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Abstract—Traffic models play a key role in the analysis, design
and simulation of communication networks. The availability of
accurate models is essential to investigate the impact of traffic
patterns created by the introduction of new services such as those
forecasted for the Internet of Things (IoT). The Poisson model
has historically been a popular aggregated traffic model and has
been extensively used by the IoT research community. However,
the Poisson model implicitly assumes an infinite number of traffic
sources, which may not be a valid assumption in various plausible
application scenarios. The practical conditions under which the
Poisson model is valid in the context of IoT have not been fully
investigated, in particular under a finite (and possibly reduced)
number of traffic sources with random inter-arrival times. In
this context, this work derives exact mathematical models for the
packet inter-arrival times of aggregated IoT data traffic based
on the superposition of a finite number of traffic sources, each of
which is modelled based on real-world experimental data from
typical IoT sensors (temperature, light and motion). The obtained
exact models are used to explore the validity of the Poisson model,
showing that it can be extremely inaccurate when a reduced
number of traffic sources is considered. Finally, an illustrative
example is presented to show the importance of having accurate
and realistic models such as those presented in this work.

Index Terms—Internet of Things, aggregated traffic, traffic
modelling, Poisson process.

I. INTRODUCTION

ITH the advent of a myriad of machine-type devices
interconnected through the Internet of Things (IoT),
communication networks are facing unprecedented challenges
to efficiently support the dramatic increase of traffic loads. In
order to optimise current and future communication systems
for IoT, it is essential to first understand and model the specific
traffic patterns generated by IoT data. While a broad range of
traffic models have been proposed in the context of IoT in the
literature [1], the Poisson process is certainly the most widely
adopted model, including standardisation bodies such as 3GPP
where this model has been employed to assess the performance
of IoT communications over cellular mobile networks [2], [3].
A Poisson process is essentially a renewal process with ex-
ponentially distributed inter-arrival times. The Poisson process
is one of the oldest traffic models (if not the oldest one), dating
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back to the early days of landline telephony, where it was used
to characterise the arrival of calls to a telephone exchange. The
theoretical basis for this model is the Palm-Khintchine theorem
[4], which shows that the superposition of several independent
processes converges to a Poisson process (irrespective of the
statistics of the individual component processes) as the number
of superimposed processes tends to infinity.

Poisson processes are fairly common in practical scenarios
where the traffic from a large number of independent traffic
sources is aggregated. Thus, traffic flows on the main arteries
of communication networks are commonly believed to follow
a Poisson process (e.g., in IoT cloud servers where data from
a large number of IoT devices are collected and aggregated in
a data centre). However, the aggregation of individual traffic
sources does not always result in a Poisson process. This is
particularly true in practical scenarios with a moderate number
of sources, such as indoor small cells or indoor Wi-Fi access
points serving as gateways for smart-home IoT devices.

The observation above raises the practical question of how
many individual traffic sources need to be aggregated such
that the assumption of a Poisson process is realistic. This
problem has recently received some attention in the context of
periodic IoT traffic sources where data packets are generated
periodically at deterministic fixed time intervals [5], such
as e.g. smart grids, where smart meters periodically report
power usage levels to a data centre. However, in event-driven
IoT applications, data packets are generated at variable time
intervals in response to random events [6] (e.g., whenever a
certain metric of interest varies by a predefined quantity or
exceeds a threshold). To the best of the authors’ knowledge,
the conditions under which the Poisson process is a valid
aggregated traffic model for IoT sources with random inter-
arrival times has not been investigated to the date. Moreover,
the optimisation of scenarios where the Poisson model may
not be valid claims for new traffic models that can describe
accurately the aggregated traffic flows regardless of the number
of aggregated traffic sources, including those cases where
the number of individual traffic sources is too low for the
Poisson process to be a valid aggregated traffic model. In
this context, this work fills the existing gap by exploring the
validity of the Poisson process as an aggregated traffic model
for IoT sources with random inter-arrival times. Leveraging
on some recent models for individual traffic sources based
on experimental data from real-word IoT devices, this work
analytically develops exact aggregated models for an arbitrary
finite number of traffic sources. The developed models are
exploited to determine the conditions under which the Poisson
process is a realistic aggregated traffic model. The main nov-
elty and contribution of this work is a critical analysis of the
validity of the Poisson process as an aggregated traffic model
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Fig. 1. System model considered in this work.

in practical IoT scenarios and the proposal of an alternative
modelling approach that can provide a significantly improved
accuracy in those cases where the Poisson model is not valid.

