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Abstract—In [1], closed-form expressions were proposed for the
distribution of the received signal-to-noise ratio in the fluctuating
two-ray fading model with arbitrary fading parameters for
millimetre wave bands. This correspondence provides some com-
ments and corrections to the published closed-form expressions
along with several novel analytical results.

Index Terms—Fluctuating two-ray fading model, radio prop-
agation, millimetre wave bands, wireless communications.

I. INTRODUCTION

The analysis presented in [1] provided closed-form expres-
sions for the Probability Density Function (PDF) and Cumula-
tive Distribution Function (CDF) of the instantaneous Signal-
to-Noise Ratio (SNR) in the Fluctuating Two-Ray (FTR)
channel fading model with arbitrary fading parameters for
millimetre wave bands. The interest of these results lies in their
algebraic simplicity, which makes them significantly more
analytically tractable than other earlier FTR channel fading
models previously proposed in the literature. Unfortunately,
due to the wrong integration expression in [2], the closed-form
expressions provided in [1] for the PDF contain some errors
that are propagated through the rest of the provided analytical
results, including the expressions for the CDF, channel capac-
ity and bit error rate. This correspondence provides corrections
to these errors along with several additional observations on
the correct evaluation of the analytical results. Moreover, some
alternative novel analytical results are presented as well.

II. COMMENTS AND CORRECTIONS

The derivation of the PDF for the instantaneous SNR in the
FTR fading model involves the following integral [1, eq. (22)]:

sk =

∫ ∞
0

uj+m−1e−(m+K)uI2l−k(−K∆u) du, (1)

where j, k, l are natural numbers (including zero), m,K,∆
are the FTR channel fading parameters (see [1] for details),
and Iν(x) is the modified Bessel function of the first kind
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[3, eq. (8.445)]. This integral is resolved in [1] by directly
applying the second solution provided in [2, eq. (2.15.3.2)],
which unfortunately leads to incorrect analytical results in [1].
The confusion arises from the fact that the second result for the
integral in [2, eq. (2.15.3.2)] involves the associated Legendre
function (or spherical function) of the first kind, Pµν (x), which
has two different definitions depending on its argument:

Pµν (x) =

{
Aµν (x), |x| < 1

Bµν (x), x > 1
(2)

where Aµν (x) is given by [3, eq. (8.704)][4, eq. (14.3.1)] and
Bµν (x) is given by [3, eq. (8.702)][4, eq. (14.3.6)], respectively.
The relation between both expressions can be obtained from
the value of the function Pµν (x) on the cut [4, eq. (14.23.1)]:

Aµν (x) = e±
π
2 µiBµν (x± i0), (3)

where i =
√
−1 is the imaginary number.

The integral of interest in [2, eq. (2.15.3.2)] is of the form∫∞
0
xα−1e−pxIν(cx) dx, which can be resolved by using the

relation [3, eq. (8.406.1)]:

Iν(cx) = e−
π
2 νiJν(c e

π
2 ix), (4)

where Jν(x) is the (standard) Bessel function of the first kind
[3, eq. (8.402)], along with the following result from the fourth
solution in [3, eq. (6.621.1)]:

∫ ∞
0

xα−1e−pxJν(qx) dx

= Γ(α+ ν) (p2 + q2)−
α
2 P−να−1

(
p√

p2 + q2

)
(5)

= Γ(α+ ν) (p2 + q2)−
α
2 A−να−1

(
p√

p2 + q2

)
, (6)

which is valid for p > 0 and q > 0. Notice that the condition
p > 0 and q > 0 implies that the argument x of Pµν (x) in (5)
is strictly lower than one. Thus, for the sake of clarity, Pµν (x)
has been rewritten as Aµν (x) in (6).
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The integral in [2, eq. (2.15.3.2)] can be resolved as follows:∫ ∞
0

xα−1e−pxIν(cx) dx

= e−
π
2 νi

∫ ∞
0

xα−1e−pxJν(c e
π
2 ix) dx (7)

= e−
π
2 νi Γ(α+ ν) (p2 − c2)−

α
2 A−να−1

(
p√

p2 − c2

)
(8)

= Γ(α+ ν) (p2 − c2)−
α
2 B−να−1

(
p√

p2 − c2

)
, (9)

where (7) is obtained by using (4), (8) is obtained by using
(6), and (9) is obtained by using (3). Notice that the second
solution provided in [2, eq. (2.15.3.2)] is the same expression
as in (8) but using the standard notation Pµν (x). This notation
is certainly unfortunate and confusing since the argument
of Pµν (x) in (8) is x = p/

√
p2 − c2 > 1 and this may

mislead the reader to assume that Pµν (x) in [2, eq. (2.15.3.2)]
should be evaluated using Bµν (x), when it actually needs to be
evaluated using Aµν (x) as shown in (8). The analysis presented
in [1] misinterprets Pµν (x) in [2, eq. (2.15.3.2)] as Bµν (x),
which leads to incorrect analytical results. A more convenient
notation for the solution of the integral in [2, eq. (2.15.3.2)]
is the expression shown in (9), which is consistent with the
fact that the argument of the associated Legendre function is
greater than one and therefore removes any possible ambiguity.

