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SUMMARY  We create a practical method to set the segment size of
the Welch FFT for wideband and long-term spectrum usage measurements
in the context of hierarchical dynamic spectrum access (DSA). An energy
detector (ED) based on the Welch FFT can be used to detect the presence
or absence of primary user (PU) signal and to estimate the duty cycle
(DC). In signal detection with the Welch FFT, segment size is an important
design parameter since it determines both the detection performance and
the frequency resolution. Between these two metrics, there is a trade-off
relationship which can be controlled by adjusting the segment size. To
cope with this trade-off relationship, we define an optimum and, more easy
to analyze sub-optimum segment size design criterion. An analysis of the
sub-optimum segment size criterion reveals that the resulting segment size
depends on the signal-to-noise ratio (SNR) and the DC. Since in practice
both SNR and DC are unknown, proper segment setting is difficult. To
overcome this problem, we propose an adaptive segment size selection
(ASSS) method that uses noise floor estimation outputs. The proposed
method does not require any prior knowledge on the SNR or the DC.
Simulation results confirm that the proposed ASSS method matches the
performance achieved with the optimum design criterion.

key words: cognitive radio, duty cycle, dynamic spectrum access, spectrum
measurement, Welch FFT

1. Introduction

Dynamic spectrum access (DSA) which can significantly im-
prove spectrum utilization efficiency is a promising approach
to solve the recent spectrum scarcity problem [2]. In oppor-
tunistic spectrum access (OSA), which is a form of DSA [3],
the unlicensed user (secondary user: SU) can opportunisti-
cally access the unused spectrum owned by the licensed user
(primary user: PU) in temporal and/or spatial domain (white
space: WS). It is essential that the SU is aware of the WS in
order to avoid causing interference to the PU.

There are two main techniques for WS awareness: the
first one is geo-location database (GDB) [4] and the second
one is spectrum sensing (SS) [5]. In cases where the PUs are
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static at a given time/location such as in TV broadcasting,
GDB can provide WS information accurately and efficiently.
However, in cases where PUs are dynamic such as in wireless
local area networks and in mobile wireless systems, SS is a
more appropriate approach since it can recognize the state of
the spectrum with less latency compared to GDB. The essen-
tial requirements of SS for dynamic PU are low latency, high
detection accuracy, and low computational complexity and
implementation cost [5]. However, in practice it is difficult
to satisfy these requirements at the same time.

One potential approach to solve the above requirements
for SS is smart spectrum access (SSA) which is an extended
DSA that utilizes useful prior information in terms of PU
spectrum utilization, such as spectrum usage statistics [6].
Specifically, in [6], a two-layer SSA was proposed which
consists of spectrum awareness system (SAS) and dynamic
spectrum access system (DSAS). A main role of SAS is to
obtain the prior information (such as duty cycle (DC), chan-
nel occupancy rate, statistics of the busy/idle durations etc.)
via spectrum usage measurement and provide them to the
DSAS. This approach can avoid the burden of implement-
ing the spectrum usage measurement functionality in DSAS
terminals.

Previous spectrum usage measurements utilize energy
detector (ED) to detect spectrum utilization. Conventionally,
the ED has been implemented with swept-frequency spec-
trum analyzers [7]-[9]. The ED based on the fast Fourier
transform (FFT) has also been considered for spectrum usage
measurements, e.g., [10], [11]. There are two main issues
with ED regardless of how it is implemented: the first one
is threshold setting and the second one is its limited detec-
tion performance. ED threshold setting requires the noise
floor information. In [10], the noise floor is measured in
an anechoic chamber. In general, the threshold is set based
on m-dB criterion in which the threshold is fixed at m deci-
bels above the noise floor [12]. In the existing literature
[71-[9], [11], values such as m = 3, 5, 6, 20dB have been
employed, respectively. In fact, the noise floor should be
estimated periodically due to its time dependency [13]. In
[14], [15], threshold setting method based on noise floor es-
timation with forward consecutive mean excision (FCME)
algorithm was proposed and it can achieve constant false
alarm rate (CFAR) criterion to set threshold. In this paper,
we use the threshold setting method based on noise floor
estimation with FCME algorithm since it can track the time
varying noise floor.

Copyright © 2016 The Institute of Electronics, Information and Communication Engineers
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To overcome the limited detection performance of FFT
based ED, Welch FFT is an effective approach [16]. Welch
FFT consists of three steps: segmentation of the data se-
quence with a specific segment size, calculation of multiple
power spectra and averaging of the power spectra. Here,
the number of segments define over how many segments the
averaging is performed and more averaging provides better
detection performance.

