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Abstract—The spectrum occupancy models widely used to the
date in Dynamic Spectrum Access/Cognitive Radio (DSA/CR)
research frequently rely on assumptions and oversimplifications
that have not been validated with empirical measurement data.
In this context, this work presents an empirical time-dimension
model of spectrum use appropriate for DSA/CR studies. Con-
cretely, a discrete-time two-state Markov chain with novel de-
terministic and stochastic duty cycle models is proposed as an
adequate mean to accurately describe spectrum occupancy in the
time domain. The validity and accuracy of the proposed modeling
approach is evaluated and corroborated with extensive empirical
data from a multi-band spectrum measurement campaign. The
obtained results demonstrate that the proposed approach is
able to accurately capture and reproduce the relevant statistical
properties of spectrum use observed in real-world channels
of various radio technologies. The importance of accurately
modeling spectrum use in the design and evaluation of novel
DSA/CR techniques is highlighted with a practical case study.

Index Terms—Cognitive radio, dynamic spectrum access, spec-
trum usage models, time dimension.

I. INTRODUCTION

THE owned spectrum allocation policy, in use since the
early days of modern radio communications, assigns fixed

spectrum bands to particular wireless standards. Such bands
are further divided into sub-bands that are allocated under
static licenses and remain solely for the exclusive use of the
licensee. This allocation policy has been proven to effectively
control interference among radio communication systems and
simplify the design of hardware for use at a known and
fixed range of frequencies. However, the overwhelming pro-
liferation of new operators, innovative services and wireless
technologies during the last years has resulted, under this
static regulatory regime, in the depletion of all spectrum bands
with commercially attractive radio propagation characteristics.
The vast majority of spectrum regarded as usable has already
been allocated, thus hindering the commercial rollout of new
emerging services.
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An important number of spectrum measurement campaigns
covering wide frequency ranges [1]–[13] as well as some
specific licensed bands [14]–[20] has been carried out all
over the world in order to determine the degree to which
allocated spectrum bands are used in real wireless commu-
nication systems. Empirical measurements have demonstrated
that spectrum is mostly underutilized, thus indicating that
the virtual spectrum scarcity problem actually results from
static and inflexible spectrum management policies rather than
the physical scarcity of usable radio frequencies. The owned
spectrum allocation policy was once appropriate, but nowa-
days it has become obsolete and new spectrum management
paradigms are therefore required in order to efficiently exploit
the precious radio resources. This situation has motivated the
emergence of more flexible spectrum access policies [21]–
[23]. In this context, the Dynamic Spectrum Access (DSA)
principle [24], based on the Cognitive Radio (CR) paradigm
[25], [26], has gained popularity as a promising solution to
conciliate the existing conflicts between the ever-increasing
spectrum demand growth and the currently inefficient spec-
trum utilization.

The basic underlying idea of DSA/CR is to allow unlicensed
(secondary) users to access in an opportunistic and non-
interfering manner some licensed bands temporarily unoc-
cupied by licensed (primary) users. Unlicensed secondary
terminals monitor the spectrum in order to identify time gaps
left unused by primary users, usually referred to as white
spaces or spectrum holes [27], place secondary transmissions
within such spaces and vacate the channel as soon as primary
users return. Secondary unlicensed transmissions are allowed
following this operating principle as long as they do not result
in harmful interference to primary radios.

Due to the opportunistic nature of the DSA/CR principle,
the behavior and performance of a secondary network depends
on the spectrum occupancy patterns of the primary system.
A realistic and accurate modeling of such patterns becomes
therefore essential and extremely useful in the domain of
DSA/CR research. The potential applicability of spectrum
use models ranges from analytical studies to the design and
dimensioning of secondary networks, as well as the develop-
ment of innovative simulation tools and more efficient DSA
techniques for wireless communication systems where the
DSA/CR technology can be applied, including heterogeneous
wireless access systems [28] as well as vehicular networks
[29]–[31]. Nevertheless, the utility of such models depends
on their realism and accuracy. Unfortunately, the models for
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spectrum use commonly used to the date in DSA/CR research
are limited in scope and based on oversimplifications or
assumptions that have not been validated with empirical mea-
surement data. Spectrum occupancy modeling in the context
of DSA/CR constitutes a rather unexplored research area that
still requires more effort.

The problem of modeling spectrum occupancy in the spatial
dimension was addressed in [32], [33]. This work focuses on
the time domain of spectrum usage and extends previous work
[34]. In particular, a discrete-time two-state Markov chain
with deterministic and stochastic Duty Cycle (DC) models is
proposed as an adequate mean to accurately describe spectrum
occupancy in the time domain. The validity and correctness
of the model developed in this work is evaluated and corrobo-
rated with extensive empirical measurement results for various
frequency bands and radio technologies. The obtained results
demonstrate that the proposed approach is able to capture and
reproduce with significant accuracy the statistical properties of
spectrum use observed in real-world channels.

The remainder of this paper is organized as follows. First,
Section II reviews the existing related work on time-dimension
models of spectrum use, identifying the existing deficiencies
that motivate this work. Section III describes the measurement
setup and methodology employed to capture the empirical
data used in the validation of the proposed model. Section IV
presents the traditional Markov chain model commonly used
in previous literature. Since such Markov model is not able
to accurately capture and reproduce all the relevant statistical
properties of spectrum use in the time domain, it is extended
with adequate deterministic and stochastic DC models, which
are presented in Sections V and VI, respectively. The validity
and accuracy of the developed model is assessed and verified
in Section VII. The importance of disposing of accurate
models of spectrum use, as the one presented in this work,
for the design and evaluation of novel DSA/CR techniques is
highlighted with a practical case study in Section VIII. Finally,
Section IX summarizes the research carried out in this work.

II. RELATED WORK AND MOTIVATION

A. Previous Work based on Continuous-Time Markov Chains

From the point of view of a DSA/CR network, spectrum use
can adequately be modeled by means of a Markov chain with
two states, one indicating that the channel is busy (i.e., used
by a primary user and therefore not available for opportunistic
access) and the other one indicating that it is idle (i.e., available
for secondary use). A popular channel model in DSA/CR
research is the well-known two-state Continuous-Time Markov
Chain (CTMC) model, where the channel remains in one state
for a random time period before switching to the other state.
The state holding time or sojourn time is modeled as an
exponentially distributed random variable.

