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ABSTRACT

Energy detection constitutes a preferred approach for spectrum sensing in cognitive radio due

to its simplicity and applicability (it works irrespective of the signal format to be detected) as

well as its low computational and implementation costs. The main drawback, however, is its

well-known detection performance limitations. Various alternative detection methods have been

shown to outperform energy detection, but at the expense of increased complexity and confined

field of applicability. In this context, this work proposes and evaluates an improved version of the

energy detection algorithm that is able to outperform the classical energy detection scheme while

preserving a similar level of algorithm complexity as well as its general applicability regardless of

the particular signal format or structure to be detected. The performance improvement is evaluated

analytically and corroborated with experimental results.

Index terms - Cognitive radio; dynamic spectrum access; spectrum sensing; energy detection.

I. INTRODUCTION

While still early in its development, Cognitive Radio (CR) [1, 2] has emerged as a promising

solution that can effectively address the existing conflicts between spectrum demand growth and

spectrum underutilization. CR aims at improving spectrum usage efficiency by allowing some un-

licensed (secondary) users to access in an opportunistic and non-interfering manner some licensed

bands temporarily unoccupied by the licensed (primary) users.

One of the most important challenges for a CR network is not to cause harmful interference

to primary users. To guarantee interference-free spectrum access, secondary users should reliably
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identify the presence of primary users, which basically means being able to determine whether a

primary signal is present within a certain frequency range [3]. A number of different signal detec-

tion methods, referred to as spectrum sensing algorithms in the context of CR, have been proposed

in the literature to identify the presence of primary signal transmissions [4–6]. Some examples of

the existing proposals include energy detection [7], matched filter detection [8, 9], cyclostationary

feature detection [10, 11], covariance-based detection [12], multi-taper spectrum estimation [13]

and filter bank spectrum estimation [14]. The existing solutions provide different trade-offs be-

tween required sensing time, complexity and detection capabilities, but their practical applicability

depends on how much information is available about the primary user signal. In the most generic

case, a CR user is not expected to be provided with any prior information about the primary signals

that may be present within a certain frequency band. When the secondary receiver cannot gather

sufficient information, the energy detection principle [7] can be used due to its ability to work

irrespective of the signal structure to be detected. Despite its practical performance limitations,

energy detection has gained popularity as a spectrum sensing technique for CR due to its general

applicability and simplicity as well as its low computational and implementation costs. Energy de-

tection has been a preferred approach for many past spectrum sensing studies and also constitutes

the spectrum sensing method studied in this work.

Energy detection compares the signal energy received in a certain frequency band to a properly

set decision threshold. If the signal energy lies above the threshold, the band is declared to be busy.

Otherwise the band is supposed to be idle and could be accessed by CR users. Due to the generality

of its operating principle, the performance of energy detection would not be expected to depend

on the type of primary signal being detected. However, a recent study [15] based on empirical

measurements of various real-world signals demonstrated that the detection performance of energy

detection may strongly vary with the primary radio technology being detected. Certain technology-

dependent inherent properties may result in different detection performances for various primary

signals under the same operating conditions. In other words, the resulting probability of detection
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for a fixed set of operating parameters might be enough to reliably detect some primary signals but

might not for some others, thus making some radio technologies more susceptible to interferences

under the same operating conditions. A possibility to overcome this drawback would be to employ

other more sophisticated spectrum sensing algorithms, which have been proven to outperform the

classical energy detection scheme. Such methods, however, have usually been devised for the

improved detection of particular signal formats, which restricts their field of applicability to a

few primary radio technologies. Furthermore, the performance improvement provided by such

methods is normally obtained at the expense of significantly increased algorithm complexity and

computational cost. An ideal spectrum sensing algorithm should be able to provide detection

performance improvements for any primary signal without incurring in excessive implementation

and computational costs. In this context, this work proposes and evaluates, both analytically and

experimentally, an improved version of the energy detection algorithm. The main interest of the

proposed scheme relies on its ability to outperform the classical energy detection scheme while

preserving a similar level of algorithm complexity as well as its general applicability regardless of

the particular signal format or structure to be detected. The performance improvement is studied

analytically and corroborated with experimental results.

II. SPECTRUM SENSING PROBLEM FORMULATION

The spectrum sensing problem can be formulated as a binary hypothesis testing problem with

the following two hypotheses:

H0 : y[n] = w[n] n = 1, 2, . . . , N

H1 : y[n] = x[n] + w[n] n = 1, 2, . . . , N
(1)

where H0 is a null hypothesis stating that the received signal samples y[n] correspond to noise

samples w[n] and therefore there is no primary signal in the sensed spectrum band, and hypothesis

H1 indicates that some licensed user signal x[n] is present. N denotes the number of samples

collected during the signal observation interval (i.e., the sensing period), emphasizing that the de-
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cision is made based on a limited number of signal samples. The ideal spectrum sensor would

select hypothesis H1 whenever a primary signal is present and hypothesis H0 otherwise. Unfor-

tunately, spectrum sensing algorithms may fall into mistakes in practice, which can be classified

into missed detections and false alarms. A missed detection occurs when a primary signal is

present in the sensed band and the spectrum sensing algorithm selects hypothesis H0, which may

result in harmful interference to primary users. On the other hand, a false alarm occurs when the

sensed spectrum band is idle and the spectrum sensing algorithm selects hypothesis H1, which

results in missed transmission opportunities and therefore in a lower spectrum utilization. Based

on these definitions, the performance of any spectrum sensing algorithm can be summarized by

means of two probabilities: the probability of missed detection Pmd = P (H0/H1), or its comple-

mentary probability of detection Pd = P (H1/H1) = 1 − Pmd, and the probability of false alarm

Pfa = P (H1/H0). Large Pd and low Pfa values would be desirable. Nevertheless, there exists a

trade-off between Pd and Pfa, meaning that improving one of these performance metrics in general

implies degrading the other one and vice versa. In this context, Receiver Operating Characteristic

(ROC) curves (obtained by plotting Pd versus Pfa) are very useful since they allow us to explore

the relationship between the sensitivity (Pd) and specificity (Pfa) of a spectrum sensing method

for a variety of different algorithm parameters and other affecting factors.

