the image pixel at the centre
of the SE is set to one if all (any) of the neighbouring pixels
within the SE have the value one, and zero otherwise. Morpho-
logical erosion removes islands and small objects in the input
image, so that only substantive objects remain and can be
useful to remove false alarms in the input spectrogram, while
morphological dilation has the opposite effect to erosion, it
adds more pixels to the boundaries of existing regions, making
objects more visible and reducing gaps between them, which
can be useful to fill in missed detections within SAs. The other
two morphological operations are obtained as a combination,
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Fig. 19: Performance of dilation before DL-ANN: (a) SNR = –10dB,
(b) SNR = –7dB, and (c) SNR = –5dB.
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Fig. 20: Performance of dilation after DL-ANN: (a) SNR = –10dB,
(b) SNR = –7dB, and (c) SNR = –5dB.

where morphological opening (closing) is obtained by first
eroding (dilating) and then dilating (eroding) an image using
the same SE for both operations. Morphological opening can
remove small entities from an image while conserving the
dimensions and proportions of larger objects almost unaltered,
while morphological closing enlarges an image and then
corrodes the expanded image, with the visual effect being
the repletion of gaps in the image. The performance of the
DL-ANN model is here shown when combined with dilation
and opening, which are the two operations that can help fill
gaps within SAs due to signal missed detections and therefore
provide a more clear visualisation of the SAs in a spectrogram.
Without loss of generality, the other two MOs (erosion and
closing) are not shown here to avoid an excessively long
analysis but similar conclusions can be reached.

The performance of the DL-ANN model when combined
with the morphological dilation operation as a pre-, post, and
both pre/post-processing technique is illustrated in Figs. 19,
20 and 21, respectively. Notice that the application of a MO
after the DL-ANN model means that the information about the
location and dimensions of the SAs detected by the DL-ANN
(represented by red rectangles) is lost, hence such red rectan-
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Fig. 21: Performance of dilation both before and after DL-ANN: (a)
SNR = –10dB, (b) SNR = –7dB, and (c) SNR = –5dB.
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Fig. 22: Performance of DL-ANN combined with morphological
dilation in terms of: (a) F1 score, and (b) computation time.

gles are not shown in Figs. 20 and 21 (however these cases
are also included in the study for completeness). As it can be
appreciated, the overall effect of the dilation operation is to
expand the regions where the presence of signal components is
detected. This effectively fills gaps within genuine SAs created
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Fig. 23: Performance of opening before DL-ANN: (a) SNR = –10dB,
(b) SNR = –7dB, and (c) SNR = –5dB.

by signal missed detections, however it also magnifies these
regions to the extent that the DL-ANN model overestimates
the true dimensions of the SAs. The overall result, as shown in
Fig. 22a, is an overall degradation of the detection accuracy.
Notice that the introduction of the dilation step does not
affect significantly the overall computation cost as indicated
by Fig. 22b, which is due to a negligible computation time
with respect to that required by the DL-ANN model. However,
despite this negligible computational load, the introduction
of this particular MO does not provide any performance
improvement and therefore is of little utility. On the other
hand, the performance of the DL-ANN model when combined
with the morphological opening operation as a pre-, post, and
both pre/post-processing technique is illustrated in Figs. 23,
24 and 25, respectively. The performance can be appreciated
in more detail in Fig. 26. In this other case, it can be noted
that the use of morphological opening as a pre-processing
technique provides a very similar detection performance as
the DL-ANN model alone without a noticeable variation in the
required computational cost. The introduction of dilation as a
pre-processing step can indeed result in a slightly better SAE
accuracy at high SNR values (above around –7 dB) and in that
SNR regime can be of some utility, even though the DL-ANN
model on its own can achieve a very similar performance.

The second image processing technique explored here is a
combination of edge detection (used to estimate the edges of
the potential SAs in a spectrogram) and flood fill (used to
fill the area inside the detected edges) [44]. In this approach,
the Canny edge detector is used followed by a standard
flood fill method [62], [63]. The motivation for using these
image processing techniques is to attempt to enhance the
recognisability of SAs (or fragments thereof) to help the DL-
ANN recognise the SAs in the spectrogram. However, in this
case, as observed in Figs. 27–30, the introduction of this
image processing approach cannot improve the SAE accuracy
already attained by the DL-ANN model itself, while resulting
in slightly increased computation times. The performance of
this combination of image processing techniques as a stand-
alone SAE method (i.e., without DL-ANN) was investigated in
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Fig. 24: Performance of opening after DL-ANN: (a) SNR = –10dB,
(b) SNR = –7dB, and (c) SNR = –5dB.

[44], where it was shown that it can provide better accuracy
than other previously proposed SAE methods. However, the
comparison of Fig. 17 of [44] with the performance shown in
this section for the proposed DL-ANN indicates that the DL-
ANN method also performs better than edge detection plus
flood fill when considered as stand-alone SAE methods, in
particular in the low SNR regime.

In summary, the results obtained in this subsection suggest
that image processing techniques, which may be suitable for
their application to the SAE problem, do not improve the
performance attained by the proposed DL-ANN method. The
use of image processing techniques in the context of SAE has
provided noticeable benefits and performance improvements
in some previous studies [41], [43], [44]. However, the use of
more advanced techniques such as DL can achieve by itself
excellent levels of SAE estimation accuracy over the whole
range of SNR values without the need of combining them
with image processing techniques, which in this subsection
have been shown to be of limited utility or, at best, provide
very slight performance improvements in some cases.

