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Abstract—Cognitive radio (CR) technology is a viable solution
for assisting secondary users to share the licensed radio spectrum
of primary users. Cooperative spectrum sensing (CSS) enhances
the accuracy of spectrum sensing in a CR network. However,
the effectiveness of CSS can be compromised by malicious users
(MUs) who intentionally send false sensing information to the
fusion center. This letter focuses on enhancing the CSS perfor-
mance and detecting the MUs. We propose a machine learning
technique to identify and classify MUs in a CR network using
the Principal Component Analysis algorithm. The performance
of the proposed algorithm in detecting MUs and enhancing CSS
performance is validated through simulation experiments.

Index Terms—Cooperative Spectrum Sensing, Cognitive Radio
Network, Byzantine attack, Machine Learning, Principal Com-
ponent Analysis.

I. INTRODUCTION

Wireless network technology has evolved significantly, but

more spectrum resources are needed to meet future wireless

communication systems’ high-speed and reliable requirements.

To solve this issue, a cognitive radio network (CRN) is

introduced, allowing cooperative secondary users (CSUs) to

access licensed bands intelligently based on the PU’s current

state (occupied or idle). This technique, known as spectrum

sensing, is critical for CRNs to enhance spectrum utilization

efficiency while eliminating interference. However, decisions

on PU’s actual state are sensitive to channel impairments, such

as shadowing and multi-path fading.

Cooperative spectrum sensing (CSS) is a solution to this

problem, which has become a significant technology for

CRNs, showing high tractability and robustness. It has been

recommended in the IEEE 802.22 standard and can be im-

plemented in a centralized approach [1]. In centralized CSS,

the fusion center (FC) receives local sensing observations

periodically and then implements a specific combination rule

to make the final judgment. In CSS, multiple CSUs share their

sensing results with the FC for decision-making. The results

shared with the FC can be binary or reliability metrics, such

as the signal-to-noise (SNR) ratio or the energy detector. In

CSS, hard combining involves CSUs making binary decisions

(1 or 0) about PU signal presence in their local bands. These

decisions are sent to the FC, which combines them using rules

like AND, OR, or Majority Voting to determine overall PU

presence or absence in the spectrum. In soft combining, CSUs

share their local decisions as reliability metrics, often using

SNR or energy detector values. The FC then combines these

metrics from all CSUs, typically through weighted averages

or maximum selection rules, to make a final decision.

Now consider the Byzantine attack, also known as spectrum

sensing data falsification (SSDF). The Byzantine attack is a

malicious attack in CSS involving one or more malicious users

(MUs) intentionally providing false sensing results to the FC.

The objective of this attack is to deceive the FC, which can

result in an incorrect decision on the presence or absence of the

PU’s signal. Since the FC relies on the correctness and honesty

of the sensing results from all CSUs, a Byzantine attack can

devastate CSS. Even a few MUs providing false information

can significantly affect the overall detection performance.

Authors in [2] present block outlier identification methods

based on the Tietjen-Moore (TM) test. These methods are

intended to identify SSDF attacks initiated by MUs during

CSS. Within this context, the paper explores the difficulties

in calculating the number of MUs in this scenario. Authors

in [3] introduce an algorithm that involves the calculation

of the variance in the received sensing signal. Suppose the

computed variance surpasses a predefined attack threshold.

In that case, the FC does not incorporate this potentially

manipulated value into the data fusion process. The isolation

forest-based anomaly detection (IFAD) algorithm presented in

[4] shows potential for detecting MUs in the CRN. However,

when the likelihood of MUs in the CRN approaches 40 %,

its performance is affected. In [5], the authors present an

alternative method known as the modified outlier removal

spectrum sensing (MORSS) approach. The MORSS strategy

relies on quartile-based criteria to systematically filter out

outliers from the data before initiating the fusion process.

Authors in [6] introduce a Gaussian mixture model based

anomaly detection (GMMAD) algorithm for defense against

Byzantine attack, where a weighted sum based CSS algorithm

is proposed to improve the detection performance.

The primary contributions of this letter are as follows:

• We propose a principal component analysis (PCA)-based

MU detection algorithm. This algorithm detects MUs

even when the probability of attack is minimal, irrespec-

tive of the number of MUs is small or large in the CRN.

• Furthermore, we also propose a PCA-based weighted

sum algorithm for CSS. The proposed algorithm im-

proves CSS performance, particularly in the presence

of Byzantine attacks. The results section contains plots

illustrating the algorithm’s effectiveness in improving

channel detection probability.