III. CLASSICAL ENERGY DETECTION

III.A. Operating principle

The Classical Energy Detection (CED) principle (see algorithm 1), also referred to as radio-

metric detection, measures the energy received on a primary band during an observation interval

and declares the current channel state Si as busy (hypothesisH1) if the measured energy is greater

than a properly set predefined threshold, or idle (hypothesisH0) otherwise [7]:

Ti(yi) =
N∑

n=1

|yi[n]|2
H1

≷
H0

λ (2)
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where Ti(yi) is the test statistic computed in the i-th sensing event over the signal vector yi =

(yi[1], yi[2], . . . , yi[N ]), and λ is a fixed decision threshold to distinguish between the two hy-

potheses in equation 1.

III.B. Theoretical performance

Closed-form expressions for the detection (Pd) and false alarm (Pfa) probabilities can be ob-

tained based on the statistics of Ti(yi). The test statistic follows a central (under hypothesis H0)

and non-central (under hypothesis H1) chi-square distribution with 2N degrees of freedom [7].

Notice, however, that the non-interference constraint for CR terminals imposes strict detection

performance requirements that must be met even in the worst possible operating case, i.e. low

Signal-to-Noise Ratio (SNR) conditions1. In low SNR regimes, the number of signal samples re-

quired to achieve a certain performance is usually large (N � 1). Based on this observation, the

central limit theorem can therefore be employed to approximate the test statistic as Gaussian:

Ti(yi) ∼


N
(
Nσ2

w, 2Nσ
4
w

)
, H0

N
(
N(σ2

x + σ2
w), 2N(σ2

x + σ2
w)

2
)
, H1

(3)

where σ2
x is the received average primary signal power and σ2

w is the noise variance. If only

Additive White Gaussian Noise (AWGN) is considered, the Pd and Pfa for the CED algorithm can

then be obtained based on the statistics of Ti(yi) as follows:

P CED
d = P {Ti(yi) > λ}H1

= Q
(
λ−N(σ2

x + σ2
w)√

2N(σ2
x + σ2

w)
2

)
(4)

P CED
fa = P {Ti(yi) > λ}H0

= Q
(
λ−Nσ2

w√
2Nσ4

w

)
(5)

where P {A}B , P (A|B) and Q(·) is the Gaussian tail probability Q-function [17, (26.2.3)].

1 For example, the IEEE 802.22 spectrum sensing requirements specify that a CR terminal must be able to detect a

6-MHz digital TV signal at a power level of –116 dBm [16], which corresponds to a SNR of –21 dB for a typical TV

receiver with a noise figure of 11 dB [16].
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III.C. Threshold setting

The procedure employed to select the algorithm’s decision threshold is an important aspect

since it represents the parameter configured by the system designer to control the spectrum sensing

performance. The decision threshold λ could be chosen for an optimum trade-off between Pd and

Pfa. However, this would require knowledge of noise and detected signal powers. While the noise

power can be estimated, the signal power is difficult to estimate since it depends on many varying

factors such as transmission and propagation characteristics. In practice, the threshold is normally

chosen to satisfy a certain Pfa [18], which only requires the noise power to be known. Solving in

equation 5 for λ yields the decision threshold required for a target probability of false alarm:

λ =
(
Q−1

(
P CED
fa,target

)√
2N +N

)
σ2
w (6)

Substituting equation 6 into equation 4 and dividing numerator and denominator by σ2
w yields:

P CED
d (γ) = Q

(
Q−1

(
P CED
fa,target

)√
2N −Nγ√

2N(1 + γ)

)
≈ Q

(
Q−1

(
P CED
fa,target

)
−
√
N

2
γ

)
(7)

which represents the detection probability of the CED algorithm as a function of the SNR, denoted

as γ = σ2
x/σ

2
w. The approximation of the last term assumes the low SNR regime case (γ � 1).

III.D. Experimental performance

Figure 1 shows the theoretical and experimental performance of the CED method when applied

to real-world primary signals of various radio technologies, including analogical and digital TV,

DAB-T, TETRA, E-GSM 900, DCS 1800 and UMTS. A detailed and in-depth description of the

measurement platform as well as the measurement and evaluation methodologies employed to

obtain these results can be found in [15].