The CTMC model has widely been employed in the study of
various aspects of DSA/CR networks such as Medium Access
Control (MAC) protocols for spectrum sharing [35], [36],
MAC-layer sensing schemes [37]–[39], adaptive spectrum
sensing solutions [40], the sensing-throughput tradeoff [41],
[42] and the performance of DSA/CR sensor networks [43].

Although the CTMC model has widely been used in the
literature, some works based on empirical measurements [44]–
[48] have demonstrated that state holding times are not expo-
nentially distributed in practice. In particular, it was found
that state holding times are more adequately described by
means of generalized Pareto [44], a mixture of uniform and
generalized Pareto [45], [46], hyper-Erlang [45], [46], general-
ized Pareto and hyper-exponential [47], as well as geometric
and log-normal [48] distributions. Based on the conclusions
from previous modeling works, a more appropriate model is
therefore the Continuous-Time Semi-Markov Chain (CTSMC)
model, where the state holding times can follow any arbitrary
distribution. As a result, some works have considered CTSMC
models. This is the case, for instance, of [49], [50], which
consider a CTSMC model where the busy/idle periods are
exponentially/Erlang-distributed, respectively.

B. Previous Work based on Discrete-Time Markov Chains

In the two-state Discrete-Time Markov Chain (DTMC)
model the time index set is discrete. According to this model,
the channel remains in a certain state at each step, with
the state changing randomly between steps. The behavior
of the channel is described by means of a set of transition
probabilities between states.

The DTMC model has widely been used in the DSA/CR
literature as well. For instance, it has been used to analyze
the performance of MAC [51] and joint MAC/sensing [52]
frameworks for opportunistic spectrum access, dynamic chan-
nel selection strategies [53], opportunistic scheduling policies
[54], channel selection schemes [55] based on the interference
temperature model [56], and the voice-service capacity of
DSA/CR systems under both ideal [57] and imperfect [58]
spectrum sensing conditions, as well as under quality-of-
service restrictions [59].

As opposed to the continuous-time case, and to the best of
the authors’ knowledge, the suitability of the DTMC channel
model in describing the statistical properties of spectrum
occupancy patterns in real systems has not been evaluated
and assessed in the literature before1. This means that an
important volume of research in DSA/CR has been based on
assumptions or oversimplifications that have not been validated
with empirical measurement data and, more importantly, that
future research works based on the DTMC channel model will
also suffer from the same drawback due to the non-existence
of appropriate DTMC modeling approaches capable to capture
the relevant statistical properties of spectrum occupancy in
the time domain. In this context, this work covers such
deficiencies and fills the existing gaps by evaluating the ability
of the DTMC model to reproduce the statistical properties
of spectrum use in real radio communication systems, and
extending the conventional DTMC model with appropriate
deterministic and stochastic DC models.

1A DTMC model could be characterized by discrete-time distributions for
state holding times instead of a set of transition probabilities between states.
While the former approach has received some attention [48], the latter, which
has widely been employed in the literature, remains unexplored and is studied
in this work.
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III. MEASUREMENT SETUP AND METHODOLOGY

The employed measurement configuration (see Figure 1)
relies on a spectrum analyzer setup where different external
devices have been added in order to improve the detec-
tion capabilities and hence the accuracy and reliability of
measurements. The design is composed of two broadband
discone-type antennas covering the frequency range from 75
to 7075 MHz, a Single-Pole Double-Throw (SPDT) switch to
select the desired antenna, several filters to remove undesired
overloading (FM) and out-of-band signals, a low-noise pre-
amplifier to enhance the overall sensitivity and thus the ability
to detect weak signals, and a high performance spectrum
analyzer to record the spectral activity. The spectrum analyzer
is connected to a laptop via Ethernet and controlled using the
Matlab’s Instrument Control Toolbox. A tailor-made software
controls all the measurement process by means of commands
in Standard Commands for Programmable Instruments (SCPI)
format using the Virtual Instrument Standard Architecture
(VISA) standard and TCP/IP interface.

Various spectrum bands (see Table I) were measured from
our department’s building at UPC Campus Nord in a urban
environment in Barcelona, Spain (latitude: 41◦ 23’ 20” N;
longitude: 2◦ 6’ 43” E; altitude: 175 meters). Most of the
measured bands were analyzed in the selected building’s
rooftop, which represents a strategic location with direct line-
of-sight to several transmitting stations located a few tens
or hundreds of meters away from the antenna and without
buildings blocking the radio propagation. The measurement
equipment was placed inside the building, however, for the
DECT and ISM bands since they are used by short-range radio
technologies more commonly deployed in indoor environ-
ments. These measurement locations were carefully selected in
order to maximize the receiving signal-to-noise ratio and hence
ensure a reliable and accurate estimation of the true busy/idle
states for the channels of the measured bands. Although this
work does not present results for all the spectrum bands shown
in Table I, the proposed model was developed and validated
based on channels from all the measured bands and radio
technologies.

Each band was measured across a time span of 7 days, from
Monday midnight to Sunday midnight. This measurement
period enabled us not only to capture a high number of signal
samples (see Table I), but also to appreciate any potential pat-
tern on spectrum use (e.g., channel usage variations between
weekdays and weekends as well as variations at different
times along days/nights). Measurements were performed using
average detection and with a resolution bandwidth of 10
kHz, which allows to resolve signals in frequency even for
narrowband technologies such as TETRA and GSM/DCS. The
external amplifier shown in Figure 1 along with the spectrum
analyzer’s internal amplifier (≈25 dB gain) result in an overall
sensitivity around −130 dBm/10 kHz, which guarantees a
reliable estimation of the true spectrum occupancy.