Due to the the above mentioned Welch FFT, there is a
trade-off between the detection performance and frequency
resolution in terms of segment size. More specifically, large
segments sizes lead to poor detection performance due to in-
sufficient averaging of power spectrum but better frequency
resolution. Small segments can improve signal detection
performance and also noise floor estimation accuracy be-
cause of the higher number of averages of the power spectra.
However, decreasing the segment size can lead to inaccurate
recognition of bandwidth of occupied spectrum due to poor
frequency resolution [1]. As aresult, the inaccurate recogni-
tion of bandwidth of occupied spectrum results in inaccurate
detection of the WS.

In this paper, we investigate proper segment size set-
ting in Welch FFT based spectrum usage measurements by
considering the trade-off between detection performance and
frequency resolution. Our main contributions in this paper
are as follows:

* We define the optimum segment size as the one that al-
lows the accurate detection of the WS while maintaining
target DC estimation accuracy and a small enough target
false alarm rate”. The DC estimation accuracy is quan-
tified in terms of its root mean squared error (RMSE),
which is related to signal detection performance with-
out considering the frequency resolution. On the other
hand, the detection accuracy of the WS is quantified
by means of the white space detection ratio (WSDR),
defined as the ratio of true WS to estimated WS, which
also includes the effect of the frequency resolution.

* We also define a sub-optimum segment size which is
obtained analytically. The analysis reveals that the seg-
ment size depends on SNR and DC. This indicates that
segment size selection is challenging problem since
prior knowledge of SNR and DC is impractical.

* We propose an adaptive segment size selection (ASSS)
method which utilizes outputs of noise floor estimation
instead of SNR or DC information. Thus, the proposed
method is very practical and easy to use. In addition,
we consider the worst case DC in the ASSS method so
that required RMSE is satisfied for all DC values.

¢ Numerical results demonstrate that the performance of
ASSS method is comparable to the performance of op-
timum one which assumes SNR to be known while
satisfying the RMSE constraint.

The remainder of the paper is organized as follows.

In fact, false alarm rate can be also optimized for DC estimation
as shown in [17]. However it is beyond of this paper and we use
constant false alarm rate approach instead.
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The system model used in this paper is presented in Sect. 2.
In Sect. 3, we introduce the Welch FFT segment size de-
sign criterion. Specifically, we formulate optimization prob-
lem of segment size. Additionally, we also formulate sub-
optimization problem of segment size because of difficulty
in analysis of optimization problem. In Sect.4, we pro-
pose practical segment size selection method called ASSS
method. Performance evaluation based on computer simu-
lation is presented in Sect.5. Finally, conclusions are pre-
sented in Sect. 6.

2. System Model

In this paper, we focus on one observation equipment (OE)
which is an element of the SAS and has the role of estimating
the DC.

Configuration of time frames for the spectrum usage
measurement in the OE is shown in Fig. 1. One consecutive
measurement duration consists of M, super frames, each
super frame consists of M time frames, and one time frame of
M time frames consists of Ny complex samples of observed
signal with sampling rate f; Hz at the OE.

The block diagram of the spectrum usage measurement
process in an OE is shown in Fig. 2. The DC estimation pro-
cess in the OE consists of several components: Welch FFT,

One measurement duration ( M, )

T [TT] > time
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Fig.1  The configuration of time frames in the measurement process.
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Fig.2  Block diagram of the spectrum measurement process in the OE.
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noise floor estimation consisting of tentative noise floor es-
timation and final noise floor estimation, threshold setting,
spectrum usage detection, ASSS method, and DC estima-
tion. The noise floor estimation is performed once per every
super frame to update the threshold for signal usage detection
while the other operations are performed once per every time
frame. Specifically, tentative noise floor estimation provides
an estimate for every time frame and a median filter is used
for the M tentative noise floor estimates to obtain the final
noise floor estimate. The DC estimation obtains M, DC es-
timates during one measurement duration based on My X M
signal usage detection results.

PU may randomly access any channel in the measure-
ment bandwidth denoted by W), (equivalent to f in this
paper) and W), is set to so as to enable the observation of
multiple PU signals, where the bandwidth of one PU signal
is denoted by Ws. We use the 30-dB bandwidth [18], so that
the signal bandwidth is defined by the frequency bandwidth
in which the signal power is 30 dB below its peak value. In
addition, we assume that PU system parameters (e.g., center
frequency, bandwidth, SNR, etc.) are not known at the SAS.
However, we assume that there exist unoccupied frequency
band(s) whose bandwidth is more than 10% of W,, i.e.,
10% of frequency bins of power spectra obtained by Welch
FFT should be noise-only samples since the tentative noise
floor estimation based on FCME can be relatively accurate
under this constraint. [14].

