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Iterative Pyramidal Filtering Method for Improved
Signal Recognition in Radio Spectrograms
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Abstract—Spectrograms are an essential time-frequency rep-
resentation tool that has been used to address several important
problems in wireless communication systems. However, most
existing techniques based on the processing of radio spectrograms
require a relatively high Signal-to-Noise Ratio (SNR), performing
poorly at low/moderate SNR. In this context, this paper proposes
an iterative radio spectrogram filtering method based on a novel
pyramidal convolution kernel. The obtained results demonstrate
that the proposed technique improves the recognisability of signal
components in radio spectrograms. Two illustrative examples are
provided to show how this method helps to extend noticeably the
SNR operational range of techniques for wireless communications
based on the processing of radio spectrograms.

Index Terms—Time-frequency signal representations, radio
spectrogram, spectrum analysis, spectrum awareness.

I. INTRODUCTION

RADIO spectrograms describe the temporal evolution of
the power spectral density of wireless communication

signals and provide essential information such as the received
signal strength, carrier frequency, occupied bandwidth, spec-
tral mask and transmission pattern. Spectrograms have been
used to address various problems in wireless communications
such as automatic blind modulation classification (based on
heuristic algorithms [1]–[3] and convolutional neural networks
[4]–[6]), radio technology identification [7], extraction of
frequency hopping signal parameters [8], [9], spectrum sensing
[10], detection of radar signals [11] and characterisation of the
Signal-to-Noise Ratio (SNR) and Doppler shift [12].

Most techniques based on the processing of radio spectro-
grams implicitly assume that the signal components have a
sufficiently high SNR such that they can be clearly differen-
tiated from the background noise, determined by the receiver
noise floor. However, their performance degrades significantly
in the low SNR regime. To address this practical limitation,
this work proposes a relatively simple iterative filtering method
that enhances the recognisability of signal components in noisy
radio spectrograms. The proposed method applies multiple
times the same type of filter to the radio spectrogram using
an increasing filter size in each iteration and then adds each
filtered contribution with an adequate weighting factor. The
overall effect of this process is an improved response and
signal detectability at low SNR without sacrificing the signal
detection accuracy at high SNR. In addition to classical filters
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such as the Gaussian and box blur filters, a new filter type with
a pyramidal convolution kernel is proposed, which provides
a better trade-off between accuracy and computational cost
in practical implementations. The immediate benefit of the
proposed method is an enhanced recognisability of signal
components that extends the SNR range of operation of
techniques based on the processing of radio spectrograms.

II. SYSTEM MODEL AND PROBLEM FORMULATION

A radio spectrogram can be mathematically represented as
a matrix P ∈ RM×N of M×N power values. The convention
adopted in this work is that the vertical and horizontal axes of
P are associated with time and frequency, respectively. Thus,
each element of P, denoted by P [m,n] ∈ R (m = 1, . . . ,M
and n = 1, . . . , N ), is the power level measured at the mth
time instant and nth frequency point, the vertical size M is
the number of time samples and the horizontal size N is the
number of frequency bins over the target frequency span.

In order to decide on the presence of signal components
in the spectrogram, an energy decision threshold λ ∈ R is
employed, which can be calculated based on different methods
[13]. This work assumes that λ is set based on the receiver
noise floor [14] to achieve a constant false alarm rate [15]. The
threshold is used to convert the matrix of continuous powers
P at the receiver into a binary matrix B ∈ BM×N (with B =
{0, 1}) where each element B[m,n] ∈ B is calculated as:

B[m,n] =

{
0, P [m,n] < λ (1a)
1, P [m,n] ≥ λ (1b)

indicating where each spectrogram element is believed to con-
tain a signal component (B[m,n] = 1) or not (B[m,n] = 0).

Let T ∈ BM×N be a matrix whose elements T [m,n] con-
tain the true states of the elements B[m,n] of matrix B at the
receiver (see Fig. 1). Some of the elements of B will unavoid-
ably be incorrect due to errors in the signal transmission and
detection process, which can be characterised in terms of the
false alarm probability Pfa = P (B[m,n] = 1|T [m,n] = 0)
and detection probability Pd = P (B[m,n] = 1|T [m,n] = 1).
B can be seen as a degraded version of T where random errors
are introduced with probabilities Pfa and 1− Pd. In an ideal
scenario of infinite (sufficiently high) SNR it is possible to set
a threshold λ such that Pfa = 0 and Pd = 1 so that B = T.
However, in many practical scenarios B 6= T in general.