Before validating the proposed model with the captured
empirical data, it was first necessary to extract the binary
channel occupancy pattern by determining which power sam-
ples measured by the spectrum analyzer correspond to busy

Discone antenna
AOR DN753

75 – 3000 MHz

Spectrum analyzer
Anritsu Spectrum
Master MS2721B
9 kHz – 7.1 GHz

Discone antenna
JXTXPZ-100800-P
3000 – 7075 MHz

SPDT switch
DC – 18 GHz

FM band stop filter
Rejection 20 – 35 dB

88 – 108 MHz

Low pass filter
DC – 3000 MHz

High pass filter
3000 – 7000 MHz

Low noise amplifier
Gain: 8 – 11.5 dB

Noise figure: 4 – 4.5 dB
20 – 8000 MHz

Fig. 1. Measurement setup employed in this study.

TABLE I
SPECTRUM BANDS MEASURED IN THIS WORK.

Measured Frequency No. of No. of Avg. sweep
band (MHz) channels samples time (secs)

TETRA UL 410–420 399 199013 3.04
TETRA DL 420–430 399 195956 3.08

E-GSM 900 UL 880–915 174 156460 3.86
E-GSM 900 DL 925–960 174 158147 3.82
DCS 1800 UL 1710–1785 374 125986 4.80
DCS 1800 DL 1805–1880 374 128615 4.70

DECT 1880–1900 10 178388 3.39
ISM 2400–2500 13 105940 5.70

channels and which others to idle ones. To detect whether
a channel is used by a licensed user, a number of different
signal detection methods, referred to as spectrum sensing
algorithms in the context of DSA/CR, have been proposed
in the literature [60]–[62]. The existing solutions provide
different tradeoffs among required sensing time, complexity
and detection capabilities. Their practical applicability, how-
ever, depends on how much information is available about
the primary user signal. In the most generic case no prior
information is available. If only low time-resolution power
measurements of the spectrum utilization are available, the
application of advanced techniques such as feature detection
methods results infeasible and the energy detection method is
the only possibility left [63], which is able to work irrespective
of the signal to be detected. Due to its simplicity and relevance
to the processing of power measurements, energy detection has
been a preferred approach for many past spectrum studies and
also constitutes the spectrum sensing method considered in this
work. Energy detection compares the received signal energy
in a certain channel to a properly set decision threshold2. If
the signal lies above the threshold the channel is declared to
be busy (i.e., occupied by the licensed system). Otherwise the
channel is supposed to be idle (i.e., available for secondary

2To determine the decision threshold, the antenna of Figure 1 was replaced
with a matched load in order to measure the system noise. For each measured
channel, the threshold was then set as the maximum noise power measured
plus a 3-dB margin to avoid false alarms. On the other hand, the high signal-to-
noise ratio conditions under which most of the measured signals were received
guarantee that the probability of misdetection is minimized, thus resulting in
a nearly ideal detection performance under such conditions.
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usage). Following this principle, the power samples measured
for each channel were mapped to binary busy/idle states. Based
on the resulting binary sequences, the lengths of busy and
idle periods were extracted and the proposed DTMC channel
model was validated with empirical data.

It is worth noting that the average sweep times shown in
Table I indicate that the resulting sampling rates of swept
spectrum analyzers as the one employed in this work are
not comparable to that of the measurement configurations
employed in other modeling studies [44]–[47], which may
result in undersampling of the measured signals and thus the
misdetection of channel state changes between consecutive
channel observations. The binary occupancy pattern observed
in such a case, although inaccurate, is still interesting and
useful due to two main reasons. The first one is that such
binary pattern can be thought of as the occupancy perception
of a DSA/CR user that periodically senses the channel and
observes its state at discrete time instants. Therefore, spec-
trum analyzer measurements are useful to model spectrum
occupancy from the point of view of the DSA/CR user
perception. Since the overall behavior of a DSA/CR network
is driven by the primary occupancy pattern as perceived by the
sensing nodes, analytical studies and simulations of DSA/CR
systems should rely on spectrum use models that are able
to accurately capture and reproduce the channel occupancy
pattern in real channels as observed by DSA/CR terminals.
On the other hand, short idle periods resulting from bursty
data transmissions are difficult to exploit for secondary usage
in practice3, which from a practical point of view is equivalent
to a busy channel state. Exploitable idle periods normally arise
when there is no primary user making use of the channel,
which can reliably be detected with a spectrum analyzer within
reasonable accuracy limits in spite of its limited time resolu-
tion. Moreover, it is worth noting that spectrum analyzers have
successfully been applied in previous modeling studies [48]
and have the advantage of enabling high dynamic ranges, high
sensitivities and wideband measurements. The empirical data
captured for various radio technologies enabled an adequate
validation of the model developed in this work.

A more detailed and in-depth description of the employed
measurement setup and its configuration as well as the con-
sidered methodological procedures can be found in [64], [65].

IV. DISCRETE-TIME MARKOV CHAIN

At a given time instant, a primary radio channel may
be either busy or idle, meaning that the temporal spectrum
occupancy pattern of a primary radio channel can adequately
be modeled by means of a two-state Markov chain. Let’s
denote as S = {s0, s1} the space state for a primary radio
channel, where the s0 state indicates that the channel is idle
and the s1 state indicates that the channel is busy. The channel
state S(t) at time t can either be S(t) = s0 or S(t) = s1. As
discussed in Section II, this work focuses on the particular
case of DTMCs, where the time index set is discrete, i.e.

3For instance, the time-slot duration is 14.167 ms in TETRA, 577 µs in
GSM/DCS and 417 µs in DECT. The IEEE 802.11 protocol, used by wireless
local area networks operating in the ISM band, defines inter-frame spaces in
the order of 50 µs or less.

S0 S1p00 p11

p01

p10

Fig. 2. Discrete-Time Markov Chain (DTMC) model.

t = tk = kTs, where k is a non-negative integer representing
the step number and Ts is the time period between consecutive
transitions or state changes4. The behavior of a DTMC can be
described by means of a set of transition probabilities between
states (see Figure 2), which can be expressed in matrix form
as:

P =

[
p00 p01
p10 p11

]
(1)

where pij represents the probability that the system transi-
tions from state si to state sj . Note that the channel model
commonly used in previous work assumes a stationary (time-
homogeneous) DTMC, where the transition matrix P is con-
stant and independent of the time instant t.