Based on the discussion above, the solution to the integral
in [2, eq. (2.15.3.2)] can be written unambiguously as:∫ ∞

0

xα−1e−pxIν(cx) dx = (10)

Γ(α+ ν)(p2 − c2)−
α
2 P−να−1

(
p√

p2 − c2

)
, c > 0,

where Pµν (x) in (10) is given by [3, eq. (8.702)].
The result in (10) is valid for c > 0 only, i.e. positive

arguments of Iν(x). However, the integral of interest in (1)
is evaluated over negative arguments of Iν(x). From [3, eq.
(8.445)], one can write Iν(−cx) = −1νIν(cx), which yields
the following result for negative arguments:∫ ∞

0

xα−1e−pxIν(cx) dx = (11)

Γ(α+ ν)(p2 − c2)−
α
2 (−1)νP−να−1

(
p√

p2 − c2

)
, c < 0,

where Pµν (x) in (11) is given by [3, eq. (8.702)].
Based on (11), the correct solution to (1) is obtained as:

sk = Γ(j +m+ 2l − k)
(
(m+K)2 − (K∆)2

)− j+m2
× (−1)2l−k P k−2lj+m−1

(
m+K√

(m+K)2 − (K∆)2

)
,

(12)

which corrects the expression provided in [1, eq. (23)].

Consequently, [1, eq. (9)] needs to be corrected as follows:

dj ,
j∑

k=0

(
j

k

)(
∆

2

)k k∑
l=0

(
k

l

)
Γ(j +m+ 2l − k) (13)

×
(
(m+K)2 − (K∆)2

)− j+m2
× (−1)2l−k P k−2lj+m−1

(
m+K√

(m+K)2 − (K∆)2

)
,

where Pµν (x) in (13) is given by [3, eq. (8.702)].
It is worth noting that the correct evaluation of (13) requires

some specific considerations. For arguments greater than one
(as it is here the case), the associated Legendre function of
the first kind is given by [3, eq. (8.702)]:

Pµν (x) =

(
x+ 1

x− 1

)µ
2

2F1

(
−ν, ν + 1; 1− µ; 1−x

2

)
Γ(1− µ)

, (14)

where 2F1(u, v;w;x) is the Gauss hypergeometric function
[3, eqs. (9.14.1-2)]. In general, 2F1(u, v;w;x) is indeterminate
when w is a non-positive integer (w = 0,−1,−2, . . .), which
occurs when µ is a natural number (µ = 1, 2, 3, . . .). In such
case, and with the help of [3, eq. (9.101)], Pµν (x) can be
evaluated as follows:

Pµν (x) =

(
1− x

2

√
x+ 1

x− 1

)µ
(−ν)µ(ν + 1)µ

µ!

× 2F1

(
µ− ν, µ+ ν + 1; 1 + µ;

1− x
2

)
, (15)

where (x)n = Γ(x + n)/Γ(x) = x (x + 1) · · · (x + n − 1) is
the Pochhammer symbol. Thus, the evaluation of dj should be
based on (15) when µ is a natural number and (14) otherwise.

A further correction is required in Section III.B of [1]. By
comparing the expressions in [1, eqs. (16)–(17)] with those
shown in the proof in [1, eqs. (18)–(19)], it can be noticed that
a factor αβ/2Γ(β)Γ(j + 1) is missing in [1, eqs. (16)–(17)],
which is required to obtain correct results for the bit error rate.
Introducing the missing factor in [1, eq. (17)] yields:

BG(j + 1, 2σ2) ,
Γ(β + j + 1)

2Γ(β)Γ(j + 1)

(2ασ2)β

(j + 1)(1 + 2ασ2)β+j+1

= 2F1

(
1, β + j + 1; j + 2;

1

1 + 2ασ2

)
,

(16)

which provides the complete expression for BG(j + 1, 2σ2).