The rest of this work is organised as follows. First, Section
II presents the system model and formulates the problem
addressed in this work. Exact aggregated models for IoT data
sources with random inter-arrival times are then derived in
Section III based on source traffic models available in the
literature from empiric data. The conditions under which the
Poisson process is a valid aggregated model are investigated
in Section IV. Finally, Section V concludes this work.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Let n be the number of individual IoT traffic sources, each
of which generates data at random intervals 7 as shown in Fig.
1. The random inter-arrival times 7 of the n traffic sources are
assumed to be mutually independent and identically distributed
according to a certain Probability Density Function (PDF)
and Cumulative Distribution Function (CDF), denoted by
fs(7) and F,(7), respectively. These inter-arrival times can
follow any arbitrary distribution, which is not necessarily (and,
indeed, in many practical cases is not) exponential [7].

The data generated by the n sources are multiplexed at some
point in the network, thus leading to a single aggregated traffic
flow with random inter-arrival times 7 distributed according
to a certain PDF, f,(7), and a corresponding CDF, F, (1),
respectively. The arrival time instants of the aggregated flow
can be obtained by rearranging the arrival time instants of each
individual traffic source into a single increasing sequence.

The objective of this work is twofold. First, to obtain closed-
form expressions for f,(7) and F,(7), for some known f(7)
and F,(7), as a function of the number of aggregated traffic
sources n. Second, to exploit such expressions to determine
(based on results from real-world IoT data) the minimum
number of sources for which the aggregated traffic can be
accurately modelled as a Poisson process. Such threshold
will also determine the operation conditions under which the
models developed in this work are the only realistic models.

III. AGGREGATED TRAFFIC MODELS

This section provides closed-form expressions for the ag-
gregated distributions f,(7), F,,(7) for some particular source
distributions f(7), Fs(7). The analysis is first carried out for
exponentially distributed traffic sources and later on conducted

for other distributions that, according to [7], characterise more
accurately the traffic generated by real-world IoT devices.
The mathematical analysis presented in this section benefits
from the analytical result obtained in [8, eq. (31)], by virtue of
which the distribution of interest can be obtained as follows:

fulr) = —(f{ - ro) (o [T 0 rene) }

=1-Fq(T)

ey
where my is the source’s mean inter-arrival time (i.e., mean
time between successive packets generated by a single source).
Notice that F,(7) can be obtained from the term inside the
braces as indicated in (1) and its derivation leads to f,(7).

A. Extended Exponential (Poisson) Model

The aggregated distributions are first obtained for the Pois-
son model, assuming that the source inter-arrival times are
exponentially distributed. An extended version of the exponen-
tial distribution given by Fy(7) =1 — e 2"=1) (7 > 1 > 0)
is here considered, where A > 0 is the arrival rate (inverse
scale parameter) and p is the (not necessarily zero) minimum
inter-arrival time (location parameter). The commonly used
exponential distribution, F,(7) = 1 —e™*" (7 > 0), can be
obtained as a particular case for 4 = 0. The introduction of this
minimum value in the model allows for an increased flexibility
and thus enables a more accurate characterisation in practical
scenarios where the actual source inter-arrival times might be
constrained by a non-zero lower bound.

Notice that the inter-arrival times of the aggregated traffic
flow can take any value within the interval [0, c0) regardless
of the minimum source inter-arrival time w. As a result, (1)
needs to be evaluated over the whole interval [0, co). However,
Fs(r) = 0 for 7 < p and Fy(7) # 0 for 7 > p, which
requires a separate evaluation of (1) for each case. Introducing
the extended exponential distribution into (1) leads to:
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where ms = p + 1/, which yields the following CDF:
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and its derivation provides the associated PDF:
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Notice that the PDF has a discontinuity at 7 = x4 and as a
result the case 7 = p is not explicitly included in (3).

For u = 0, (2) reduces to F,(7) = 1 — e~*"7 and (3)
reduces to f,(7) = Ane~*"7, showing that the superposition
of n (standard) Poisson processes with rate A results in another
(standard) Poisson process with rate An as expected.

n—2
) , T<p (3a)
fa(T) =
7> u (3b)
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B. Weibull Model

The Weibull distribution has been reported in [7] to be an
accurate model for the inter-arrival times of the data packets
generated by temperature and light intensity sensors that send
a new report (i.e., a new data packet) every time the measured
temperature or light intensity differs from the last reported
value by a certain predefined amount (i.e., based on differential
reporting). Temperature and light sensors are commonly found
in IoT scenarios and are considered in this subsection.

The Weibull distribution (lower-bounded by p) is given by
Fo(t) = 1 —exp(—[(T — p)/A]*) (r > p > 0), with mean
ms = p+ AT(1 + 1/a), where I'(z) = [ t*"te~"dt is
the gamma function. The shape parameter o > 0 confers the
Weibull distribution an increased flexibility to fit empirical
data compared to the exponential distribution, which can in
fact be obtained as a particular case (concretely, for o = 1, the
Weibull distribution becomes an exponential with rate 1/)).