II. SYSTEM MODEL

We consider a CRN in which M CSUs cooperatively sense

the PU’s signal using a centralized CSS approach. The nth of

the received signal at the ith CSU can be expressed as

yi(n) =

{
wi(n), H0

hi(n)si(n) + wi(n), H1,
(1)

where i = 1, 2, . . . ,M , hi(n) represents the channel gain

between PU and ith CSU, and si(n) and wi(n) are the nth

sample of the PU’s received signal and thermal noise respec-

tively, with n = 1, 2, . . . , N . The signal and noise samples,

denoted as si(n) ∼ CN (0, σ2

si
) and wi(n) ∼ CN (0, σ2

wi
),

are assumed to be independent and identically distributed.

Here, CN (µx, σ
2

x) represents the circularly symmetric com-

plex Gaussian distribution with mean µx and variance σ2

x.

Each CSU conducts energy detection over a time period

denoted as T . When the bandwidth is represented as ω
the energy detector acquires ωT base-band complex signal

samples within this time frame. We consider that the received

power of the PU is fixed to υ =
⌊ωT⌋∑
n=1

E[|si(n)|
2]/T and noise

spectral density is represented by γ = E[|wi(n)|
2]. We have

adopted this system model from [7], [8]. The energy detection

mechanism employed by the ith CSU estimates the energy

value normalized by the noise spectral density. The computed

energy value Ei at the ith CSU is obtained using the received

signal samples as

Ei =
2

γ

⌊ωT⌋∑

n=1

|yi(n)|
2. (2)

Each CSU reports its estimated energy value to the FC at the

jth sensing instance, where the FC compiles the value received

from all the CSUs into an energy vector, defined as

E
j = [E1, E2, . . . , EM ]

′

, (3)

where j = 1, 2, . . . , L, [·]
′

represents the transpose operator

and L represents the number of sensing instances.

The FC records the reported energy vectors for all sensing

instances to form a matrix E as

E = [E1,E2, . . . ,EL]. (4)

Since there are M CSUs and L sensing instances, the

dimension of matrix E is M × L.

We assume that the PU and CSUs are stationary. The power

attenuation from ith CSU to the PU is computed as

Ai = ρ
(
‖ cPU − cCSU

i ‖
)
· ϕi · ϑi. (5)

Here, ‖ · ‖ represents the Euclidean distance, ρ(d) = d−α

stands for the path-loss factor concerning the relative distance

d and the path-loss exponent α. At the same time, ϕi denotes

the shadow fading, and ϑi denotes multi-path fading compo-

nents. cPU and cCSU
i represent the coordinate of PU and CSU,

respectively.

A. Byzantine Attack Model

The CRN is susceptible to various sensing threats owing

to its software-defined radio and wireless channel integrity.

Among these threats is the Byzantine attack, where the MU

reports false information to the FC to manipulate global

decisions. The attacker manipulates the sensing decision with

a varying probability of disrupting the CSU and PU perfor-

mance. It is important to note that the smart attacker does not

consistently report false information to the FC. The general

probabilistic attack can be formulated as
{
P (O

′

MU = OMU +∆|OMU < η) = α0

P (O
′

MU = OMU −∆|OMU > η) = α1.
(6)

where OMU represents the observations made by the malicious

user, ∆ is the attack strength and η signifies the attack

threshold. O
′

MU denotes the manipulated sensing outcomes,

with α0 and α1 representing the probability of a false alarm

attack and a miss detection attack, respectively.

III. PROPOSED ALGORITHM

PCA is an unsupervised machine learning method for fea-

ture extraction and dimensionality reduction. PCA also serves

for anomaly detection. It accomplishes this by identifying es-

sential features, known as principal components (PCs), which

enable the reduction of data dimensionality. By projecting

data into a more compact representation, PCA minimizes

information loss. Moreover, it is possible to efficiently recon-

Algorithm 1 PCA based MU Detection Algorithm

Let an energy matrix E contains reported energy values from

all the CSUs to form a matrix of shape M × L.

• Step 1: Compute the covariance matrix of E as Ecov =
[ET × E]/L.

• Step 2: Compute eigenvalues and eigenvectors of Ecov

matrix by solving Ecov ·X = λ ·X , where λ represents

the eigenvalue and X is the eigenvector.

• Step 3: Select K principal components, and form a

matrix P with dimensions L×K.

• Step 4: Perform dimensionality reduction of energy ma-

trix E as Ẽ = E × P .

• Step 5: Reconstruct estimate Ê of E using Ẽ as Ê =
Ẽ × PT .