C. Experimental Validation

The results presented so far have been obtained based on
software simulations. Simulations are a convenient and effi-
cient way to explore the performance of the SAE approaches
considered in this work under a broad range of operating
conditions, however an experimental validation is required to
provide a more convincing case showing the potential benefits
that the proposed DL-ANN method can bring in a practical
system implementation. Fig. 31 presents a comparison of
the simulation and experimental performance results obtained
for the DL-ANN model under the four considered training
options, while Fig. 32 also includes the variants based on
the combination with image processing techniques. As it can
be appreciated, the obtained simulation results match very
closely with their experimental counterparts, thus confirming
the conclusions derived from the analysis presented above and
corroborating the performance improvements that the proposed
DL-ANN method for SAE can achieve in a practical system
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Fig. 25: Performance of opening both before and after DL-ANN:
(a) SNR = –10dB, (b) SNR = –7dB, and (c) SNR = –5dB.
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Fig. 26: Performance of DL-ANN combined with morphological
opening in terms of: (a) F1 score, and (b) computation time.

implementation. As it can be noticed, the proposed DL-ANN
approach can provide significant SAE accuracy improvements
compared to other SAE methods from the literature, in partic-
ular when considering the low SNR regime.
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Fig. 27: Performance of edge detection and flood fill before DL-
ANN: (a) SNR = –10dB, (b) SNR = –7dB, and (c) SNR = –5dB.
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Fig. 28: Performance of edge detection and flood fill after DL-ANN:
(a) SNR = –10dB, (b) SNR = –7dB, and (c) SNR = –5dB.

VI. CONCLUSION

In this work, a novel technique for Signal Area Estimation
(SAE) has been proposed using Deep Learning based on
Artificial Neural Network (DL-ANN) for enhanced extraction
of Signal Area (SA) information from radio spectrograms. The
proposed DL-ANN method has shown overall an excellent
performance over the whole range of SNR levels, with sig-
nificant improvements in particular in the low SNR regime
(e.g., 73% estimation accuracy at –20 dB SNR compared
to 5–7% for reference methods from the literature). The
performance of the proposed DL-ANN model when combined
with image processing techniques, which has been proven to
be a suitable approach in previous studies, has been explored
as well. The obtained results have shown that the use of DL
techniques in the context of SAE, such as the proposed DL-
ANN model, can achieve excellent levels of SAE accuracy
without the need of assistance from image processing tech-
niques, which in this particular case are of rather limited utility
or, at best, provide very slight performance improvements
in some cases. The obtained simulation results have been
compared with experimental results obtained with a hardware
platform specifically designed and implemented to this end,
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Fig. 29: Performance of edge detection & flood fill before and after
DL-ANN: (a) SNR = –10dB, (b) SNR = –7dB, and (c) SNR = –5dB.
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Fig. 30: Performance of DL-ANN combined with edge detection
and flood fill in terms of: (a) F1 score, and (b) computation time.

thus corroborating the performance improvements that the
proposed DL-ANN method for SAE can achieve in a practical
system implementation. It is also worth noting that, in addition
to the significant SAE accuracy improvements compared to
other SAE methods from the literature (in particular in the
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Fig. 31: Experimental validation of the performance of the proposed
DL-ANN method and the reference benchmark methods (ED, CT-SA,
SSA) in terms of the F1 score as a function of the SNR for the four
different training options considered in this work.
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Fig. 32: Experimental validation of the performance of the proposed
DL-ANN method (including the variants based on image processing
techniques) and the reference benchmark methods (ED, CT-SA, SSA)
in terms of the F1 score as a function of the SNR (for option 3).

low SNR regime), a key feature of the proposed method is
the capability to extract the location and dimensions of the
detected SAs automatically. Overall, the proposed technique
is a promising solution for SAE and the automatic processing
of radio spectrograms in spectrum-aware wireless systems.

The use of Deep Learning (DL) techniques for the detection
of signals in various contexts has been receiving an increasing
level of attention recently. Some DL-related techniques such
as object detection methods have been successfully applied
to signal detection related problems (e.g., see [46]) and the
investigation of more advanced DL methods for the problem
of SAE estimation (e.g., object detection-based SAE) is a



promising research direction that is suggested as future work.
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D. G. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever,
K. Talwar, P. A. Tucker, V. Vanhoucke, V. Vasudevan, F. B. Viégas,
O. Vinyals, P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and
X. Zheng, “Tensorflow: Large-scale machine learning on heterogeneous
distributedm systems,” CoRR, vol. abs/1603.04467, 2016. [Online].
Available: http://arxiv.org/abs/1603.04467

[56] F. Chollet, “Keras, github,” 2015. [Online]. Available:
https://github.com/fchollet/keras

[57] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan,
T. Killeen, Z. Lin, N. Gimelshein, L. Antiga, A. Desmaison, A. Kopf,
E. Yang, Z. DeVito, M. Raison, A. Tejani, S. Chilamkurthy, B. Steiner,
L. Fang, J. Bai, and S. Chintala, “Pytorch: An imperative style, high-
performance deep learning library,” in Advances in Neural Informa-
tion Processing Systems, H. Wallach, H. Larochelle, A. Beygelzimer,
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