Introducing the Weibull model into (1) leads to the follow-
ing CDF for the inter-arrival times of the aggregated stream:

T
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and its derivation provides the associated PDF:
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where I'(s,2) = [ t*"le~'dt represents the upper incom-
plete gamma function. Notice that the PDF has a discontinuity
at 7 = p and as a result the case 7 = p is not explicitly
included in (5). It can be shown that, when o = 1, the
expressions in (4) and (5) reduce to (2) and (3), respectively,
with rate parameter 1/\.

C. Generalised Pareto Model

The Generalised Pareto distribution has been shown in [7]
to be an accurate model for the inter-arrival times of the data
packets generated by motion sensors, which are another type
of sensors commonly found in practical IoT applications.

The CDF of the generalised Pareto distribution is given by
Fot)=1—[1+a(r —p)/N~Y* (r > p > 0), with mean

ms = pu+ A(1 —a), where g > 0, A > 0 and « > 0
are the location, scale and shape parameters, respectively.
This distribution is also more flexible than the exponential
distribution, which can also be obtained as a particular case
(concretely, for a« = 0, the generalised Pareto distribution
becomes an exponential distribution with rate 1/)\).

Introducing the generalised Pareto distribution into (1) leads
to the following CDF for the inter-arrival times of the aggre-
gated traffic stream:
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and its derivation provides the associated PDF:
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Notice that the PDF has a discontinuity at 7 = x4 and as a
result the case 7 = p is not explicitly included in (7). It can
be shown that, when o = 0, the expressions in (6) and (7)
reduce to (2) and (3), respectively, with rate parameter 1/\.

7> u (7b)

IV. NUMERICAL RESULTS

The validity of the Poisson process as an aggregated traffic
model is determined by evaluating the deviation of the ana-
Iytical results in Section III-A from those in Sections III-B
and III-C in terms of the Kolmogorov-Smirnov (KS) distance,
which is defined as the maximum absolute difference between
two CDFs and in the context of this work is evaluated as:

Dyg = max |Ff(7’) - F:V’GP(T)| )

where FT(7) is (2) and F)V-GP(7) is either (4) or (6). The
KS distance can be used to test the equality of two continuous
distributions. The lower the KS distance, the more similar
the distributions are (with Dgg = 0 indicating identical
distributions). By noting that the true distribution of empirical
data can be accurately modelled by FV-SP(7) as shown in
[7], the KS distance in (8) can be used as a metric to quantify
how far the Poisson process model FY(7) is from real data
and thus its accuracy and practical validity. The parameters of
the Weibull and generalised Pareto distributions are set based
on [7], where these models were fitted to real experimental
data from temperature/light and motion sensors, respectively.
For a fair comparison, the parameters of the Poisson model
are set to reproduce the same minimum and mean inter-arrival
times (i.e., up = pw and Ap = Aw - I'(1 + 1/aw)] ™t
when comparing to the Weibull model, while yp = pugp and
Ap = (1 — agp)/Agp for the generalised Pareto model).
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Fig. 2. Deviation of the Poisson process model from the Weibull model.
Weibull model parameters: =5 - 103 s, A = 2-10° s (based on [7]).

Fig. 2 shows the KS distance between the Poisson process
and Weibull models as a function of the number of sources
and the Weibull shape parameter « (the impact of the location
and scale parameters is much less significant and therefore
is not shown here). A horizontal plane at Dgg = 0.01 is
also shown, which represents a maximum deviation of 1%
with respect to the true distribution of the packet inter-arrival
times of the aggregated data traffic and is used as a reference
to determine the regions where the accuracy of the Poisson
model can be considered satisfactory (i.e., Dgg < 0.01). As
appreciated, the accuracy of the Poisson model improves (i.e.,
Dy decreases) as the number of traffic sources increases,
which is not surprising since the Poisson model implicitly
assumes an infinite number of traffic sources. The minimum
number of sources required for the Poisson process to be
valid depends on the Weibull shape parameter. Such minimum
requirement increases as the value of the shape parameter
diverges from o = 1 (for which the Weibull distribution
becomes exponential as pointed out in Section III-B). Fig.
3 shows the counterpart for the generalised Pareto model;
similar comments can be made (in this case, the minimum
number of sources required for the Poisson process to be
valid increases as the shape parameter diverges from o = 0,
where the generalised Pareto distribution is equivalent to an
exponential distribution as pointed out in Section III-C).