The DC of a channel, henceforth denoted as Ψ, is a
very straightforward metric and an accurate reproduction is
a minimum requirement for any time-dimension model of
spectrum use. The DC can be defined from both probabilistic
and empirical perspectives. While the former results more
appropriate for theoretical analyses, the latter results more con-
venient for validation with empirical data. From an empirical
viewpoint, the DC can be estimated as the fraction of time
that the channel is declared to be busy based on the procedure
described in Section III. From a probabilistic viewpoint, the
DC can be defined as the probability that the channel is busy.
The probabilities that the model of Figure 2 is in each of its
states in the long term are given by [66]:

P (S = s0) =
p10

p01 + p10
= 1−Ψ (2)

P (S = s1) =
p01

p01 + p10
= Ψ (3)

Thus, the DTMC model can be configured to reproduce any
arbitrary DC Ψ by selecting the transition probabilities as
p01 = p11 = Ψ and p10 = p00 = 1−Ψ, which yields:

P =

[
1−Ψ Ψ
1−Ψ Ψ

]
(4)

In order to verify the ability of the DTMC model of equation
4 to reproduce the DC of real channels, the empirical data
captured in the measurement campaign were used to estimate
the transition probabilities of each channel as:

p̂ij =


ηij
ηi , ηi > 0

0, ηi = 0 and i = j

1, ηi = 0 and i 6= j

(5)

4 Ts can be associated to the average sweep times shown in Table I.
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where ηij represents the number of transitions from state si to
sj occurring in the empirical sequences, and ηi =

∑n−1
k=0 ηik

is the number of times that the channel resides in state si. The
two last cases of equation 5 are included in order to account
for channels that are always busy (Ψ = 1) or always idle
(Ψ = 0). The theoretical DC corresponding to the estimated
probabilities p̂ij was estimated based on equation 3 and
compared to the true empirical DC of the channel, appreciating
a perfect agreement for channels of all the considered radio
technologies. This indicates that the DTMC model of equation
4 is able to accurately reproduce the DC of real channels5.

Nevertheless, reproducing not only the DC but also the
lengths of the busy and idle periods is an important char-
acteristic of a realistic time-dimension model of spectrum
use. While this feature is explicitly represented in the case
of CTMC and CTSMC models by means of the sojourn time
distributions, there is no mean to account for the state holding
times in the case of the DTMC model. Therefore, the DTMC
model would not be expected to reproduce the statistical
properties of the lengths of busy and idle periods of real
channels. To verify this statement, the DTMC channel model
was simulated with the transition probabilities p̂ij estimated
from empirical data for all the measured channels. During the
simulation of the DTMC model, the durations of the state
holding times Ti were computed as Ti = η̃i · Ts, where η̃i
represents the number of consecutive steps the channel resides
in state si during the simulation before switching to the other
state, and Ts is the average sweep time corresponding to the
considered channel (see Table I). The statistical distributions
of busy and idle periods obtained by means of simulation
were computed and compared to the empirical distributions
of busy and idle periods observed in the measured channels.
This comparison was performed for each measured channel of
every radio technology. Figures 3–6 show the results obtained
for some selected channels. The results are shown in terms of
the Complementary Cumulative Distribution Function (CCDF)
and with axes in logarithmic scale for a finer detail of
accuracy. The time evolution of the DC computed over 1-
hour periods is also shown. In general, the obtained results
indicate, as expected, that the DTMC channel model is not able
to reproduce the statistical properties of the lengths of busy
and idle periods of real channels. In some cases, however, the
distributions resulting from simulations showed a noticeable
agreement with their empirical counterparts (Figure 6 shows
an example). After analyzing the empirical data in detail, it
was observed that the convergence/divergence of empirical and
simulation results can be explained in terms of the channel
load variation pattern. When the channel is sparsely used (low
load), the length of idle periods is significantly higher than
that of busy ones. On the other hand, when the channel is
subject to an intensive usage (high load), the length of busy
periods increases while idle periods become notably shorter.
Since the considered DTMC model is parametrized (i.e., the

5 For CTMC and CTSMC models, any arbitrary DC can also be reproduced
by appropriately selecting the parameters of the sojourn time distributions
in order to provide mean values E{Ti} such that Ψ = E{T1}/(E{T0} +
E{T1}) [66], where E{T0} and E{T1} are the mean sojourn times in the
idle and busy states, respectively.

transition probabilities are configured) based on the long-term
average load of the channel (i.e., the average DC of the whole
measurement period), it is not able to capture the channel
load variations and, as a result, the DTMC model cannot
reproduce the resulting lengths of busy and idle periods. This
can clearly be appreciated in Figures 3–5, where the channel
load, characterized in terms of the DC, varies with the time
and the distributions obtained by simulation diverge from the
real ones. The exception, however, corresponds to the case of
channels with constant load patterns, where the average DC
matches the instantaneous DC at all times, and simulation and
empirical results then agree as shown in Figure 6.

Since the probabilities of the transition matrix P depend on
the DC Ψ, and Ψ changes over time, this means that the binary
occupancy pattern of real channels cannot be modeled, in
general, by means of a stationary (time-homogeneous) DTMC6

as widely considered in DSA/CR research (see Section II-B).
As a result, a non-stationary (time-inhomogeneous) DTMC
should be considered, with a time-dependent transition matrix:

P(t) =

[
1−Ψ(t) Ψ(t)
1−Ψ(t) Ψ(t)

]
(6)

where t = tk = kTs as previously defined.
In the stationary case of equation 4, Ψ represents a constant

parameter. However, in the non-stationary case of equation
6, Ψ(t) represents a time-dependent function that needs to
be characterized in order to characterize the DTMC channel
model in the time domain. Appropriate and accurate DC
models for Ψ(t) are therefore required.