The target of this work is to develop a method to process a
binary spectrogram B obtained by thresholding a continuous-
power radio spectrogram P in order to provide an estimation
as close to the (unknown) ground truth T as possible that can
help identify radio transmissions within the spectrogram.
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Fig. 1: Matrix model for radio spectrograms: (a) ground truth at the
transmitter (matrix T), (b) states observed at the receiver (matrix B).

III. PROPOSED METHOD

A. Motivation and Overview

Notice from Fig. 1 that each radio signal transmission can
be precissely characterised by a rectangular cluster of points
that determines its occupied bandwidth and start/end times1.
The proposed method exploits this clustered structure. The
main underlying idea is that the density of points per unit
area inside such rectangular cluster, referred to as Signal Area
(SA), is in general greater than outside. For sufficiently high
SNR, an SA density of one point per spectrogram element is
obtained and B = T. However, the SA density will decrease
as the SNR decreases since some points will be missing due to
signal misdetections, which can occur with probability 1−Pd,
where Pd decreases with SNR [15, eq. (1)] (the density outside
SAs will remain constant when λ is set for a constant Pfa).

Since the gaps left by missing SA points will be surrounded
by other SA points, it may still be possible to get a detectable
response within those gaps by applying a filter to the degraded
spectrogram B so that the response at each point depends
not only on the point itself but its neighbourhood as well.
The output Fr of filtering B with a filter hr of radius2 r is
obtained from the two-dimensional convolution Fr = hr ∗B,
where each element Fr[m,n] of Fr is obtained as:

Fr[m,n] =

r∑
x=−r

r∑
y=−r

hr[x, y] ·B[m− x, n− y]. (2)

As the SNR decreases the density of SA points will decrease
and the filter radius should increase to improve the sensitivity.
However, increasing the filter radius will also have a stronger
blurring effect on the spectrogram data, which will make it
more difficult to accurately identify the true boundaries of SAs.
To address this sensitivity-specificity trade-off, the proposed
method filters B several times using filters with different radii
and weights each individual output Fr by the inverse of the

1Certain radio transmissions may not lead to rectangular clusters, in partic-
ular electromagnetic emissions from systems that are usually not intended for
wireless communications, including some types of radars [11, Figs. 1 and 9],
microwave ovens [16, Fig. 2b], and several sources of man-made noise [17,
Fig. 4]. While the method here proposed should also work in these cases, such
specific signal formats require a tailored study that is beyond the scope of this
work, whose focus is on wireless communication signals, usually characterised
in radio spectrograms by rectangularly-shaped clusters.

2This work follows the common convention of defining the radius of the
filter as the apothem of its square kernel. Thus, a filter with radius r will have
a total side length of 2r + 1 and contain (2r + 1)2 filter coefficients.

employed filter radius. Thus, the outputs for smaller filter radii
will have higher weights to allow an accurate identification of
the SA edges, while the outputs for larger radii will have lower
weights to avoid excessive blurring of the SA dimensions but
will also be accounted for to help increase the chances of
obtaining a detectable response within the SA gaps. The output
obtained after K filtering iterations, denoted by GK , is:

GK =

K∑
r=1

Fr

rp
=

K∑
r=1

hr ∗B
rp

, (3)

where parameter p ∈ R+ is introduced to allow a fine tuning
of the weight carried by each contribution Fr.

The final step of the proposed method is to binarise matrix
GK with a properly set threshold χ in order to produce a final
binary output matrix I whose elements are calculated as:

I[m,n] =

{
0, GK [m,n] < χ (4a)
1, GK [m,n] ≥ χ. (4b)

The final output I should be more similar to T than B.
A complete definition of this method requires an appropriate

selection of the filter hr and the configuration parameters p,
K and χ, which are discussed below.