Now let us focus on the mth time frame (m =
0,1,---, M —1). The nth sampled complex baseband signal
y[n] (n = mNg,mNg+1,--- ,mNg + Ng— 1) in the mth time
frame is given by

yln] = { ]

x[n] + z[n]

(PU is not active) )
(PU is active),

where x[n] represents the PU signal component and z[n]
represents the noise component which follows independent
and identically distributed (i.i.d) circular symmetric complex
Gaussian distribution with zero mean and variance o-%, ie.,
z[n] ~ CN (0O, o-?). SNR is defined by SNR = a‘i/oﬁ, where
o2 and o-% are the average signal power and noise power in
the observed spectrum, respectively.

In the Welch FFT, N; samples are segmented into L,
segments with an overlap ratio p. In L,, v denotes the
index number of segment size (v = Umin, Umin + 1, * * * 5 Umax)-
Without loss of generality, Ny and segment size (Nse,,) are
assumed to be powers of two, i.e., Ny = 2% and Ny, =
2%, namely v also indicates the exponent of the segment size.
In this case,

Lu = 2N§/Nseg,u - 1. (2)
After the segmentation, normal FFT is performed on

each segment with respect to each segment and the power
spectrum averaged over L, segments is given by

Pl fol
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where f, is the index number of the frequency bin (f, =
0,1,-++, Nsegw — 1), m is the index number of the time
frame and w,[k] is the real-valued window coefficient.

Type of window affects the detection performance [19].
In [15], it has been shown that Hamming window can achieve
slightly better performance compared to other windows.
Therefore, we employ it and w,[k] is given by:

wy[k]
B {0.54 — 0.46 cos ( 2k

Nseg,u—l) (0 B k < NSE(/,U - l)
0 (otherwise).

“4)

We assume that time resolution At = N/ fg for the
duration of a time frame is small enough compared to the
time duration of one continuous signal, such as a data packet,
and the time gap between string of two continuous signals
as suggested in [20], [21]. On the other hand, the frequency
resolution Af, is determined by the segment size as Af, =
fs/Nseg,v. We also assume that considered PU signal is
composed of multiple frequency bins, i.e., Wg/Af, = > 2
to enable the averaging of power spectrum in Welch FFT.
We also assume that considered PU signal is composed of
multiple frequency bins to enable the averaging of power
spectrum in Welch FFT.

Noise floor estimation algorithm consists of tentative
noise floor estimation and final noise floor estimation. The
tentative noise floor level &f’v(m) is obtained every time
frame with the FCME algorithm [14], [15] for the segment
size v. In the mth time frame, ASSS method selects the
proper segment size based on the tentative noise floor levels
for different segment sizes. The segment size selected by
ASSS method is denoted by Nieg, v (m), Where vp(m) denotes
the index number of the selected segment size at the mth time
frame. The vector of the tentative noise floor levels with the
proper segment size is given by
T2 =107 op oty T2 a1
where the superscript ¢ denotes vector transpose. The final
estimated noise floor level, denoted by é'iF, is obtained

A

by median filtering the elements in &7 [15]. Let fy,on)
denote the index number of the frequency bin in the mth
time frame. Detection result at the mth time frame and the
Sfoe(myth frequency bin is obtained by the ED as:

Bt G P U] > i) (50
m,vp(m) L) vp(m) 0 (otherwise), (5b)

where (5a) and (5b) correspond to the decisions of occupied
spectrum (%) and vacant spectrum (Hp), respectively. The
occupied spectrum (%) indicates that PU signal exists in the
frequency bin partially or completely and vacant spectrum
(Hp) otherwise. In general, the detection performance is
summarized in two probabilities [22]: probability of detec-
tion Pp = Pr(Pu,vp(m) [ fopm)] > 1opmy|H1) and false alarm
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rate Pppy = Pr(Pm,vp(m)[fvp(m)] > ﬁvp(m)ﬂ‘{o), where Pr(x)
indicates the probability of event x. In this paper, the thresh-
old 7j () is set according to &2 - r and the selected segment
size in the mth time frame to satlsfy a certain target false
alarm rate, Ppa targer. The reader is referred to [19] for the
derivation of the threshold for Welch FFT based ED based
on CFAR criterion. Moreover, we can get Pp for Welch FFT
based ED in [17].