The results derived from the empirical data indicated the
existence of two well-defined types of channel load variation
patterns, namely patterns with an important and remarkably
predominant deterministic component (e.g., Figures 3 and 4)
and patterns where the carried load appears to vary following
a random behavior (e.g., Figure 5). Based on this observation,
adequate DC models of Ψ(t) for both cases are developed
in Sections V and VI following deterministic and stochastic
modeling approaches, respectively.

V. DETERMINISTIC DUTY CYCLE MODEL

In many interesting and important cases, the load varia-
tion pattern of primary radio channels is characterized by
a predominant deterministic component arising from social
behavior and common habits, as it can clearly be appreciated
in Figures 3 and 4. These examples correspond to cellular
mobile communication systems, namely E-GSM 900 and
DCS 1800. Nevertheless, it is interesting to note that similar
patterns were also observed in some channels from other radio
technologies such as e.g. TETRA. Moreover, deterministic
patterns with different shapes were also identified in other
cases. This section focuses on the analysis and modeling of the
spectrum occupancy patterns commonly observed in cellular
mobile communication systems, which are a clear example
of predominantly deterministic behaviors. The same modeling

6A stationary DTMC may be appropriate for a limited time period only
if the modeled system shows approximately stationary behavior during this
period. Otherwise, a non-stationary DTMC modeling approach is necessary.
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Fig. 3. Empirical and DTMC-simulated distributions of busy and idle periods
along with DC time evolution for DCS 1800 DL channel 70.
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Fig. 4. Empirical and DTMC-simulated distributions of busy and idle periods
along with DC time evolution for E-GSM 900 DL channel 23.
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Fig. 5. Empirical and DTMC-simulated distributions of busy and idle periods
along with DC time evolution for TETRA DL channel 340.
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Fig. 6. Empirical and DTMC-simulated distributions of busy and idle periods
along with DC time evolution for TETRA UL channel 375.

approach can be used and extended in order to represent other
particular patterns that may be found in practice.

The load variation pattern of a cellular system was studied
in [67] by means of time series analysis and Auto-Regressive
Integrated Moving Average (ARIMA) models. In this section,
however, an alternative approach is developed based on the
observation that the time evolution of Ψ(t) over time periods
of certain length exhibits a clear and predominant deterministic
component. Moreover, the analysis of the empirical data
corresponding to E-GSM 900 and DCS 1800 indicated that
the variation pattern of Ψ(t) is periodic with a period of
one day and a slightly different shape between weekdays and
weekends due to the lower traffic load normally associated
with weekends. Two different shape types for Ψ(t) were iden-
tified in the empirical data. The first shape type was normally
observed in channels with low/medium loads (average DCs)
as in the example of Figure 3, while the second one was more
frequently observed in channels with medium/high loads as it
is the case of Figure 4. Similar patterns were observed in [68].

A. Deterministic DC Model for Low/Medium Loads

The shape of Ψ(t) in this case can be approximated by the
summation of M bell-shaped exponential terms centered at
time instants τm, with amplitudes Am and widths σm:

Ψ(t) ≈ Ψmin +

M−1∑
m=0

Ame
−( t−τmσm

)
2

, 0 ≤ t ≤ T (7)

where Ψmin = min {Ψ(t)} and T is the time interval
over which Ψ(t) is periodic (i.e., one day). The analysis of
empirical data indicated that Ψ(t) can accurately be described
by means of M = 3 terms with τ1 and τ2 corresponding to
busy hours and τ0 = τ2 − T , as illustrated in Figure 7.

Based on empirical results, the approximations A0 = A1 =
A2 = A and σ0 = σ1 = σ2 = σ are acceptable without
incurring in excessive errors, which simplifies the model.
Notice that A determines the average value of Ψ(t) in the time
interval [0, T ], denoted as Ψ, and it can therefore be expressed
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Ψ(t)

tTτ0 0

A0 A1 A2σ0
σ1 σ2

τ1 τ2

Fig. 7. Parameters of the deterministic DC model for low/medium loads.

as a function of Ψ taking into account that:

Ψ =
1

T

∫ T

0

Ψ(t)dt ≈ Ψmin +
A

T

M−1∑
m=0

∫ T

0

e−( t−τmσ )
2

dt (8)

Solving equation 8 for A and substituting in equation 7 yields:

Ψ(t) ≈ Ψmin +
2T
(
Ψ−Ψmin

)
σ
√
π

· f
l/m
exp (t, τm, σ)

f
l/m
erf (T, τm, σ)

(9)

where Ψ ≥ Ψmin and:

f l/mexp (t, τm, σ) =

M−1∑
m=0

e−( t−τmσ )
2

(10)

f
l/m
erf (T, τm, σ) =

M−1∑
m=0

[
erf
(τm
σ

)
+ erf

(
T − τm
σ

)]
(11)

Equations 9, 10 and 11 constitute the empirical DC model
of Ψ(t) for low/medium loads.

B. Deterministic DC Model for Medium/High Loads

The shape of Ψ(t) in this case can be approximated by
an expression based on a single bell-shaped exponential term
centered at time instant τ , with amplitude A and width σ:

Ψ(t) ≈ 1−Ae−( t−τσ )
2

, 0 ≤ t ≤ T (12)

where T is the time interval over which Ψ(t) is periodic
(i.e., one day). The model is illustrated in Figure 8, with τ
corresponding to the hour with the lowest activity levels.

As in the previous case, A determines the average value
of Ψ(t) in the time interval [0, T ] and it can therefore be
expressed as a function of Ψ taking into account that:

Ψ =
1

T

∫ T

0

Ψ(t)dt ≈ 1− A

T

∫ T

0

e−( t−τσ )
2

dt (13)

Solving equation 13 for A and substituting in equation 12
yields:

Ψ(t) ≈ 1−
2T
(
1−Ψ

)
σ
√
π

· f
m/h
exp (t, τ, σ)

f
m/h
erf (T, τ, σ)

(14)

Ψ(t)

tTτ0

A
σ1

Fig. 8. Parameters of the deterministic DC model for medium/high loads.

where:

fm/hexp (t, τ, σ) = e−( t−τσ )
2

(15)

f
m/h
erf (T, τ, σ) = erf

( τ
σ

)
+ erf

(
T − τ
σ

)
(16)

Equations 14, 15 and 16 constitute the empirical DC model
of Ψ(t) for medium/high loads.