There are two important aspects to be mentioned in Figure 1. First, the experimental results

indicate that the detection performance may notably vary with the radio technology being detected,

which is not predicted by the associated theoretical results (see equation 7). As a matter of fact, for
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a given set of operating parameters (target Pfa, sample length N and SNR γ) equation 7 suggests

that the resulting performance in terms of Pd is unique. However, Figure 1 clearly demonstrates

that the experimental Pd may strongly depend on the primary signal being sensed. Second, the

performance differences among various radio technologies are not constant, but depend on the

sensing periodN . Summarizing the analysis and discussion of [15], this behavior can be explained

as follows. If N is sufficiently low, the test statistic may follow the instantaneous variations of the

received signal energy. Under the same average SNR conditions (i.e., signals with the same average

energy, assuming constant average noise energy), this means that a higher signal energy variability

(variance) implies a higher probability that the instantaneous energy level (and the test statistic)

falls below the decision threshold. In such a case, the channel would be declared as idle even if it

should be declared as busy, thus resulting in a degraded detection performance. Since various radio

technologies may exhibit different signal energy variation patterns and variances, this explains the

different detection performances observed in Figure 1. It is interesting to observe that sufficiently

short sensing periods (N = 10) are not able to provide reliable estimates of the signal energy.

The test statistic values obtained for N = 10 are highly variable and in an important number of

cases they fall below the decision threshold even in the presence of a primary signal. This leads

to an important number of signal misdetections and thus to a significant detection performance

degradation with respect to the theoretical prediction of equation 7. As N increases, the test

statistics are computed over longer observation periods, thus averaging the peculiarities of any

instantaneous energy variation pattern and reducing its variance. In such a case, although the

variability of the received energy remains the same, the variability of the test statistic decreases

and so does the probability of misdetecting the primary signal. For sufficiently long observation

periods, the test statistic ceases to follow the instantaneous signal energy variations and its value

closely resembles the true mean signal energy. When this occurs for all the considered signals, the

obtained performance curves converge. This explains the convergent trend observed in Figure 1 as

N increases.
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IV. IMPROVED ENERGY DETECTION

To overcome the limitations of the CED scheme, a novel energy detection-based spectrum

sensing method is proposed. For the shake of clarity, the proposal is presented in two steps. Firstly,

a Modified Energy Detection (MED) method motivated by the experimental results of Section

III.D. is presented. Afterwards, and based on the MED scheme, a refined version, referred to as

Improved Energy Detection (IED) method, is proposed and analyzed.

IV.A. MED operating principle

The experimental performance observed in Section III.D. for the CED scheme suggests that

the detection performance might be improved if the misdetections caused by instantaneous signal

energy drops could be avoided. This motivates the development of the MED scheme (see algorithm

2). Every sensing event, the MED method computes the test statistic Ti(yi) as performed by the

CED method (see equation 2). The main difference between the MED and the CED algorithms is

that the former additionally maintains an updated list containing the test statistic values of the last

L sensing events (L is a configurable algorithm’s parameter), which is used to compute an average

test statistic value (line 3 in algorithm 2):

T avg
i (Ti) =

1

L

L∑
l=1

Ti−L+l(yi−L+l) (8)

where T avg
i (Ti) is the average test statistic value computed in the i-th sensing event based on the

test statistic vector Ti = (Ti−L+1(yi−L+1),Ti−L+2(yi−L+2), . . . ,Ti−1(yi−1),Ti(yi)). In case that

the test statistic Ti(yi) falls below the decision threshold λ, an additional check based on T avg
i (Ti)

is then performed (line 7) before deciding the final channel state Si. This additional check is aimed

at preventing a busy channel from being declared to be idle as a result of an instantaneous signal

energy drop (which depends on the particular signal energy variation pattern and radio propagation

conditions) combined with a sufficiently short sensing period (which may be constrained by phys-

ical layer features or higher layer protocols). According to this additional verification, if the last
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sensing event reported an idle channel, Ti(yi) < λ, but the average test statistic value (i.e., the aver-

age signal energy) of the last L sensing events is greater than the decision threshold, T avg
i (Ti) > λ,

this means that it is very likely that a signal is actually present in the sensed channel but the last

sensing event resulted in Ti(yi) < λ due to an instantaneous energy drop of the received signal

combined with a sufficiently short sensing period. As a result, the channel should be declared as

busy (hypothesis H1) in such a case (line 8). On the other hand, if the last sensing event reported

an idle channel, Ti(yi) < λ, and the test statistic’s average value of the last L sensing events also

indicates an idle channel, T avg
i (Ti) < λ, this clearly means that the channel is actually idle. In

such another case, hypothesis H0 can reliably be selected (line 10). With this formulation, the

MED scheme aims at reducing the amount of misdetections caused by instantaneous signal energy

drops, which would lead to an improved detection performance.

IV.B. MED theoretical performance

The test statistic values Ti(yi) can be assumed to be normally distributed (see equation 3) and

mutually independent since they represent the energy of the sensed signal at time instants separated

by time intervals much greater than the sensing periodN over which the signal energy is computed.

Since T avg
i (Ti) is the average of independent and identically distributed (i.d.d.) Gaussian random

variables, it also is normally distributed:

T avg
i (Ti) ∼ N

(
µavg, σ

2
avg

)
(9)

where µavg and σ2
avg are given by [19, eqs. 2.20 and 2.21]:

µavg =
M

L
N
(
σ2
x + σ2

w

)
+
L−M
L

Nσ2
w (10)

σ2
avg =

M

L2
2N
(
σ2
x + σ2

w

)2
+
L−M
L2

2Nσ4
w (11)

where M ∈ [0, L] is the number of sensing events where a primary signal was actually present.