In the ASSS method based signal detection, the number
of frequency bins varies according to the selected segment
size. Since possible number of bins is always a power of
two, we can map the detection results with selected segment
size to detection results with the maximum segment size as

Do L1 = Do,y [ fonmy ) (6)
where
Afop(m) Afopm)
m < m + 1) —1. 7
A f o Jopm < 1 = A foman D, e+ @

Finally, DC estimation is performed for every super
frame and the DC at the f'th bin is given by

. 1
¥if1= 17 D) Dol 1. @®)
m=0

where M indicates the DC estimation period (equivalent to
length of median filter).

In this paper, we use mqy,-out-of-M model” to define
the true DC as W[ f] = mqy, [f1/M, where mqy, [ f] denotes
the number of | hypotheses in the fth frequency bin and
M denotes the number of time frames in one super frame.

3. Welch FFT Segment Size Design Criterion

Larger segment size Ny, can achieve high frequency res-
olution Af,, however it results in reduced signal detection
sensitivity due to small L, in (2) and vice versa. To set a
proper segment size, we define the evaluation criterion for
the design of the optimum segment size by

vopr = argmin |1 — WSDR(v)|, ©)]

U <Umax
s.t. RMSE(Y[f.]) < 6,

P FA = P FA, target

where optimum segment size is given by Nyeg yopr = 2707,
WSDR(v), RMSE(Y[f.]), and ¢ denote the WSDR, RMSE
in terms of DC estimation at the center frequency f.. for the
PU signal, and allowable RMSE for DC estimate, respec-
tively.

In the following sub-sections, the details of
RMSE(Y[f.]) and WSDR(v) are described. In addition,
the trade-off with WSDR(v) is shown.

In [17], maqy,-out-of-M model is denoted by m-out-of-M
model.
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3.1 RMSE in Terms of DC Estimation

The RMSE of DC estimation error in the m¢, -out-of-M
model is given by [17]

RMSE(Y[£.1) = \EICPf] - PI/.D)2) (10)

where E[-] denotes expectation, W[ f.] is the true DC, and

li’[fc] is the estimated DC. Based on [17], analysis of RMSE
is as follows

RMSE (¥[fc])

1
= {ﬁ [(1 =¥[f1) Pra (1 = Pra) + Y[ fclPp (1 = Pp)]

+[= (1= Pp) Wfel + P (1= WIfeD]?}2, (D)

Typically, Pra, tareer Should be set to a small value, such
as 0.01. Therefore, Pp should be high enough to satisfy
RMSE(Y[f.]) < 6 with small §. Since f. is set to the
center of the PU signal in frequency domain, the frequency
resolution is not considered in the RMSE which implies that
the RMSE can be improved by setting small segment size.

3.2 WSDR

The criterion in terms of WSDR in (9) indicates a vacant
spectrum detection capability in frequency and time do-
mains. In other words, the criterion considers the frequency
resolution. WSDR is defined by

NS €4g,Umax

5 *'(1 - E[YI/1D)
Zf seg,vmax ~ 1 — “P[f])

where the denominator and numerator indicate true WS and
estimated WS, respectively. In this metric, values closer to
one indicate more accurate detection performance. Note that
in (12) the effect of frequency resolution is included in the
estimated DC W[ f] as f is given by (7).

WSDR(v) = (12)

3.3 Trade-Off Regarding the Segment Size

Different cases are studied in Fig. 3 to determine effects of
segment size on RMSE(¥[f.]) and WSDR. Specifically,
they are (a) ideal case, (b) large segment size case, such as
vp =3, ¥m, i.e., Nyeg.up(m) = Nseg,3 = 2°, ¥Ym, and (c) small
segment size case, such as, vp = 2, ¥m, i.e., Nyeg op(m) =
Nyeg2 = 22, Vm. Note that each (a)—(c) in Fig. 3 is a special
case so that same segment size is assumed over all time
frames to confirm the trade-off even though in a real case the
WSDR in (12) is assumed different segment size.

In all cases, effects of false alarms are assumed negli-
gible, because Ppa targer is assumed to be sufficiently small.
We define observed area as an outermost square in Fig.3
where the vertical axis and the horizontal axis correspond to
frequency and time, respectively.
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Vinax =4, Vm

m] 0] 1[2]3]4]516]7]8[9)ireq.[ 0] 1]2[3[4]5] 6] 7] 8]9lireq  0[1]2]3]4[5] 6] 7] 8] ]frea.
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N I

I SN
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time time time
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(a) (v) (e)
D: Observed area E : ’(rarrueea\s{]?side dark area ) |:| iTrue signal area

: Signal miss detection : WS loss due to

low frequency resolution

Fig.3 Illustration of the trade-off relationship between RMSE(Y[f-])
and WSDR (v) as a function of v; (a) ideal case; (b) large segment size case
(vp = 3, VYm); (c) small segment size case (vp = 2, Ym), M = 10.