B. Filter Selection

A common choice for data averaging and smoothing is the
Gaussian filter, whose unnormalised coefficients are given by3:

h̃r[x, y] =
1

2πσ2
exp

(
−x

2 + y2

2σ2

)
, (5)

where x, y ∈ {−r, . . . , 0, . . . , r} and the filter standard devi-
ation σ is selected to ensure that a sufficiently representative
portion of the Gaussian function is captured (a typical choice
is σ = r/3, which embraces 99.73% of the Gaussian function).
Since the shape of the Gaussian function changes with σ, the
relative weights of the Gaussian filter coefficients will also
change with the filter radius r. In particular, the Gaussian
filter will approach a box blur filter with flat coefficients as
the radius increases. This will unavoidably have an impact on
the contribution of each component Fr in (3), which will be
weighted explicitly by the factor 1/rp and also implicitly by
the filter shape itself. For a fixed value of p, this means that
in practice the first Fr component (r = 1) will have a much
higher total weight than the others (r > 1). For r > 1, the
Gaussian filter shape will be wider and lower, which will lead
to negligible Fr contributions when weighted by the factor
1/rp, thus removing the desired iterative filtering effect. This
can be compensated by selecting p < 1, however, as it will be
shown, in practice it is difficult to find a suitable fixed value
of p that performs well over the whole SNR range.

This motivates the proposal of a novel filter characterised by
a pyramidal convolution kernel given by (see the Appendix):

h̃r[x, y] = min(r+1+x, r+1−x, r+1+y, r+1−y), (6)

3The notation h̃r for a filter, or h̃r[x, y] for its coefficients, indicates an
unnormalised filter. The normalised version employed in (3) is obtained as
hr = h̃r[tr(h̃r J2r+1)]−1, where Jl denotes the l× l all-ones matrix.
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where x, y ∈ {−r, . . . , 0, . . . , r}. This filter preserves its shape
(and hence the relative weights of the filter coefficients) for
any value of the filter radius r. Moreover, this filter has square
symmetry, which intuitively seems more appropriate to detect
the square shape of signal components in radio spectrograms.

A box blur filter h̃r[x, y] = 1, ∀x, y ∈ {−r, . . . , 0, . . . , r}
is also considered for comparison. The Gaussian and box blur
filters are the standard choices for data averaging, which is the
effect necessary for the proposed iterative filtering method, and
are suitable for comparison to the proposed pyramidal filter.

C. Iterative Stopping Algorithm

A simple way to set K in (3) would be according to the
maximum filter size that can be fitted within the spectrogram
dimensions, i.e. 2K + 1 ≤ max(M,N). However, this ap-
proach would likely lead to a high computational workload.
A smarter approach can be devised by noting that every new
contribution Fr in (3) carries a smaller weight 1/rp than the
previous one and therefore there must be a certain number
of iterations K beyond which any new contributions will be
negligible. The number of iterations K can be automatically
determined by comparing the successive outputs of (3) and
stopping when their difference is below a certain threshold.

The similarity between two successive outputs of (3) can be
quantified in terms of the Peak Signal-to-Noise Ratio (PSNR).
The PSNR in dB at the kth iteration of (3) is given by [18]:

PSNRk [dB] = 10 log10

(
(Gmax

k )
2

MSEk

)
, (7)

where Gmax
k is the maximum possible element value of Gk

and MSEk is the mean squared error between Gk and Gk−1.
Since every iteration of (3) adds a new contribution to the

total sum, the maximum value of Gk will increase with k.
Gmax

k can be calculated from (2) and (3) as:

Gmax
k = max

m,n

(
Gk[m,n]

)
= max

m,n

(
k∑

r=1

Fr[m,n]

rp

)

=

k∑
r=1

max
m,n

(
Fr[m,n]

)
rp

=

k∑
r=1

1

rp
= H

(p)
k . (8)

Recalling that B is a binary matrix, this maximum possible
value is obtained for an element Fr[m,n] where it holds that
B[m−x, n−y] = 1 for all x, y within the filter template. The
value of that element Fr[m,n] then becomes, according to (2),
the sum of the filter coefficients, which for a normalised filter
is equal to one. According to (8), Gmax

k is the kth generalised
harmonic number of order p, typically denoted as H(p)

k [19].
MSEk aims to quantify the variation of Gk with respect to

the output Gk−1 from the previous iteration as:

MSEk =
1

MN

M∑
m=1

N∑
n=1

(
k∑

r=1

Fr[m,n]

rp︸ ︷︷ ︸
Gk[m,n]

−
k−1∑
r=1

Fr[m,n]

rp︸ ︷︷ ︸
Gk−1[m,n]

)2

=
1

MN

M∑
m=1

N∑
n=1

(
Fk[m,n]

kp

)2

=
tr(FT

kFk)

MNk2p
. (9)

Introducing (8) and (9) into (7) yields:

PSNRk [dB] = 10 log10

(
MNk2p

(
H

(p)
k

)2
tr(FT

kFk)

)
. (10)

Based on (10), the iterative process in (3) proceeds until:∣∣∣PSNRk [dB]− PSNRk−1 [dB]
∣∣∣ < ε [dB], (11)

where ε is a properly set threshold in decibels.
The algorithm presented decides when to stop the iterative

process in (3), i.e. the value of K. The value of p determines
the convergence rate of this iterative process and therefore the
required number of iterations K. An adequate choice of p will
be discussed in Section IV based on simulation results.