Fig. 4 evaluates the accuracy of the Poisson model for the
aggregated traffic of temperature sensors which report when a
temperature difference of 4.5 °C is detected (Weibull model)
and motion sensors (generalised Pareto). The parameters of
the distributions are configured based on the empirical results
obtained in [7]: g =5-10%s, A =2-10° s and o = 0.7664
for the Weibull distribution, and p = 8.8 s, A = 6.5490 s and
o = 0.7442 for the generalised Pareto distribution. As it can
be appreciated, a minimum of 8 motion and 50 temperature
sensors are required for the Poisson process to be a valid
aggregated traffic model. In some scenarios such as indoor
small cells or indoor Wi-Fi access points serving as gateways
for smart-home IoT devices, the number of IoT devices can be
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Fig. 3. Deviation of the Poisson model from the generalised Pareto model.
Generalised Pareto model parameters: © = 8.8 s, A = p - a (based on [7]).
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Fig. 4. Accuracy of the Poisson model for the aggregated traffic of temper-
ature sensors (Weibull) and motion sensors (generalised Pareto) [7].

below these thresholds. In such scenarios, the Poisson process
would not be a suitable aggregated traffic model.

To illustrate the potential impact that an inaccurate traffic
modelling could have, a practical example is provided based
on a scenario where the gateway is programmed to enter a
low power mode (idle state) after n seconds of inactivity from
the last received packet, and switch back to active mode when
a new packet is received. It can be shown that the fraction
of time the gateway would remain in idle state, ¢ € [0, 1], is
given by (details on the analytical derivation are provided in
the Appendix):

o= | En e ©
Fig. 5 shows (for the same configuration as Fig. 4) the result
of numerically evaluating (9) based on (3), (5) and (7) when
n = m (simulation results are also included for validation).
The Poisson model results in a significant underestimation
of ¢ and the corresponding energy savings, with errors of
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Fig. 5. Fraction of time that an IoT gateway would remain in idle state for
the different traffic models as a function of the number of traffic sources [7].

up to 8% for temperature sensors (Weibull model) and 18%
for motion sensors (generalised Pareto model). The minimum
number of sensors for which the Poisson model would be
accurate according to Fig. 4 is not relevant in this example
since there would be no energy savings for that number of
IoT devices according to Fig. 5. This is an example where
the interest is in the aggregation of a low/moderate number of
IoT traffic sources and where the Poisson model would not be
suitable. In this type of IoT scenarios, the models developed in
this work, which are exact for any number of sources, would
therefore constitute a more realistic and accurate alternative.

V. CONCLUSIONS

The Internet of Things (IoT) will embrace a myriad of
heterogeneous devices with radically different traffic patterns
than those generated by legacy, human-driven services. The
availability of accurate traffic models for all plausible sce-
narios is therefore essential. In this context, this work has
investigated the suitability of the Poisson model as an ag-
gregated traffic model for IoT. The Poisson model assumes an
infinite number of traffic sources, an assumption that this work
has demonstrated to be invalid in IoT scenarios that involve a
low/moderate number of traffic sources, such as indoor small
cells or indoor WiFi access points serving as gateways for IoT
devices. A more convenient modelling approach for the inter-
arrival times of aggregated traffic flows has been presented and
illustrated for some typical real-world IoT applications. The
proposed modelling approach provides exact results for any
arbitrary number of traffic sources and is therefore suitable
for those scenarios where the Poisson model fails to provide
the required level of accuracy and realism.

APPENDIX
DERIVATION OF EQUATION (9)

The fraction of time that the gateway in the example of
Section IV remains in idle state, ¢ € [0, 1], can be obtained
as the ratio:

E(7iar)

= T 10
= B + E(rant) 10

where E(7;4) and E(7,.) are the average times in the idle
and active states, respectively. When the inter-arrival time
between two successive packets at the gateway is lower than
the threshold (i.e., 7 < 1), the gateway will not enter the
low power mode and therefore its average active time will be
given by [/ 7fa(7|7 < n)dr. Otherwise (i.e., when 7 > 1),
the gateway will enter the low power mode after n seconds
and its active time will be equal to 1. Therefore, the average
active time is given by:

n
E(raet) = P(r < 1) / rfu(rlr <m)dr+ P(r > )7
B fnT o(T) dr
- a(77) 0 Fa(n)

=/0n7fa(7)d7+[1—Fa(77)]?7

When the gateway enters the low power mode (i.e., when the
next packet arrives later than 1 seconds after the last received
packet), the average idle time will be given by the quantity
fnoo Tfa(T|T > m)dr minus the active time 7). Therefore, the
average idle time is given by:

E(ria) = P(r > 1) ( / " rdalrir > wdr =)

+ 1= Fa(n)]n

Y

S, Tfa(r)dr
= =R\ =g "
:/ 7fa(7) d7 =1 = Fa(n)] "
= /OO(T—n)fa(T) dr )

The denominator of (10) is obtained by adding (11) and (12),
which is equal to fooo 7fo(T) d7, i.e., the average inter-arrival
time of the aggregated traffic stream at the gateway, which in
turn is equal to mg/n. Finally, the introduction of (13) in the
numerator of (10) yields the result shown in (9).
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