C. Deterministic DC Model Validation and Applicability

The objective of this section is to evaluate the ability of
the DC models of Sections V-A and V-B to describe the
time evolution of Ψ(t) with sufficient accuracy. To this end,
the empirical values of Ψ(t) were averaged among 24-hour
periods of the same category (i.e., weekdays and weekends) in
order to reduce the unavoidable random component of empir-
ical data and extract the deterministic one. The mathematical
expressions of equations 9–11 and 14–16 were then fitted
to the empirical data by means of curve fitting procedures.
The results are shown in Figures 9 and 10, indicating that
the proposed DC models are able to accurately reproduce the
deterministic component of Ψ(t) in real-world channels.

In order to facilitate to researchers the application of the
models in analytical studies as well as in simulations, realistic
values of the models’ parameters were estimated based on
the empirical measurements and by means of curve fitting
procedures. The fitted results are shown in Table II. The values
are specified in “(minimum; average; maximum)” format. In
addition to the models’ parameters, the parameter:

κ =
Ψweekends

Ψweekdays

(17)

has also been included in order to characterize the load level
differences observed between weekdays and weekends.

Notice that Ψ has not been specified in Table II since this
parameter is assumed to be a variable that can be configured
in order to reproduce the shape of Ψ(t) with any arbitrary
mean Ψ. Regarding this aspect, it is important to mention
that, based on the captured empirical data, it was observed
that the DC model for low/medium loads is valid from Ψ = 0
to Ψ ≈ 0.60/0.70. The maximum Ψ for which the model
is valid depends on the particular set of selected parameters.
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Fig. 9. Validation of the deterministic DC model for low/medium loads.
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Fig. 10. Validation of the deterministic DC model for medium/high loads.

For the average values of the fitted parameters in Table II, the
model is valid up to Ψ = 0.58 for weekdays and Ψ = 0.55 for
weekends. On the other hand, the DC model for medium/high
loads is valid from Ψ ≈ 0.46/0.85 to Ψ = 1. Again, the
minimum Ψ for which the model is valid depends on the
particular set of selected parameters. For the average values of
Table II, the model is valid down to Ψ = 0.80 for weekdays
and Ψ = 0.75 for weekends. Invalid configurations can readily
be identified since in these cases Ψ(t) surpasses the interval
[0, 1] within which it must mandatorily be confined.

It is worth noting that the values shown in Table II cor-
respond to empirical measurements performed at a particular
location and, as such, are unavoidably affected by the local
habits. For example, the usual lunch time in Spain is around
2:00pm and it takes place within a lunch-break of a couple of
hours. This schedule may usually be delayed about one hour
on weekends. This behavior is indeed clearly appreciated in
Figure 9. Habits may be different in other countries (e.g., see
Figure 2 of [69] and Figure 4 of [70]), which may result in
distinct shapes for Ψ(t). The DC model of equations 9–11 and

TABLE II
FITTED VALUES OF THE DETERMINISTIC DC MODEL PARAMETERS.

Load Parameter Weekdays Weekends

Low/
/Med

Ψmin (0.00; 0.04; 0.31) (0.00; 0.05; 0.35)
τ1 (hours) (10.74; 11.65; 12.28) (12.04; 13.03; 14.05)
τ2 (hours) (17.80; 18.99; 20.09) (19.28; 20.42; 21.54)
σ (hours) (3.00; 3.88; 4.31) (2.49; 3.59; 5.83)

κ (0.18; 0.51; 0.82)

Med/
/High

τ (hours) (2.94; 3.65; 4.08) (5.64; 6.44; 7.82)
σ (hours) (1.99; 2.81; 6.03) (2.29; 3.41; 8.00)

κ (0.69; 0.97; 1.00)

14–16 can still be valid by fitting the mathematical equations
to different empirical data. For instance, an earlier lunch time
would result in a lower value of τ1 while a shorter lunch-break
(if any) would result in τ1 and τ2 being closer each other. The
DC models, nevertheless, would still be valid.

Finally, the DC models of Sections V-A and V-B are envis-
aged to reproduce the deterministic pattern normally observed
in cellular mobile communication systems such as E-GSM 900
and DCS 1800, which may also be present in other systems.
Nevertheless, this does not imply that the model is always
applicable to such type of systems. For instance, if the system
is studied over a relatively short time period (e.g., a few hours),
social behavior and external events, which may not be easily
predicted, may have significant short-term impact on channel
usage. This may cause the deterministic component of Ψ(t)
to loss importance with respect to the random one and, as a
result, the occupancy of a single channel may experience high
and unpredictable variations (e.g., see [71]). In such a case,
deterministic DC models may be no longer valid and stochastic
modeling approaches, as the one discussed in Section VI,
might be a more appropriate alternative.

VI. STOCHASTIC DUTY CYCLE MODEL

The traffic load experienced in a radio channel is normally
the consequence of a significant number of random factors
such as the number of incoming and outgoing users, the
resource management policies employed in the system, and
so forth. As a result, the channel usage level, represented by
means of Ψ(t), is itself a random variable (see the example of
Figure 5). In such a case, a stochastic modeling perspective
appears to be a more convenient approach.

The following discussion assumes ergodicity on Ψ(t),
meaning that the expected values of its moments, such as its
mean and variance, can be estimated as the time averages of
the moments, which can be computed from a single sample
(i.e, realization) of the process provided that it is sufficiently
long. Notice that the sequence of Ψ(t) values empirically
derived from the measurements for a given channel represents
a single realization of the underlying stochastic process, which
is not enough to draw any conclusions on its ergodicity.
Nevertheless, as it will be shown later on, the model developed
under this assumption results valid and accurate in practice.