In the ideal case (Fig. 3(a)), maximum segment size is
assumed with Pp = 1 and no false alarms within the signal
area (dark area). Therefore, true WS and true signal area in
the observed area are perfectly recognized, and WSDR(v) =
1.

In practical cases ((b) and (c) in Fig. 3), the trade-off
between the detection performance and the frequency reso-
lution exists.

In the case of large segment size (Fig. 3(b)), miss de-
tections (diagonal line areas in the figure) may be caused by
insufficient averaging in Welch FFT. On the other hand, it has
high enough frequency resolution and it results in no WS loss
caused by the frequency resolution. Due to the miss detec-
tions, E[P[£1] < W[f]in (12) and it leads to WSDR(v) > 1.
In fact, larger WSDR(v), larger DC estimation error due to
the miss detections which is not good actually. However,
the amount exceeding one on WSDR can be controlled by ¢
which can control probability of miss detection with a given
false alarm rate.

Although the smaller segment size in Fig. 3(c) leads to
better detection performance due to more averaging of power
spectrum, it also leads to reduced frequency resolution. The
reduced frequency resolution leads to overestimation of the
occupied area, shown with dotted lines in Fig.3(c). The
dotted lines correspond to time-frequency areas detected as
occupied but in fact outside the actual signal bandwidth. Due
to overestimation, WSDR(v) < 1.

3.4 Analysis of Sub-Optimum Segment Size

An index number of sub-optimum segment size vsyg-opr iS
defined by

USUB-OPT = Maxv (13)
s.t. RMSE(Y[f.]) < ¢,
PEA = PEA target>

The solution of (13) means that the largest segment size
satisfying the constraint in terms of RMSE is selected. Se-
lecting the largest allowed segment size leads to the highest
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frequency resolution. However it does not consider the effect
of detection performance, i.e., the relation between Pp and
PEA targer On the WSDR. In other words, the largest allowed
segment size does not necessarily achieve the optimum solu-
tion in (9). We will compare the results of vsyg—opt and vopr
with numerical evaluation to show the validity of vsyp—_opT-

The sub-optimum segment size is equivalent to the max-
imum segment size which can get the probability of detection
so that it satisfies RMSE(W[ f.]) = ¢ (for given Pga target) ac-
cording to (11). The rationale of this is that the probability of
detection is sufficient to satisfy the RMSE constraint. Now,
based on (11) and RMSE(Y[f.]) = J, we get vsuB—opT
analytically as follows. Based on RMSE(¥Y[f.]) = 9, the
following quadratic equation

aPlz) +bPp+c=0, (14)
where

a=Y[f ] -
b= 2[<PFA,target + ﬁ) \P[fc]

= (1 + Peaturger) PIfe %] (15)
c = (17‘y[ﬁ'])PFA,targel(I*PFA,large()
M

2 o
+[PFA,target (] - lP[fc]) - lI‘[fc]] -0,

Two solutions for (14) are given by [1]

2a 2a
Vb2-4ac ) (16)

Pry = =2 — Vb2-dac
D1
2a

PD2 = % +
Since Pp; and Pp; are probability, both of them have
to be between [0, 1]. However, Ppy < 1 cannot be satisfied
by 62 > 0.
On the other hand, Pp; < 1 can be satisfied under the
following condition:

PFA,tar el(l - PFA,tar et)
2 g g
02 \/PFA,target + M . (17)

The condition implies that low probability of false alarm
is required to satisfy RMSE(W[f.]) =  under sufficiently
small 6. Moreover, Pp; > 0 can be satisfied by the following
condition:

1 2 1
(2 - M)PFA,targct + (2 + M)PFA,target
I+ PFA,target
2PFAtarget~ (18)

The condition (18) is not satisfied when DC is very small,
such as W[ f.] < 2x0.01.

In conclusion, we consider Pp; as a solution for (14)
when (17) and (18) are satisfied under small target false
alarm rate. The conditions (17) and (18) are derived in
Appendix.

Finally, vsyp—opr is given as

v

Yifel

Q

vsus-opT = [logs [2Ns/(Lsus-opt + D1], (19)
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Fig.4  The index number of sub-optimum segment size as a function of
SNR at different W[f] and 6.

where Lsug-opr denotes the sub-optimum number of seg-
ments and it corresponds to the minimum number of seg-
ments satisfying Pp > Pp;.