• Step 6: Compute the reconstruct error for the ith CSU as

ei = 1

L

L∑
i=1

(
|Ê(i, :)− E(i, :)|

)
, where E(i, :) represents

the ith row of matrix E.

• Step 7: Classify an ith CSU as a MU if error ei exceeds a

specified threshold, denoted as λotsu. The value of λotsu

is determined by applying the Otsu algorithm, as outlined

in algorithm 2.

struct the original data from its low-dimensional representation

while retaining the critical characteristics of the original data.

However, this reconstruction is lossy, and the degree of loss

depends on the number of PCs selected during dimensionality



reduction [9]. PCA-based anomaly detection employs the

reconstruction error as a tool to identify anomalies. Anomalous

data typically showcase higher reconstruction errors compared

to non-anomalous data, thus data with elevated reconstruction

errors can be identified as anomalous. This study utilizes

PCA for MUs detection in CRNs, distinguishing between

HCSUs and MUs based on data reconstruction errors. The

detailed steps of the proposed algorithm can be found in

Algorithm 1. The energy matrix E given in Eq. (4) is input

to the algorithm. The algorithm first computes the covariance

matrix Ecov of matrix E as given in step 1, and determines

its eigenvalues and eigenvectors in step 2. We then select

K eigenvectors corresponding to the K largest eigenvalues,

referred to as the PCs, and stack them into matrix form to

get matrix P in step 3. As given in step 4, using matrix P ,

perform dimensionality reduction on matrix E to obtain lower

dimension representation Ẽ. Now, using Ẽ, reconstruct the

estimate of original matrix E denoted as Ê as given in step

5. Next, we compute reconstruction error ei of every row of

matrix E as given in step 6. Since the ith row of matrix E
records the data received from the ith CSU, the error computed

will represent error for ith CSU. Finally, in step 7, we compare

reconstruction errors of all CSUs with a threshold λotsu. If the

error is greater than the threshold, they are declared a MUs.

Algorithm 2 Otsu Thresholding to compute λotsu

Input: Let a vector e = [e1, e2, . . . , eM ] contain the number

of MUs in each CSU. Initially take i = 1.

• Step 1: Choose ei as threshold and split the vector e in

lower (el) and upper (eu) sets as

el = {ej : ∀ej < ei}

eu = {ej : ∀ej ≥ ei} ,

for j = 1, 2, . . . ,M .

• Step 2: Find: Nall number of elements in e, Nl number

of elements in el and Nu number of elements in eu.

• Step 3: Compute weights Wl and Wu as: Wl = Nl

Nall

,

Wu = Nu

Nall

• Step 4: Compute variances σ2

l and σ2

u of el and eu
respectively.

• Step 5: Find the variance for the threshold ei using: σ2

ei
=

Wlσ
2

l +Wuσ
2

u.
• Step 6: Increase i by 1 and repeat steps 1 to 5 for i =

1, 2, . . . ,M .

• Step 7: The threshold with least variance (σ2

ei
) is selected

as λotsu.

We utilize Otsu’s thresholding algorithm to determine the

optimal threshold, denoted as λotsu [10]. Otsu’s algorithm

is widely employed for automatic image thresholding, seg-

menting images based on pixel intensity into distinct regions.

It aims to find an optimal threshold value that minimizes

intra-class variance of pixel intensities, maximizing separation

between object and background classes. This is particularly

effective for bimodal pixel intensity distributions, indicat-

ing clear distinctions between foreground and background.

In Algorithm 1, our proposed approach involves a similar

scenario with a bimodal distribution, where MUs’ and HC-

SUs’ reconstruction errors form distinct groups. The steps

for Otsu’s algorithm are outlined in Algorithm 2, applied to

errors obtained for each CSU to derive the threshold. In the

CSS context, Otsu’s algorithm analyzes reconstructed errors,

categorizing them into HCSUs and MUs by minimizing intra-

class variance between these two classes.

Finally, errors obtained in Algorithm 1 are used to determine

weights in the weighted sum-based CSS algorithm outlined

in Algorithm 3. The algorithm assigns different weights to

FC-received data based on Eq. (7) and computes the decision

statistic as given in Step 2. The decision statistic D is then

compared with the threshold Λ to make the final decision. By

assigning lower weights to MUs due to higher reconstruction

errors, the algorithm doesn’t eliminate MUs but gives less

importance to their data, improving overall performance.

Algorithm 3 Weighted Sum based CSS Algorithm

Input: Let a vector e = [e1, e2, . . . , eM ] contain the recon-

structed error of each CSU.

• Step 1: Compute weights for each CSU as

Wi = 1−

(
ei − µ

σe

)
, (7)

where σe and µ represent the standard deviation and mean

of vector e, respectively.