Notice that the exact value ofM cannot be assumed to be known in practice. All that can be known

is the output decisionsH0/H1 of the spectrum sensing algorithm, which does not necessarily imply
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the presence/absence of a primary signal. This means that the performance of the MED algorithm

cannot be predicted in practice since it depends on the particular channel occupancy pattern of

the primary signal, which indeed is unknown. However, it can be lower- and upper-bounded by

analyzing the extreme cases M = 0 and M = L, which correspond to the case where the channel

is always idle (for M = 0) or always busy (for M = L) during the last L sensing events.

Based on the distributions of Ti(yi) and T avg
i (Ti), the Pd and Pfa for the MED algorithm are:

P MED
d = P {Ti(yi) > λ}H1

+ P {Ti(yi) ≤ λ,T avg
i (Ti) > λ}H1

= P {Ti(yi) > λ}H1
+ P {Ti(yi) ≤ λ}H1

· P {T avg
i (Ti) > λ | Ti(yi) ≤ λ}H1

(12)

P MED
fa = P {Ti(yi) > λ}H0

+ P {Ti(yi) ≤ λ,T avg
i (Ti) > λ}H0

= P {Ti(yi) > λ}H0
+ P {Ti(yi) ≤ λ}H0

· P {T avg
i (Ti) > λ | Ti(yi) ≤ λ}H0

(13)

Notice that T avg
i (Ti) and Ti(yi) are not completely independent since the computation of the

former includes the value of the latter (see equation 8). However, T avg
i (Ti) needs to be computed

over a representative number of test statistic values in order to provide an acceptable estimate of

the average signal energy in the sensed channel. Since the average of a relatively large set of values

is not significantly affected, in general, by the particular value of a single element, it is therefore

reasonable to assume for L sufficiently large that T avg
i (Ti) can be considered to be approximately

independent of Ti(yi), regardless of the actual channel state (busy or idle) in the i-th sensing event.

Therefore, for L sufficiently large:

P {T avg
i (Ti) > λ | Ti(yi) ≤ λ}Hx

≈ P {T avg
i (Ti) > λ}Hx

≈ P (T avg
i (Ti) > λ) (14)

whereHx may beH0 orH1. Equations 12 and 13 then become:

P MED
d ≈ P CED

d +
(
1− P CED

d

)
Q
(
λ− µavg

σavg

)
(15)

P MED
fa ≈ P CED

fa +
(
1− P CED

fa

)
Q
(
λ− µavg

σavg

)
(16)

The value of Q ((λ− µavg)/σavg) in equations 15 and 16 depends on the particular channel

occupancy pattern of the primary signal, which is unknown as already stated above. However, since
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Q(·) is confined within the interval [0, 1], then P MED
d and P MED

fa are bounded by P CED
d ≤ P MED

d ≤

1 and P CED
fa ≤ P MED

fa ≤ 1. This means that the MED algorithm is able to improve the detection

performance of the CED algorithm, which was its main motivation as discussed in Section IV.A..

However, such improvement is obtained at the expense of a false alarm probability degradation.

To determine whether the MED scheme results in an overall performance improvement taking into

account both Pd and Pfa with respect to the CED principle, Figure 2 depicts (based on equations

4, 5, 15 and 16) the ROC for both algorithms when L = 3, M ∈ [0, L], N = 1000, and the

SNR values for which P CED
d = 0.9 (−9.15 dB), P CED

d = 0.8 (−10.06 dB), P CED
d = 0.7 (−10.83

dB) and P CED
d = 0.6 (−11.59 dB) when P CED

fa = 0.12. As appreciated, the MED performance

depends on the primary signal’s activity pattern (represented by means of M ), but it is always

inferior to that attained by the CED method.

The results of Figure 2 can be explained as follows. The MED formulation is able to reduce

the amount of misdetections caused by instantaneous signal energy drops, which results in a Pd

improvement with respect to the CED algorithm as it has been inferred from equation 15. However,

the resulting Pfa increases to a greater extent thus leading to the degraded ROC observed in Figure

2. The Pfa increase can be ascribed to the additional check performed in line 7 of the MED

algorithm. When the primary signal ceases after some period of activity and the channel is released,

there may be some following sensing events where Ti(yi) < λ due to the absence of the primary

signal, but T avg
i (Ti) > λ due to the immediate past sensing events where the signal was still

present. As a result, the additional check of line 7 may result in several consecutive false alarms.

In the worst case, up to L sensing events after the channel is released might result in false alarm

2 Notice that CR networks are normally constrained by a maximum interference requirement, which can be mapped

to a minimum detection probability that must be satisfied for SNR values above a predefined threshold, i.e. Pd(γ) ≥

P min
d for all γ ≥ γmin. If we select N = 1000 and P CED

fa = 0.1, for a target P min
d = 0.9 the corresponding SNR is

γmin = −9.15 dB (equation 7). Therefore, this SNR value enables the evaluation of the potential improvements of the

MED scheme with respect to the CED scheme in a realistic worst case. The SNR values for which P CED
d = 0.8, 0.7

and 0.6 enable the evaluation of the MED performance under more unfavorable operating conditions.
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decisions, depending on the particular previous occupancy history and signal energy. In fact, as

the number of previous sensing events where the primary signal was present, M , increases, the

resulting T avg
i (Ti) becomes higher and the number of false alarms after the channel is released

increases, as suggested by the ROC degradation observed in Figure 2 as M increases. On the other

hand, if the channel was sparsely used by the primary signal in the previous sensing events (low

M ), the MED and CED behave similarly and their performances converge.