III. NEW ANALYTICAL RESULTS

The first solution in [2, eq. (2.15.3.2)] is valid for both
positive and negative arguments of Iν(x) and its direct appli-
cation to the integral in (1) provides correct analytical results.
Repeating the analysis presented in the previous section, a new
closed-form expression for the PDF of the received SNR in
the FTR fading channel can be obtained as follows:

fγ(x) =
mm

Γ(m)

∞∑
j=0

Kjaj
j!

fG(x; j + 1, 2σ2), (17)
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where fG(x; j + 1, 2σ2) is given by [1, eq. (8)]:

fG(x; j + 1, 2σ2) ,
xj

Γ(j + 1)(2σ2)j+1
exp

(
− x

2σ2

)
, (18)

and the coefficient aj is given by:

aj ,
j∑

k=0

(
j

k

) k∑
l=0

(
k

l

)
Γ(j +m+ 2l − k)

× (m+K)−(j+m+2l−k)K2l−k
(

∆

2

)2l

× (−1)2l−k Rk−2lj+m

([
K∆

m+K

]2)
. (19)

The function Rµν (x) in (19) is given by:

Rµν (x) =



(
ν − µ

2

)
µ

(
ν − µ+ 1

2

)
µ

xµ

µ!

× 2F1

(
ν + µ

2
,
ν + µ+ 1

2
; 1 + µ;x

)
, µ ∈ N+

2F1

(
ν − µ

2
,
ν − µ+ 1

2
; 1− µ;x

)
Γ(1− µ)

, otherwise

(20)
The expressions for the CDF, channel capacity and bit

error rate follow from (17) by replacing fG(x; j + 1, 2σ2)
with FG(x; j + 1, 2σ2) [1, eq. (8)], LG(j + 1, 2σ2) [1, eq.
(12)], and the corrected version of BG(j + 1, 2σ2) in (16),
respectively. The main advantage of these results, which are
based on the first solution in [2, eq. (2.15.3.2)], is that they are
not ambiguous or prone to misinterpretations on their correct
evaluation as it may be the case for the results obtained based
on the second solution in [2, eq. (2.15.3.2)].

IV. VALIDATION

The analytical results obtained in this work are validated
and corroborated with Monte Carlo simulations. Simulation
results are obtained based on 107 realisations of the (random)
complex baseband received signal amplitude Vr under the FTR
fading channel according to [1, eq. (1)]. The empirical PDF of
the instantaneous SNR γ is then estimated as the normalised
weighted histogram of γ = |Vr|2 ·Eb/N0, where Eb/N0 is the
energy per bit to noise power spectral density ratio.

Fig. 1 compares the empirical PDF obtained by means of
simulations with the analytical results presented in this work,
including the analytical result of [1, eq. (6)] based on the
corrected version of dj in (13) as well as the new analytical
result provided in (17). In both cases, the infinite series are
truncated to a maximum of 70 terms. Results are shown for an
average SNR γ̄ = Eb/N0 = 1 and fading parameters K = 15,
∆ = 0.5 and m ∈ {1.5, 5, 20}. As it can be appreciated, there
exists a perfect agreement between simulation and analytical
results, thus corroborating the correctness and validity of the
analytical results presented in this correspondence.
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Fig. 1. PDF of the received SNR in the FTR fading channel.

V. DISCUSSION

It is worth mentioning that the use of certain mathematical
software packages that provide separate implementations for
the functions Aµν (x) and Bµν (x) in (2) may coincidentally
provide correct numerical results when such functions are
mistakenly used to evaluate the analytical expressions in [1].
If the function Pµν (x) in [1, eq. (9)] is mistakenly eval-
uated as Aµν (x), then, according to (3), this is equivalent
to evaluate Pµν (x) as Bµν (x) multiplied by a factor e−

π
2 µi.

The multiplication of this factor e−
π
2 µi (where µ = k − 2l)

with the term e
π
2 (2l−k)i in [1, eq. (9)] is equal to the term

eπ(2l−k)i = (−1)2l−k that appears in the correct expression for
dj in (13), where Pµν (x) is evaluated as Bµν (x). Consequently,
the numerical results obtained in this way will coincidentally
be correct. The numerical results presented in [1] are correct
even though some mathematical expressions contain errors.

Since [1] was published until the date, a number of studies
have appeared in the literature making use of the incorrect
form of dj in [1, eq. (9)]. Notice that dj plays the role of
a multiplicative coefficient in the analytical results for the
FTR fading channel and it does not alter their algebraic form.
Moreover, the correct expression for dj in (13) can be obtained
by multiplying [1, eq. (9)] by the factor e

π
2 (2l−k)i. Therefore,

most (if not all) of the results published in the literature based
on [1] may still be valid provided that the correct form of
dj in (13) is used or, wherever this is not feasible, possibly
by multiplying the existing analytical results by the factor
e
π
2 (2l−k)i. However, a detailed analysis of the existing results

in the literature derived from [1] was not carried out.
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