According to the fact that Lsyg—opr depends on Ppj,
the sub-optimum segment size can be selected based on real
DC Y[ f], SNR and Pra as we have confirmed in [1]. For se-
lecting the segment size properly, we consider the worst case
in terms of DC. In other words, if segment size is selected in
a way that the RMSE constraint is satisfied at W[ f] = 1 sub-
ject to (17), the selected segment size can satisfy the RMSE
constraint for any DC. Figure 4 shows the index number of
sub-optimum segment size vsyp-opr at different W[ f] and §
as a function of SNR. This figure shows that sub-optimum
segment size has a stepwise property due to the fact that
the number of v is integer. The RMSE characteristic for
sub-optimum segment size will be discussed in Sect. 5. Un-
fortunately, SNR is unavailable in typical spectrum measure-
ments, therefore it is difficult to select the segment size based
on (19). For this issue, we propose ASSS method which can
select a proper segment size without SNR information in the
next section.

4. Adaptive Segment Size Selection Method

In this section, at first we will show a relationship between
SNR, segment size and estimated noise floor level by the ten-
tative noise floor estimation with brief description of FCME
algorithm. In addition, we will show one aspect in the re-
lationship, i.e., sudden change of tentative noise floor levels
between adjacent segment sizes, which is exploited by the
ASSS method. After that, details of the ASSS method will
be described.

4.1 Relationship among SNR, Segment Size and Noise
Floor Estimate

In [15], [23], the FCME algorithm [14] is employed as the
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—¥— SNR=-3dB ]
- @ - SNR=0dB
1.8 SNR=5dB
Real noise power
1.6

Noise floor estimates
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Fig.5 The relationship between v and the tentative noise floor level,
SNR = -3, 0, 5 dB, the real noise power 0'% =1.

noise floor estimation method based on an iterative process.
It first sorts the magnitude-squared FFT sample values in an
ascending order. After that, it calculates the mean of the
power spectra using I smallest samples which are assumed
to be noise-only samples, denoted by clean samples. In
general, I = [0.1N7], where [-] is the ceiling function and
N is the number of frequency bins. By assuming that the
calculated mean is correct, the first threshold that attains the
target false alarm rate such as 0.01 with the calculated mean
is obtained based on the distribution of noise power samples,
which follows Chi-square distribution [24]. Obviously, the
threshold is more than the mean value and the clean samples
are updated by adding samples which have value lower than
the threshold. Then, the threshold is updated based on the
updated clean samples and the target false alarm rate. The
updating of clean samples continues as long as new samples
are added from the set of non-clean samples obtained with
the latest threshold. The noise floor is finally estimated as
the mean of the resulting final set of clean samples.

Figure 5 shows the average of estimated noise floor level
as a function of segment size for different SNR, i.e. 0dB,
3 dB, and 5 dB where the noise power is set to one. In the case
of large segment size, the FCME algorithm mistakes signal
plus noise samples for clean samples due to insufficient av-
eraging in the Welch FFT [25]. It leads to the overestimation
such as with v = 10 in Fig. 5.

On the other hand, if the segment size is small enough
the noise floor estimation error can be comparatively small
such as withov = 8 at SNR = 5dB, v = 6 at SNR = 0dB and
v = 5atSNR = -3 dB in Fig. 5. In addition, we can find this
segment size based on the maximum slope. For example,
the slope between v = 8 and v = 9 in SNR = 5dB is the
steepest towards a positive direction. The ASSS method
with a proper segment size has to be nearby the segment size
with the largest slope.
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4.2 ASSS Method

The tentative noise floor estimation is performed with differ-
ent segment sizes Nyeg, ,. This provides V = vmax — Upin + 1
tentative noise floor levels, [6’% o 1)+ 7% 5 6'5, o )] The

increment of the tentative noise floor levels between adjacent
segment sizes with a positive direction is given by

AGZ (m) =02, (m) =62 ,(m). (20)

Then, the index number of segment size maximizing the
difference is given by

vMax (m) = argmax AG2 , (m). (1)
v

The tentative noise floor level with the index number
vmax (m) can achieve relatively accurate estimation perfor-
mance. However, it does not necessarily satisfy the RMSE
constraint. Therefore, we employ an adjustable integer pa-
rameter B to achieve the RMSE constraint and the index
number of segment size selected by the ASSS method is

vp(m) = vmax(m) + B. (22)

Thus, the segment size selected by the ASSS method is
Nseg,op(m) = 2wmax(mM)+B T ater numerical evaluations, we
will show the effect of the 8 and set proper S experimentally.