Based on the results of Figure 2, it can be concluded that the MED performance is upper-

bounded by the CED method. However, the previous analysis motivates the development of the

improved method proposed in Section IV.C. and will make its understanding simpler.

IV.C. IED operating principle

Based on the analysis and discussion of Section IV.B., the IED scheme is proposed (see algo-

rithm 3) in order to reduce the false alarm ratio of the MED scheme while preserving the detection

performance improvement attained with respect to the CED method. The rationale of this proposal

is illustrated in Figure 3. Two possible cases of interest are shown in sensing events number 15

(event A) and number 35 (event B). In both sensing events the MED scheme would select hypoth-

esis H1 since Ti(yi) < λ and T avg
i (Ti) > λ. While this decision would result in a detection

performance improvement for sensing event A, it would lead to a more significant false alarm

degradation after sensing event number 30, where the channel is released, up to L following sens-

ing events (where event B is one of them). To avoid false alarms as those of event B, the IED

scheme performs an additional check (line 8 in algorithm 3) based on the test statistic of the previ-

ous sensing event, Ti−1(yi−1). When Ti(yi) < λ and T avg
i (Ti) > λ, the condition Ti−1(yi−1) > λ

indicates that Ti(yi) < λ may be due to an instantaneous energy drop, in which case hypothesis

H1 should be selected (line 9). On the other hand, the condition Ti−1(yi−1) < λ suggests that

Ti(yi) < λ may be due to the channel release, in which case hypothesis H0 should be selected

(line 11). It is worth noting that the algorithm decisions could be based simply on Ti(yi) and
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Ti−1(yi−1). However, our experimental studies demonstrated that the additional use of T avg
i (Ti)

can avoid misdetections for highly variable signals where various consecutive sensing events may

be affected by instantaneous energy drops, in which case Ti(yi) < λ and Ti−1(yi−1) < λ even

though a primary signal is actually present in the channel. Therefore, the MED and IED schemes

would made the same decision in event A (hypothesis H1), thus improving the detection perfor-

mance of the CED scheme. However, the IED scheme would select hypothesis H0 in event B,

which would also decrease the false alarm ratio of the MED method. The IED proposal is there-

fore expected to improve the false alarm performance of the MED algorithm while still improving

the detection performance of the CED method.

IV.D. IED theoretical performance

The test statistics Ti(yi), Ti−1(yi−1) and T avg
i (Ti) can be assumed to be normally distributed

as indicated by equations 3 and 9–11, respectively. Based on the distributions of Ti(yi), Ti−1(yi−1)

and T avg
i (Ti), the Pd and Pfa for the IED algorithm are:

P IED
d = P {Ti(yi) > λ}H1

+ P {Ti(yi) ≤ λ,T avg
i (Ti) > λ,Ti−1(yi−1) > λ}H1

(17)

= P {Ti(yi) > λ}H1
+ P {Ti(yi) ≤ λ}H1

· P (T avg
i (Ti) > λ) · P {Ti−1(yi−1) > λ}H1

P IED
fa = P {Ti(yi) > λ}H0

+ P {Ti(yi) ≤ λ,T avg
i (Ti) > λ,Ti−1(yi−1) > λ}H0

(18)

= P {Ti(yi) > λ}H0
+ P {Ti(yi) ≤ λ}H0

· P (T avg
i (Ti) > λ) · P {Ti−1(yi−1) > λ}H0

where it has been assumed, following the same argument of Section IV.B., that T avg
i (Ti) can be

considered to be approximately independent of both Ti(yi) and Ti−1(yi−1), regardless of the actual

channel state (busy or idle) in the i-th and (i − 1)-th sensing events, and that the test statistics of

two consecutive sensing events, Ti(yi) and Ti−1(yi−1), can also be considered to be mutually
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independent. Based on such assumptions, equations 17 and 18 then become:

P IED
d ≈ P CED

d + P CED
d

(
1− P CED

d

)
Q
(
λ− µavg

σavg

)
(19)

P IED
fa ≈ P CED

fa + P CED
fa

(
1− P CED

fa

)
Q
(
λ− µavg

σavg

)
(20)

Since Q(·) ∈ [0, 1], P IED
d and P IED

fa are bounded by P CED
d ≤ P IED

d ≤ 2P CED
d −

(
P CED
d

)2
and P CED

fa ≤ P IED
fa ≤ 2P CED

fa −
(
P CED
fa

)2, meaning that the IED algorithm improves the detection

performance of the CED algorithm at the expense of a false alarm probability degradation. Such

degradation, however, is not as significant as in the case of the MED scheme, resulting in the

improved ROC curve observed in Figure 4 for the IED algorithm (the figure has been obtained

based on equations 4, 5, 19 and 20, and for the same operating conditions as Figure 2). As it can

be appreciated, the IED performance is superior to that attained by the CED method. When the

channel is idle in previous sensing events (M = 0), the IED scheme bases its decisions mostly

on the test statistic of the current sensing event, Ti(yi), since for M = 0 it is rather unlikely

that T avg
i (Ti) > λ. In this case the IED scheme behaves similar to the CED scheme and their

performances agree. However, when the channel is busy in previous sensing events (M > 0), the

IED scheme takes profit of this additional information to avoid misdetections due to instantaneous

signal energy drops, as the MED scheme, but with a lower false alarm rate, which results in an

overall improved performance. In fact, as M increases, the IED method is able to avoid a higher

amount of such misdetections. These results indicate that the IED performance is lower-bounded

by the CED method: in the worst case IED performs as CED, but under favorable conditions it is

able to attain significant performance improvements as highlighted by Figure 4.