In order to determine the statistical properties of the under-
lying stochastic process based on the captured empirical data,
Ψ(t) was obtained for each channel as the time evolution of
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the DC computed over periods of various lengths, ranging
from a few minutes up to one hour. Assuming ergodicity,
the Probability Density Function (PDF) of the underlying
stochastic process can be estimated as the empirical PDF
resulting from the empirical Ψ(t) values for the considered
channel. The empirical PDFs obtained with this procedure
were compared to various bounded PDF models. Based on
curve fitting procedures, it was found that the empirical PDFs
of Ψ(t) can accurately be fitted with the beta distribution
[72] and the Kumaraswamy distribution [73], as it can be
appreciated in the examples of Figures 11–16. The PDF for
the former is given by:

fBx (x;α, β) =
1

B(α, β)
xα−1(1− x)β−1, x ∈ (0, 1) (18)

where α > 0 and β > 0 are shape parameters and B(α, β) is
the beta function given by [74, 6.2.1]:

B(α, β) =

∫ 1

0

zα−1(1− z)β−1dz (19)

while the PDF for the latter is given by:

fKx (x; a, b) = abxa−1(1− xa)b−1, x ∈ (0, 1) (20)

where a > 0 and b > 0 are shape parameters.
The beta distribution is a well-known and widely used distri-

bution that can be found in many popular software simulation
packages, thus facilitating the implementation of the stochastic
DC model in simulation tools. However, it might present some
difficulties in analytical studies due to the complex expression
of its PDF. The Kumaraswamy distribution is similar to the
beta distribution, but much simpler to use in analytical studies
due to the simpler closed form of its PDF [75]. Therefore,
while the former may be more appropriate for simulations,
the latter may be more convenient for analytical studies.

Both distributions can be configured to reproduce any
arbitrary mean DC, Ψ, by properly selecting the distribu-
tion’s parameters. In particular, the mean value of the beta
and Kumaraswamy distributions are related with their shape
parameters as [72], [73]:

Ψ =
α

α+ β
= bB

(
1 +

1

a
, b

)
(21)

Notice that equation 21 can be satisfied for a given Ψ with
different combinations of shape parameters α, β and a, b. The
particular selection of the shape parameters determines the
resulting shape of the distributions. In order to facilitate to re-
searchers the application of the models and their configuration,
an exhaustive analysis of the empirical data was performed
in order to identify any potential relation between the shape
parameters and the resulting channel occupancy pattern in the
time domain. Based on such analysis, it was found that the
PDF shapes observed in real channels can be classified into six
elemental archetypes, each with a characteristic time-domain
pattern. Each archetype is defined by its load level (L: low,
M: medium, and H: high) as well as its load pattern (type I:
very bursty, and type II: moderately bursty, but not constant).
The range of shape parameters for each archetype and the
corresponding time-domain pattern are (see Figures 11–16):

• Case L.I (α < 1, β ≥ 1): The channel is used (Ψ(t) > 0)
sporadically and remains unused (Ψ(t) ≈ 0) most of the
time.

• Case L.II (1 < α < β): The channel is used (Ψ(t) > 0)
regularly by traffic with low activity factors.

• Case M.I (α < 1, β < 1): The channel is subject to an
intermittent use, where high-load periods are followed by
low-load periods in a similar proportion.

• Case M.II (α > 1, β > 1, α ∼ β): The channel usage
level oscillates weakly around the average level.

• Case H.I (α ≥ 1, β < 1): The channel is used (Ψ(t) ≈ 1)
most of the time, with some periods of lower occupancy
levels (Ψ(t) < 1).

• Case H.II (α > β > 1): The channel is not fully used
(Ψ(t) < 1) but subject to a constant, intesive usage.

The range of values indicated for the parameters of the beta
distribution is also valid for the Kumaraswamy distribution
by replacing α with a and β with b in type-I cases. In type-II
cases, the resulting Kumaraswamy distribution is more difficult
to control since the same constraints on a and b may hold for
various load levels. Based on the above archetypes and the
corresponding range of shape parameters, along with equation
21, the parameters of the models can be configured in order to
reproduce not only arbitrary mean load levels but also various
occupancy patterns observed in real channels.

VII. MODEL VALIDATION

The aim of this section is to assess the ability of the overall
model, composed of the DTMC along with the deterministic
and stochastic DC models, to reproduce with sufficient ac-
curacy not only the mean DC of the channel but also the
statistical properties of the busy and idle periods.

To this end, the DTMC model of Figure 2 was simulated
for a sufficiently high number of iterations (transitions) and at
different iterations during the simulation, the transition matrix
P(t) (see equation 6) was updated based on the DC models of
Sections V and VI. In the deterministic case, Ψ(t) is computed
based on equations 9 and 14, and taking into account the
simulation time instant. In the stochastic case, Ψ(t) is drawn
from a beta distribution whose parameters are estimated based
on the sample mean and sample variance of the empirical Ψ(t).
The stationary case widely considered in previous DSA/CR
research (see equation 4), where the DC is fixed and equal to
the mean value, i.e. Ψ(t) = Ψ ∀t, was also simulated. The
statistical distributions obtained in both cases were compared
to the real ones derived from empirical data. The obtained
results are shown in Figures 17–19.

As it can be appreciated in Figures 17 and 18, the determin-
istic DC models are able to closely follow and reproduce the
deterministic component of Ψ(t) in the time domain and, as a
result, the overall model is able to reproduce not only the mean
DC of the channel, Ψ, but also the statistical properties of busy
and idle periods, which does not occur with the stationary case
where the DTMC is simulated without appropriate DC models.

In the case of the stochastic DC model, the generated
sequence of Ψ(t) values does not follow the empirical Ψ(t)
values of the channel in the time domain, as it can be
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Fig. 11. Stochastic DC models: case L.I.
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Fig. 12. Stochastic DC models: case M.I.
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Fig. 13. Stochastic DC models: case H.I.
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Fig. 14. Stochastic DC models: case L.II.
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Fig. 15. Stochastic DC models: case M.II.
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Fig. 16. Stochastic DC models: case H.II.
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Fig. 17. Empirical and DTMC-simulated distributions of busy and idle
periods along with DC time evolution for DCS 1800 DL channel 70.

appreciated in Figure 19. However, it is important to note that
the stochastic approach is not aimed at reproducing the time
evolution of a particular realization of the stochastic process
Ψ(t), but the statistical properties thereof. The results shown
in Figure 19 demonstrate that this modeling approach is also
a valid and significantly accurate alternative to reproduce the
statistical properties of busy and idle periods of real channels.