5. Numerical Evaluations

In this section, we show the validity of our ASSS method
based on computer simulations. We assume the mea-
surement bandwidth (equivalent to complex sampling rate)
Wy = fs = 44MHz and PU signal bandwidth Wg =
22 MHz. This signal bandwidth corresponds to the RF chan-
nel bandwidth in IEEE 802.11g WLAN. In this case, six
WLAN channels are contained exactly within measurement
bandwidth W), = 44 MHz, but for the sake of clarity we
have assumed only one WLAN channel with Wg = 22 MHz
is used.

In addition, the durations of a packet and a time gap
between string of two packets vary from several tens of mi-
croseconds to several milliseconds. Accordingly, we set the
time frame size Ny = 1024 as in [20], [21] where the time
resolution At = N/ f corresponds to Ar = 1024 /44 x 100 ~
23 usec, which is shorter than the time duration of distributed
coordination function inter frame space (DIFS) with 28 usec.
Then, N with 1024 is equal to the index number of maxi-
mum segment Size vpax = 10.

Moreover, we set DC estimation period M to 100 as
the RMSE constraint in terms of DC estimate with 6 = 0.05
is satisfied completely by this value. Common simulation
parameters are summarized in Table 1.

At first, we verify the effect of the overlap ratio p in
the Welch FFT and set the proper p through computer sim-
ulation. Figure 6 shows the probability of detection as a
function of p with different values of SNR. For each SNR,
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Table.1  Simulation parameters.

Parameter name Parameter

Modulation mode | Quadrature phase shift keying

Time frame size N 210
v {Umin =3,4,5,6,
7,8,9, vmax = 10}
M 100
O'ZZ 1
SNR [dB] [-3 10]
Window type Hamming window
9 0.05
PEA, target 0.01
Y[fl, f € H 0.5

Probability of detection

07} ]
0.67 — SNR=-3dB]|
- - =SNR=0dB
SNR=6dB
0.5 1 1 1 n

02 03 04 05 06 07 08 09
Overlap ratio

Fig.6  Probability of detection as a function of p at different SNR.

the applied segment size is the optimum segment size, i.e.,
Nyey = 2%, 25, 28 for SNR = -3, 0, 6 dB, respectively.

The result in Fig. 6 indicates that p = 0.5 is proper for
any case because the probability of detection at p = 0.5
almost attains maximum probability. For this reason, we use
p = 0.5 in subsequent computer simulations.

Secondly, we verify the effect of the adjustable integer
parameter 8 and set the proper g through computer simula-
tion. Figure 7 shows RMSE(WY[f.]) as a function of SNR
with different values of 8. It can be seen that S gives an
almost flat property against SNR. This means one proper 8
suffices to satisfy the given allowable DC estimation error
0. In subsequent computer simulations, we set § = —1 as it
satisfies the condition (17).

Finally, we verify the property of RMSE in terms of
DC estimate and WSDR. Figure 8 shows RMSE(Y[f.]) asa
function of SNR to confirm whether the RMSE constraint is
satisfied. In Fig. 9, WSDR(v) as a function of SNR is shown
to confirm the ability to find WS. In the results of Figs. 8 and
9, five methods are evaluated. The optimum result based on
(9) represents upper bound performance in Fig. 9.
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Fig.8 RMSE(¥[f.]) against SNR.

The sub-optimum result is obtained based on (19) and
both optimum and sub-optimum, SNR information is as-
sumed to be known. On the other hand, in the result of
ASSS method, SNR information is not used. In results of
v =3and v =7, segment sizes Nyey, = 23 or Nsegw = 27
are used during whole observation, respectively.

In the cases of fixed segment size, Nyegp = 23 and
Nyeg,v = 27, we can confirm the trade-off. In low SNR, such
as SNR < 2 dB of Fig.8, v = 7 is too large to satisfy the
constraint of RMSE(W[f.]) < 0.05. On the other hand, in
the case of v = 3 the RMSE constraint can be satisfied in any
SNR. However, Fig.9 reveals that WSDR(v) with v = 3 is
less than 0.9 in high SNR region such as SNR < 4 dB. This
indicates that WS cannot be found properly.

In Fig. 8, the optimum one, sub-optimum one and the
result of ASSS method can always satisfy the RMSE con-
straint. In the sub-optimum method, the segment size cor-
responds to the maximum one while it satisfies the RMSE
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Fig.9 WSDR(v) against SNR.

constraint. Therefore, RMSE(¥Y[f.]) of the sub-optimum
method is always the closest to ¢.