• Step 2: Using the calculated weights in step 1, derive the

final decision statistic D at the FC as D =
∑M

i=1
Wi×Ei.

• Step 3: The FC compares D with the global decision

threshold Λ and if D < Λ, the PU channel is declared as

free otherwise it is declared as occupied.

IV. RESULTS ANALYSIS

In this letter, we adopt a scenario where CSUs participating

in CSS are positioned in a 5-by-5 grid topology, totaling

M = 25 CSUs, within a 4000m×4000m area, as depicted in

Fig. 1. Noteworthy simulation parameters are set as follows:

the bandwidth (ω) is 5 MHz, the sensing duration (t) is

100 µs, the noise spectral density (γ) is −174 dBm/Hz, the

path-loss exponent α is 4, and PC is 1. We assume that

shadow fading and multi-path fading components are fixed,

with ϕi = 1 and ϑi = 1, respectively. The transmitted

power of the PU is 200 mW . Furthermore, we consider single

PUs with fixed coordinates at (500m, 500m), the probability

of a PU being active is set at 0.5 and 10000 Monte Carlo

simulations are run. The proposed algorithms are executed on

a 64-bit computer equipped with an Intel Core i3 processor

and 12 GB RAM using MATLAB 2022a. We initially explore

an application of the proposed algorithm 1 to detect MUs in

the CRN. Fig. 2 illustrates various CSUs’ Error (e) values.

In this simulation, we consider α0 = α1 = 0.1 at ∆ = 80,

and the CSU1 to CSU5 are intentionally introduced as MU

into the CRN. Notably, the error associated with these MUs
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Fig. 1: The CSU’s position in the CRN.
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Fig. 2: Plot for malicious users detection in the CRN.

is considerably higher than other HCSUs. As we extend the

number of MUs within the CRN to 15 as CSU1 to CSU10

and CSU16 to CSU20, the proposed algorithm 1 continues to

detect them effectively. This is evident in Fig. 2, where the

CSU errors exceed the threshold, signifying the presence and

detection of MUs.

Fig. 3 shows the MU detection accuracy of the proposed

algorithm 1 compared to existing algorithms TM Test [2] and

IFAD [4] at different delta (∆) values. The TM test algorithm

makes decisions based on single sensing instances, making it

reasonable to evaluate performance under the always-attack

scenario (α0 = α1 = 1). Additionally, the TM test relies

on prior knowledge of the number of MUs obtained using

a clustering-based algorithm. The IFAD algorithm requires

higher delta value to detect MUs at low attack probability.

The proposed algorithm do not require any prior information

and can detect MUs blindly. Even with small ∆ values, the

proposed algorithm demonstrates high accuracy. To ensure

comparability, higher ∆ values have been chosen for the TM

test and IFAD algorithms, and yet they lag behind the proposed

algorithm in performance. Remarkably, the proposed algorithm

1 achieves 99.96% accuracy even when the probability of

attack is notably low at α0 = α1 = 0.1 and ∆ = 80. In

contrast, IFAD’s accuracy is only 11.16% at ∆ = 90 with

attack probabilities α0 = α1 = 0.1. Notably, the MU detection

accuracy of the proposed algorithm improves significantly

even with higher attack probabilities. For α0 = α1 = 0.3, the

MU detection accuracy reaches 100% at ∆ = 45, while the

IFDA algorithm accuracy is 79.43% at ∆ = 95. Another sce-

nario is shown in Fig. 4; with MU=15 as CSU1 to CSU10 and

CSU16 to CSU20 in the CRN, the performance of the proposed

algorithm remains relatively stable. For example, at ∆ = 50,

the MU detection accuracy is 98.43%, and for MU=5 with the
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Fig. 3: Plot for accuracy by varying delta (∆) at different

attacking probabilities for M = 25 including MU = 5.
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Fig. 4: Plot for accuracy by varying delta (∆) at different

attacking probabilities for M = 25 including MU = 15.

same delta value, the accuracy is 98.13% at α0 = α1 = 0.2.

The approximate complexities of different algorithms are

O(M ·L2+K ·L2) for PCA, O (L ·Q ·M log(M)) for IFAD,

and O
(
M2 + I · k ·M

)
for TM test, where Q, I , and k are

the depth of the tree, number of iterations, and number of

clusters, respectively. Despite PCA having higher complexity,

the proposed algorithm outperforms significantly. Note that,

innovative techniques can be applied to further reduce the

complexity of PCA algorithm.