IV.E. IED threshold setting

As discussed in Section III.C., the energy decision threshold is normally chosen to satisfy a

certain target Pfa, which only requires the noise power to be known. In the particular case of the

CED method, this is an straightforward problem that can be solved analytically based on equation
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5. The resulting decision threshold is given by equation 6. In the case of the IED method, however,

the procedure is not so straightforward because equation 20 cannot be solved for λ analytically.

In principle, the decision threshold required to meet a particular target Pfa could be computed

numerically based on equation 20. Nevertheless, this approach is a rather involved procedure from

both computational and practical perspectives.

As an alternative, the following approach is proposed and analyzed. Let’s assume that the

decision threshold for the IED algorithm is selected according to the expression obtained for the

CED scheme:

λ =
(
Q−1

(
P IED
fa,target

)√
2N +N

)
σ2
w (21)

where P IED
fa,target represents the target false alarm probability desired for the IED algorithm. Substi-

tuting equation 21 into equations 19 and 20 yields:

P IED
d (γ) ≈ P CED

d (γ) + P CED
d (γ)

(
1− P CED

d (γ)
)
Q

Q−1(P IED
fa,target)

√
2N − M

L
Nγ√

2N
L

{
1 + M

L
[(1 + γ)2 − 1]

}
(22)

≈ P CED
d (γ) + P CED

d (γ)
(
1− P CED

d (γ)
)
Q
(
Q−1(P IED

fa,target)
√
L−M

√
N

2L
γ

)
(23)

P IED
fa (γ) ≈ P IED

fa,target + P IED
fa,target

(
1− P IED

fa,target

)
Q

Q−1(P IED
fa,target)

√
2N − M

L
Nγ√

2N
L

{
1 + M

L
[(1 + γ)2 − 1]

}
 (24)

≈ P IED
fa,target + P IED

fa,target

(
1− P IED

fa,target

)
Q
(
Q−1(P IED

fa,target)
√
L−M

√
N

2L
γ

)
(25)

where P CED
d (γ) is given by equation 7, replacing P CED

fa,target with P IED
fa,target, and the second approx-

imation of each equation assumes low SNR regime (γ � 1). It is interesting to note, as opposed

to the CED scheme, that the Pfa for the IED method depends on the SNR and therefore on the

received primary signal, which is explained by the fact that each sensing decision depends on the

previous sensing results, where a signal might be present. Equation 22 indicates that the detection

probability P IED
d (γ) would improve with respect to the CED scheme, but the resulting P IED

fa (γ)

would be greater than P IED
fa,target according to equation 24. In the worst possible case, which cor-
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responds to Q (·) = 1 in equation 24, and assuming3 that P IED
fa,target � 1, the resulting false alarm

rate would be P IED
fa (γ) ≈ 2P IED

fa,target. In order to guarantee that the resulting P IED
fa (γ) does not

exceed P IED
fa,target, even in the worst case, the required decision threshold must then be chosen as:

λ =

(
Q−1

(
P IED
fa,target

2

)
√
2N +N

)
σ2
w (26)

This alternative approach increases the decision threshold with respect to equation 21 and reduces

the experienced P IED
fa (γ), guaranteeing that the amount of lost spectrum opportunities does not

exceed the ratio P IED
fa,target. Due to the existing trade-off between Pfa and Pd, however, this also

means that the resulting detection probability would be lower than that obtained when the decision

threshold is simply selected according to equation 21, in which case some potential interference

might be caused to the primary system. Equation 26 can therefore be regarded as an aggressive

threshold setting approach where the maximum amount of lost spectrum opportunities is strictly

constrained at the expense of some potential risk of interference to the primary network. On the

other hand, equation 21 can be regarded as a conservative approach because in this case a minimum

detection performance is guaranteed but at the expense of sacrificing some spectrum opportunities

since P IED
fa (γ) > P IED

fa,target.

The previous observations are illustrated and confirmed in Figure 5, where equations 22 and

24 (IED performance) are depicted for both conservative and aggressive approaches along with

equation 7 (CED performance) for comparison purposes. The MED performance (equations 15

and 16) when the decision threshold is selected according to the conservative approach is also

shown in order to corroborate the discussion of Section IV.B.. Although P IED
fa (γ) ≥ P IED

fa,target with

the conservative approach, it is interesting to note that the resulting Pfa degradation is appreciable

when considering relatively large P IED
fa,target values such as P IED

fa,target = 0.1. For lower values (e.g.,

P IED
fa,target = 0.01), the resulting Pfa can be considered to be P IED

fa (γ) ≈ P IED
fa,target in practice.

In such a case, the conservative approach is preferable over the aggressive alternative since it is
3 For example, the IEEE 802.22 spectrum sensing requirements [16] specify that a CR terminal must be able to

provide Pfa ≤ 0.1. Lower values may be desirable as well in order to maximize spectrum utilization.
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able to provide the full Pd improvements without a noticeable Pfa degradation with respect to

the CED scheme. The practical consequences of both threshold setting strategies are evaluated

experimentally in Section IV.F..

IV.F. IED experimental performance

The experimental performance of the IED scheme in terms of Pd and Pfa is shown in Figure

6. These results have been obtained with the measurement platform and evaluation methodology

described in [15]. The IED performance is shown as a function of the algorithm’s parameter L.