Moreover, we can see that optimum method and sub-
optimum method have a bumpy property. This phenomenon
is related to the result in Fig. 4 where v is an integer. In the
region where 2 < SNR < 4 in dB, v = 7 is the sub-optimum
but in the case SNR = 5 dB, now v = 8 is the sub-optimum.
In principle, higher SNR leads to smaller RMSE and this can
be confirmed in the region 2 < SNR < 4 in dB. On the other
hand, in SNR = 5 dB, v = 8 is used and the larger segment
size leads to larger RMSE while the constraint is satisfied.
In Fig.9, we can confirm that WSDR(v) of the optimum
method is always the closest to one. On the other hand, the
sub-optimum and ASSS method are also very close to one
for all SNR. These results verify the validity of our proposed
methods.

6. Conclusion

In this paper, we investigated Welch FFT based energy de-
tection for spectrum awareness system. In Welch FFT based
ED, time resolution, frequency resolution and spectrum us-
age detection sensitivity determine WS detection perfor-
mance in the time and frequency domains. We focused on
the trade-off between the detection sensitivity and achiev-
able frequency resolution regarding the segment size used in
Welch FFT while high enough time resolution is achieved.

We have formulated the optimum segment size design
criterion regarding WSDR with the constraint of RMSE. Due
to the difficulty to derive the optimum segment size analyti-
cally, we have also formulated the sub-optimum segment size
which is obtained analytically. However, the sub-optimum
segment size depends on the SNR which is an unknown
parameter practically.

For this issue, we proposed the ASSS method which
can select proper segment size without SNR information.
Extensive numerical evaluations showed the validity of the
proposed methods.
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Appendix: Derivation of the Condition That 0 < Pp; <
1

In this appendix, we will show the condition that 0 < Pp; <
lat0 < Y[f.]< 1.

At first, we will prove that the condition (17) satisfies
Pp; < 1. The condition Pp; < 1 is given by (16) as

b - Vb2 — 4ac
2a ~ 2a
where a, b and c are given by (15). Finally, (A- 1) is given
as the following inequality

1+ (A1)

—4a(a+b+c) > 0. (A-2)

Then, a is always larger than or equal to zero because a =
Y[ fI(PLfe] - ﬁ) and 0 < P[f.] < ﬁ is not defined for
maqy,-out-o f-M Model. Therefore, (A-2) is satisfied when
a+b+c<0.

On the other hand, (a + b + ¢) becomes a quadratic
equation with respect to W[ f] as

a+b+c

2 2
= PFAtarget\P[fC]

1 5 1,
+[(ﬁ - 2)PFA,larget - MPFAlMget Y[ fe]

P FA,target(1 - P FA,target)
+ +

2 .
m 82 (A-3)

2
PFA

Jtarget
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(a + b + ¢) is monotonic and decreasing at 0 < WY[f.] < 1
because (a+b+c) is a convex function with respect to Y[ f]
and the axis W[ f.]axis takes W[ f] > 1 as follows,

1-P FA, target

b g xis = 1+ .
[fc]a is 2MPFA,ta.rget

(A-4)

From the above results, if a + b + ¢ < 0 is satisfied at
Y[f:]1=0,a+b+c < 0isalwayssatisfiedat0 < Y[f.] < 1.
Therefore, the condition that satisfies Pp; < 1 is given as

(A-5) by substituting Y[ f.] = 0 for (A- 3),

Pra target (1 — PEA target)
it m e + Piptarger —0° 0. (A-5)

By solving (A- 5) with respect to ¢, the obtained condition is
given as

PFA,tar el(l - PFA,tar et)
2 & g
5> \/ PE target * m : (A-6)

This condition is logical because the estimated DC is always
overestimated as much as Pra_target-
Next, we will prove that the condition (18) satisfies
Pp;1 > 0 under the condition (17) or (A- 6) approximately.
The condition Pp; > 0 is given by (16) and the fact that
a>0as

c>0, (A7)

where c is given by (15). Then, by substituting the condition
(A-6) into ¢ in ¢, we obtain the following inequality,

¢ < (1 + Peaarge) LS
- [(2 - %)PIEA,target + (2 + %)PFA,target]\P[ch
(A-8)

If we set allowable DC estimation error ¢ and target
false alarm rate Ppa targer that hold the equation for (A-6)
subject to Pra target << 1 and Ppa targer << M, the area of DC
to be ¢ > 0 is approximately given as follows,

(2 B %)P%Atarget * (2 + %)PFAﬂtarget

1+P FA, target

v

Y[f.] A-9)

Q

2P FA, target -

From the above condition, we see that Pp; > 0 with high
probability because we set small enough probability of false
alarm according to (A- 6).
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