D. Thresholding Method

The final step in (4) requires an adequate selection of the
threshold χ used to classify the elements of GK as idle/busy
points. To this end, the Otsu algorithm is selected [20].

IV. SIMULATION RESULTS

The proposed method was evaluated using the same simu-
lation approach and configuration parameters as [15]. Based
on the conclusions of [15], the energy decision threshold λ
was set based on the receiver noise floor [14] to achieve a
constant false alarm rate of Pfa = 0.01 (thus, the resulting
Pd depends on the experienced SNR). Spectrograms with
one central radio channel were generated with dimensions
M × N = 250 × 500 points. This spectrogram resolution
was found to keep simulation times at reasonable levels
without impacting the obtained results (a detailed study on
different spectrogram resolutions can be found in [15]). Given
a ground truth spectrogram T, the corresponding received
spectrogram B was generated by introducing random errors
with probabilities Pfa and 1 − Pd, which was then fed to
the proposed iterative filtering method to produce the final
output spectrogram I. The proposed method was applied with
a threshold ε = 0.1 dB and the maximum number of iterations
was restricted according to 2K+1 ≤ max(M,N); the iterative
filtering process in (3) was stopped if this limit was reached
before the iterative stopping algorithm converged.

Fig. 2 shows the performance of the proposed method in
an ideal best-case scenario where p is set to the optimum
value4 that maximises the accuracy for each SNR (Fig. 2a).
The accuracy (Fig. 2b) is assessed in terms of the F1 score [21]
by comparing I, the output of (4), to the ground truth T. The
‘No filtering’ curve is obtained by comparing B and T and
is included as a reference to show that the resulting accuracy
is significantly improved when the proposed iterative filtering
method is employed. The best accuracy is obtained with the
Gaussian filter at low SNR (below –10 dB) and the proposed
pyramidal filter at high SNR (above –10 dB). However, the
Gaussian filter provides a similar level of accuracy at high
SNR and would therefore be a preferred choice owing to its
lower computational cost as quantified by K, the number of

4The optimum p can be found in simulations by means of exhaustive search
over a sufficiently large interval (p ∈ [0, 2] was found to be sufficient here).
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Fig. 2: Performance in an ideal scenario (with optimum p).
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Fig. 3: Performance in a realistic scenario (with fixed p).

iterations required for (3) to converge (Fig. 2c). Unfortunately,
finding the optimum value of p for each SNR requires the
knowledge of the ground truth at the transmitter (T), which
is unknown in a practical system implementation and indeed
the data to be estimated. Therefore, the results shown in Fig.
2 represent an ideal upper bound to the real performance that
could potentially be attained in a practical implementation.

In a practical system implementation a pre-set fixed value
of p needs to be selected beforehand and used over the whole
SNR range. Fig. 3 shows the performance achieved for various
fixed values of p. With an adequate configuration (e.g., p = 1),
the pyramidal and box blur filters outperform the Gaussian
filter (for the reasons discussed in Section III-B) over the
whole SNR range, in particular in the low SNR regime, at
the expense of a higher computational cost. The box blur and
pyramidal filters achieve a similar level of accuracy, however
the latter requires a lower number of iterations. Therefore, the
proposed pyramidal filter provides the best trade-off between
accuracy and computational cost among the three considered
filters in a realistic scenario (i.e., with fixed p).

Some sample spectrograms are shown in Fig. 4 to illustrate
the accuracy improvement provided by the proposed method.
The ground truth at the transmitter (Fig. 4a) is seen very
differently by the receiver when SNR = –10 dB, for which
Pd = 0.11 (Fig. 4b). However, the application of the proposed
iterative pyramidal filtering method enhances significantly the
visibility of the transmitted signals at the receiver (Fig. 4c).