Notice that the values shown forL = 1 correspond to the CED performance since the CED and IED

schemes are equivalent for L = 1. The performance has been obtained when the decision threshold

is computed according to the conservative (equation 21) and aggressive (equation 26) approaches

described in Section IV.E., and for various sensing periods N . For each sensing period, the SNR

corresponding to P CED
d = 0.9 and P CED

fa = 0.1 is selected (according to equation 7, SNR = 4.29

dB for N = 10, SNR = −3.54 dB for N = 100 and SNR = −9.15 dB for N = 1000). The target

Pfa for the IED algorithm is P IED
fa,target = 0.1 in all cases.

As it can be appreciated, the IED proposal clearly outperforms the conventional CED scheme

for all the considered sensing periods. As L increases (i.e., the measured energies of more sensing

events are combined when computing T avg
i (Ti)), the true average signal energy can be estimated

more accurately and the actual channel state can therefore be determined more reliably, which

explains the growth of P IED
d as L increases. However, for L sufficiently large the true average

signal energy can be estimated with reasonable accuracy. In such a case, further increasing L does

not significantly contribute to the estimation accuracy. As a result, increasing L beyond certain

value improves P IED
d marginally. Based on Figure 6, L = 5 can be considered as an appropriate

trade-off between the obtained performance improvement and the amount of memory required to

store the previous test statistic values for the sensed channels.

It is interesting to note, as expected from the discussion in Section IV.E., that the detection

performance for the aggressive threshold setting approach is in general lower than that of the con-
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servative approach. This is indeed the price to be paid for the lower Pfa attained by the aggressive

approach, as shown in Figure 6. As it can be observed, the aggressive approach guarantees that

P IED
fa,target is never exceeded (which is not the case of the conservative one) at the expense of a lower

detection probability and therefore an increased risk of potential interference to the primary net-

work. Although P IED
fa ≥ P IED

fa,target for the conservative approach, as expected from equation 24, it

can be observed however that in practice the resulting P IED
fa can be made to be very similar to the

desired target with the conservative approach if the appropriate L is selected (e.g., the value L = 5

mentioned above constitutes a reasonable choice). This indicates that the decision threshold of the

IED algorithm can be selected following the same procedure as for the CED scheme (equation 21),

which simplifies the design of the IED spectrum sensing algorithm.

Figure 7 compares the performance of the CED and IED (with L = 5) algorithms in terms of

the ROC. The results have been obtained by means of extensive simulations based on the same

set of empirical data as Figure 6 and considering the same operating conditions. As it can be

clearly appreciated, the IED algorithm is able to outperform the CED scheme for various radio

technologies and sensing periods, providing important performance gains.

Based on the results of this section, it can be concluded that the IED approach is able to achieve

significant detection performance improvements with respect to the CED method. It has been

shown that the observed detection enhancements are not obtained at the expense of a noticeable

false alarm degradation. Moreover, the algorithm’s decision threshold can be selected according to

the same analytical equation employed for the CED method, which simplifies the IED design and

configuration procedure in a real CR system.

V. COMPLEXITY ANALYSIS

V.A. Sample complexity

The sample complexity of a spectrum sensing algorithm specifies how the sensing period N

required to meet a certain set of target P IED
d,target and P IED

fa,target scales as the experienced SNR γ
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degrades. For the CED method, the sample complexity can be determined by solving equation 7

for N , which yields:

N = 2

[
Q−1(P IED

fa,target)−Q−1(P IED
d,target)(1 + γ)

γ

]2
(27)

Assuming low SNR regime (γ � 1), the required number of samples scales asO(1/SNR2), which

represents the sample complexity of the CED algorithm.

For the IED method, the sample complexity cannot be determined analytically from equations

22 and 24. However, equations 19 and 20 constitute a system of two equations that can be solved

numerically as a function of N and λ for various SNR values. The obtained N versus the consid-

ered SNR is depicted in Figure 8, which enables the comparison of the sample complexity for the

CED and IED approaches. The curves corresponding to the IED method are a shifted version of

the CED curve, meaning that the IED sample complexity is also given by O(1/SNR2).

V.B. Computational complexity

The computational cost of the CED and IED methods can be estimated by comparing the set

of calculations to be performed in algorithms 1 and 3. First, the computation of Ti(yi) requires N

products and N − 1 sums, which is common to both algorithms. Additionally, the IED algorithm

computes T avg
i (Ti), which requires L−1 sums and one division, performs two additional compar-

isons (lines 7 and 8 in algorithm 3), and requires memory to store the last L− 1 test statistic values

for each channel the CR is sensing and operating over. The computational cost increase of the

IED method can therefore be considered to be negligible, especially when compared to other more

sophisticated methods such as cyclostationary feature detectors [10, 11] or covariance-based detec-

tors [12], which require more computationally complex operations such as sample autocorrelation

and covariance matrices.

To illustrate the computational costs of the CED and IED schemes, Figure 8 compares the aver-

age computation times observed in the simulations performed in the context of this work, based on

Matlab running in a PC with an Intel Core2 Quad processor at 2.4 GHz. As it can be appreciated,
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the IED computation time is approximately the same for L = 1 and L = 100, meaning that the

computation of the average test statistic in line 3 of algorithm 3 is negligible and that most of the

additional time with respect to the CED scheme is due to the additional verifications performed

in lines 7 and 8 of algorithm 3. The time required to perform these verifications, however, be-

comes less significant with respect to the time required to compute Ti(yi) as the sensing period

N increases. As a result, the computation time of the CED and IED algorithms is approximately

the same for the sensing periods normally required in practice (see Figure 1). Despite the imple-

mented code was not optimized and a general purpose PC was employed, these results are enough

to confirm that the computational cost increase of the IED algorithm is negligible in practice.