We evaluate the MU detection accuracy of the proposed

algorithm 1 with varying PU locations in the CRN, considering

CSU1 to CSU5 as MUs. Two scenarios are considered: one

with the PU at location 1 (500, 500) and another at location

2 (1500,−1500). When the PU is at location 1, the detection

accuracy is 99.96% for ∆ = 55 and α0 = α1 = 0.2. In

contrast, with the PU at location 2, the detection accuracy is

93.89% which is 6.07% lower than the case when the PU

is at location 1, as shown in Fig. 5. In the first scenario,

with the PU nearby, MUs receive higher energy, leading to

a higher miss detection attacks. In the second scenario, where

the PU is farther from MUs, they receive less energy, resulting

in fewer attacks. Consequently, MUs may exhibit behaviors

resembling HCSUs, making it challenging to distinguish them

from HCSUs accurately. Note that, even when MUs are

positioned far from the PU, they still have the potential to

launch attacks, impacting the FC’s global decision. Existing

algorithms in TM Test [2] and IFAD [4] exhibit significantly

poorer detection accuracy in these scenarios.

The impact of MUs on the CSS performance is demon-

strated in Fig. 6. The performance is evaluated using the
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Fig. 5: Plot for accuracy by varying delta (∆) for different

location of the PU from M = 25 CSUs.

TABLE I: Comparison of the proposed algorithm with the

existing algorithms.

Pd values at a fixed Pf of 0.1.

All
HCSU

With
MUs

Without
MUs

Proposed MORSS Algorithm
in [3]

GMMAD

0.8226 0.4516 0.6788 0.7753 0.6629 0.5734 0.7124

receiver operating characteristic (ROC) curve, which is a plot

of probability of false alarm, i.e., Pf = P (D > Λ|H0),
versus the probability of detection, i.e., Pd = P (D > Λ|H1).
The presence of MUs substantially degrades detection perfor-

mance. For instance, at the false alarm probability Pf = 0.1,

CSS with all HCSU yields the probability of detection Pd

is 0.8226, while CSS with MU=15 results in Pd = 0.4516,

representing a 45.10% reduction in detection probability due to

the MU’s attack. The performance degradation would be even

more significant with higher attack probabilities. The detection

using proposed algorithm 1 and exclusion of MUs from the

decision-making process leads to improved performance. In

Fig. 6, detection probability increases to 0.6788 after MUs

are removed, signifying performance enhancement. To further

improve CSS performance, the proposed algorithm 3 assigns

weights to different CSUs based on the reconstruction error

using Eq. (7), and a weighted sum is calculated at the FC to

determine the decision statistic as outlined in Step 2 of algo-

rithm 3. The Pd vs. Pf plot in Fig. 6 reveals that the weighted

sum algorithm enhances CSS detection performance and mit-

igates the impact of MUs. Now we evaluate performance of

the proposed algorithm 3 against three existing algorithms,

specifically algorithm in [3], MORSS [5] and GMMAD [6].

At Pf = 0.1, the proposed algorithm significantly boosts the

Pd by 26.04% compared to algorithm in [3], 14.49% compared

to algorithm in [5], and 8.11% compared to algorithm in

[6], as illustrated in Table I and Fig. 6. This improvement

demonstrates the proposed algorithm’s superiority. It is worth

noting that the performance of algorithm in [3] is hindered

by its method of eliminating MUs based on their variance

exceeding the attack value. In contrast, MORSS removes MUs

with data values beyond the interquartile range, resulting in

relatively poor performance. In [6], a homogeneous scenario

is considered where all the CSUs experience same SNRs,

whereas in this paper all the CSUs receive different power

based on their distance from the PU representing a hetero-

geneous scenario. The GMMAD algorithm performs worse
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Fig. 6: Plot for Pd vs. Pf with M = 25, MU = 15, α0 =
α1 = 0.2, ∆ = 80, and PU’s transmission power 800 mW.

because it is proposed considering homogeneous scenario.

These findings underscore the effectiveness of the proposed

algorithm in enhancing detection accuracy, especially when

compared to existing approaches.

V. CONCLUSION

This letter proposes a PCA-based MU detection and

weighted algorithm for CSS. A comparative analysis is con-

ducted between the proposed and existing algorithms, reveal-

ing that the proposed MU detection algorithm surpasses its

counterparts. The investigation delves into the impact of vari-

ous parameters on the algorithm’s performance, demonstrating

a noteworthy enhancement in detection accuracy. Notably, the

proposed algorithm effectively identifies MUs in the CRN even

when the probability of attack is exceedingly low. Addition-

ally, the proposed weighted algorithm significantly enhances

CSS detection performance against Byzantine attacks.
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