The benefit that this enhancement can bring to techniques
for wireless communications based on the processing of radio
spectrograms is illustated in Fig. 5. This figure compares the
performance of two SA estimation methods from the literature
with and without the method proposed in this work. The con-
sidered methods are the Transmission Encapsulation based on
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Fig. 4: Sample radio spectrograms: (a) ground truth at the transmitter
(matrix T), (b) observed at the receiver at –10 dB SNR (matrix B),
and (c) output after iterative pyramidal filtering, p = 1 (matrix I).
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Fig. 5: Performance improvement for SA estimation methods with
the proposed iterative pyramidal filtering method.

Connected Component Labeling (TECCL) method proposed in
[22] and the so-called Simple Signal Area (SSA) estimation
method proposed in [23]. As it can be appreciated, the TECCL
and SSA methods can provide accurate estimations of the
SAs in the spectrogram based on the received matrix B (blue
lines), however, the resulting accuracy of both methods is
noticeably improved when matrix B is first processed with the
proposed iterative pyramidal filtering method and the resulting
matrix I is then provided as the input to the TECCL and SSA
methods (red lines). The effect of this is an improvement of
the sensitivity achieved at low SNR and therefore an expansion
of the operational SNR range for both methods.

V. CONCLUSIONS

This work has proposed an iterative pyramidal filtering
method to enhance the recognisability of signal components
in radio spectrograms. The obtained results have demonstrated
that the proposed method can extend noticeably the operational
SNR range of techniques for wireless communications based
on the processing of radio spectrograms.

APPENDIX
PYRAMIDAL CONVOLUTION KERNEL

The filter coefficients of the proposed pyramidal convolution
kernel can be obtained based on the model in Fig. 6. Each filter
coefficient is obtained as the height w of the pyramid’s lateral
face over that point. Notice that the edges of the pyramid’s
base are located one element beyond the actual filter radius r
because the height at those edges is w = 0; thus the distance
between the centre of the pyramid’s base and any of the base
edges is r+1. This ensures that for a filter of radius r, whose
total side length is 2r+1, there is a total of (2r+1)2 non-zero
filter coefficients as expected.
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Fig. 6: Pyramidal convolution kernel.

The filter coefficients are obtained from the equations of
the four planes that define the pyramid’s lateral faces, which
can be calculated based on basic geometry principles. Let’s
consider the plane on the front lateral face of the pyramid
(shaded in Fig. 6). This plane contains the three vertex points
P = (a, 0, 0), Q = (0, a, 0) and R = (0, 0, b) and the edge
vectors

−→
PR = 〈−a, 0, b〉 and

−−→
QR = 〈0,−a, b〉. A normal

vector to the plane can be obtained as
−→
PR×

−−→
QR = 〈ab, ab, a2〉.

Evaluating the general equation of a plane, which is given
by ab(u − u0) + ab(v − v0) + a2(w − w0), at any of its
points (u0, v0, w0), for example P , Q or R, then the plane
equation bu+ bv + aw = ab is obtained. Repeating the same
procedure for the other three planes and solving for w the
following general expression is obtained for the four planes
on the pyramid’s lateral faces: w = b± (b/a)u± (b/a)v.

As shown in Fig. 6, a =
√
2(r + 1), while the pyramid’s

height b can be freely choosen. To preserve the shape of the
pyramid (i.e., the relative weight of each filter coefficient)
regardless of the filter radius, which is one of the drawbacks
of the Gaussian filter in the proposed method, the height can
be chosen as b = r + 1. The plane equations then become
w = r + 1± (1/

√
2)u± (1/

√
2)v.

Finally, the pyramid (and hence the filter template) can be
aligned with the axes with a rotation of π/4 radians, which
can be obtained with the change of variables x = (u− v)/

√
2

and y = (u+ v)/
√
2 or, equivalently, u = (

√
2/2)(x+ y) and

v = (
√
2/2)(y − x). The plane equations for the lateral faces

then become w = r+1± (x+ y)/2± (x− y)/2, which leads
to the cases w = r + 1± x and w = r + 1± y.

The intersection of these four planes defines the surface of
the pyramid’s lateral faces. The height w of the pyramid sur-
face at every point (x, y), which corresponds to the minimum
of the four planes’ heights at that point, provides the value of
the filter coefficients h̃r[x, y] as given by equation (6).
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“Study on simple signal area estimation for efficient spectrum measure-
ments,” in Proc. 26th European Conf. Networks and Commun. (EuCNC
2017), Jun. 2017, pp. 1–5.