VI. DISCUSSION

The IED spectrum sensing method proposed and evaluated in this work exploits the history of

past spectrum sensing results to avoid signal misdetections caused by instantaneous energy drops,

which may be due to the radio channel fading properties or the primary transmission power pattern.

The use of past spectrum sensing results to infer the current channel state is sensible if the sensing

events are reasonably close in time. This means that the full detection performance improvement

of the IED scheme would be achieved when the target channel is sensed with enough periodicity.

However, if the sensing frequency is increased while the sensing interval N is kept constant, the

time devoted to sensing increases and therefore the time available for data transmission decreases,

which results in a throughput degradation for the secondary system [20]. To maintain the same

average throughput, the sensing interval N should be decreased along with the period between two

consecutive sensing events. However, if the sensing period N is made sufficiently short, the test

statistic values may follow the instantaneous variations of the received signal energy. This might

result in some signal misdetections in the particular case of the CED method as discussed in Section

III.D., which is avoided with the IED method if the spectrum sensing operation is configured

properly. Therefore, the IED improvements would be obtained with high sensing frequencies
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and short sensing intervals. Notice that shortening the sensing interval means that the detection

probability in each isolated sensing event decreases, but if several consecutive sensing events that

are sufficiently close in time are combined according to the IED principle, the same detection

performance would be achieved as the obtained results indicate. In such a case, the benefit obtained

would be an enhanced spectrum agility as a result of the increased sensing frequency4. Therefore,

a proper configuration of the IED method would be able to improve the detection performance

of the CED method or preserve the same performance while increasing the spectrum agility, thus

enabling CRs to exploit spectrum gaps sooner and take profit of shorter spectrum opportunities.

The ultimate consequence would be an improvement of the overall spectrum usage efficiency.

VII. CONCLUSIONS

Energy detection has gained popularity as a spectrum sensing technique for cognitive radio due

to its simplicity and general applicability (regardless of the signal format to be detected) as well as

its low computational and implementation costs. Its main drawback, however, is its well-known de-

tection performance limitations. Various alternative spectrum sensing methods have been shown to

outperform energy detection, but at the expense of significantly increased computational cost and

limited field of applicability since such methods have usually been devised for the improved de-

tection of particular signal formats. This work has proposed an improved energy detection method

that is able to outperform the classical energy detection scheme while preserving a similar level

of complexity and computational cost as well as its general field of applicability. The algorithm

performance has been assessed analytically and corroborated with experimental results, demon-

strating the capabilities of the proposed approach.

4As a numerical example, and according to Figure 8, the number of samples required for SNR = −10 dB,

Pd,target = 0.9 and Pfa,target = 0.1 would be NCED ≈ 1500 and N IED ≈ 1000 for the CED and IED meth-

ods, respectively. If the transmit-to-sensing time ratio is denoted as η, the time between two consecutive sensing

events would be given by NCED(1 + η) and N IED(1 + η), which is 1.5 times (33%) lower in the case of the IED

method for the same Pd,target, Pfa,target and η.
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Algorithm 1 Classical Energy Detection (CED) scheme
Input: λ ∈ R+, N ∈ N
Output: Si ∈ {H0,H1}

1: for each sensing event i do
2: Ti(yi)← Energy of N samples
3: if Ti(yi) > λ then
4: Si ← H1

5: else
6: Si ← H0

7: end if
8: end for
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Algorithm 2 Modified Energy Detection (MED) scheme
Input: λ ∈ R+, N ∈ N, L ∈ N
Output: Si ∈ {H0,H1}

1: for each sensing event i do
2: Ti(yi)← Energy of N samples
3: T avg

i (Ti)← Mean of {Ti−L+1(yi−L+1),Ti−L+2(yi−L+2), . . . ,Ti−1(yi−1),Ti(yi)}
4: if Ti(yi) > λ then
5: Si ← H1

6: else
7: if T avg

i (Ti) > λ then
8: Si ← H1

9: else
10: Si ← H0

11: end if
12: end if
13: end for
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Algorithm 3 Improved Energy Detection (IED) scheme
Input: λ ∈ R+, N ∈ N, L ∈ N
Output: Si ∈ {H0,H1}

1: for each sensing event i do
2: Ti(yi)← Energy of N samples
3: T avg

i (Ti)← Mean of {Ti−L+1(yi−L+1),Ti−L+2(yi−L+2), . . . ,Ti−1(yi−1),Ti(yi)}
4: if Ti(yi) > λ then
5: Si ← H1

6: else
7: if T avg

i (Ti) > λ then
8: if Ti−1(yi−1) > λ then
9: Si ← H1

10: else
11: Si ← H0

12: end if
13: else
14: Si ← H0

15: end if
16: end if
17: end for
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Figure 1: Theoretical and experimental performance for the CED algorithm.
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Figure 2: ROC curve for the CED and MED algorithms (L = 3, M ∈ [0, L], N = 1000).
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Figure 7: Experimental ROC curve for the CED (solid line) and IED (dashed line) algorithms.
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Figure 8: Complexities of the CED and IED algorithms (upper graph: sample complexity; lower
graph: computational complexity).
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