Taking into account the logarithmic axes representation of
Figures 17–19, it can be appreciated that the distributions
of busy and idle periods are reproduced with a significant
level of precision. In order to objectively assess the accu-
racy, the Kolmogorov-Smirnov (KS) test [76] was performed
over the obtained simulation results in order to compute the
KS distances DKS(T0) and DKS(T1), for idle and busy
periods respectively, between the empirical distribution func-
tions and the corresponding counterparts obtained by means
of simulation. Such study indicated that DKS(T0) = 0.08
and DKS(T1) = 0.09 (Figure 17), DKS(T0) = 0.13 and
DKS(T1) = 0.06 (Figure 18), while DKS(T0) = 0.06 and
DKS(T1) = 0.09 (Figure 19), which highlights the remarkably
good accuracy of the proposed modeling approach.

Before concluding this section, it is worth noting that
the practical implementation of the stochastic DC model in
simulation tools may not lead to accurate results if some
observations are not carefully taken into account. In particular,
the DTMC has to be iterated a sufficient number of times, N ,
before updating P(t) according to the stochastic DC model.
During such amount of iterations, the transition probabilities
of the DTMC must remain unaltered. After such N itera-
tions, a new value of Ψ(t) can be generated from a beta or
Kumaraswamy distribution, and used to update the transition
matrix P(t) for the next N iterations. If the transition matrix
is updated excessively fast (e.g., every iteration) the overall
model may not be able to accurately reproduce the lengths of
busy and idle periods.

In conclusion, the obtained results demonstrate that the non-
stationary DTMC model along with the proposed deterministic
and stochastic DC models is able to accurately reproduce not
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Fig. 18. Empirical and DTMC-simulated distributions of busy and idle
periods along with DC time evolution for E-GSM 900 DL channel 23.
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Fig. 19. Empirical and DTMC-simulated distributions of busy and idle
periods along with DC time evolution for TETRA DL channel 340.

only the mean occupancy but also the statistical properties of
busy and idle periods observed in real channels.

VIII. CASE STUDY

The aim of this section is to demonstrate and illustrate
the importance of employing realistic and accurate spectrum
occupancy models in the design and evaluation of DSA/CR
techniques. To this end, this section considers a simple
medium access scheme where a CR terminal senses a primary
radio channel periodically and accesses the channel whenever
it is sensed as idle. Although the case study of this section may
be considered to be trivial, it will suffice to illustrate the impact
of the realism and accuracy of spectrum occupancy models on
the design and performance evaluation of more sophisticated
solutions such as adaptive spectrum sensing techniques, MAC
protocols, MAC-layer sensing schemes, dynamic channel se-
lection algorithms and opportunistic scheduling policies.

Let’s assume that the CR terminal senses and accesses the
channel on a frame basis as illustrated in Figure 20. Each
frame is composed of K slots with duration Ts. The CR
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terminal senses the channel in the first slot of the frame
and decides to transmit or not in the following K − 1 slots
based on the sensing result (perfect sensing is assumed). If
the CR terminal senses the channel as busy and decides not
to transmit, the following slots may be classified as respected
slots if the primary user transmits in such slots, or missed
slots otherwise. On the other hand, a secondary transmission
may result in interfered slots if the primary is also active, or
exploited slots otherwise, as illustrated in Figure 20.

The objective is to evaluate the performance of the con-
sidered medium access scheme when the sequence of channel
occupancy states corresponds to: a) empirical measurements of
real channels, b) occupancy sequences generated with the non-
stationary DTMC model along with DC models, and c) occu-
pancy sequences generated with the stationary DTMC model
alone. The comparison of the results obtained in these cases
will provide a quantitative illustration of the consequences of
considering (un)realistic and (in)accurate spectrum occupancy
models in DSA/CR research.

Table III shows the channel access statistics obtained for
the above mentioned sequences of channel occupancy states
in the case of a DECT channel. As it can be appreciated, the
proposed non-stationary approach (labeled as “DTMC+DC”)
is able to provide accurate estimations of the true channel
use statistics. The results provided by the stationary approach
(labeled as “DTMC”), although less accurate, can be consid-
ered acceptable as well. This can be explained by the fact
that the considered metrics represent the average number of
slots for each type in the long term. As such, they depend
on the average number of busy/idle slots or, in other words,
the average DC of the channel. Since both DTMC model-
ing alternatives (stationary and non-stationary) are able to
accurately reproduce the channel’s average DC, the obtained
average values for the considered metrics agree in both cases
with the empirical, real ones. However, it is worth noting that
in M.I-type channels (referring to the nomenclature used in
Section VI), the stationary DTMC model was observed to
fail in providing acceptable results while the proposed non-
stationary DTMC model was still able to do so, as illustrated
in Table IV. Therefore, although the stationary DTMC model
is able to reproduce the true mean DC value of the channel,
this does not guarantee the reliability of average performance
metrics obtained when applying such model. On the other
hand, the proposed non-stationary DTMC approach provides
accurate estimates of average performance metrics.

The average value of performance metrics, although useful,
may not provide a full impression on the real performance of

TABLE III
CHANNEL ACCESS STATISTICS FOR DECT CHANNEL 9 (STOCHASTIC DC

MODEL AND K = 5)

Slot type Empirical DTMC+DC DTMC
Respected 2.67% 2.75% 1.16%
Missed 8.34% 8.31% 9.95%
Interfered 8.25% 8.30% 9.73%
Exploited 80.74% 80.64% 79.16%

TABLE IV
CHANNEL ACCESS STATISTICS FOR TETRA DL CHANNEL 340

(STOCHASTIC DC MODEL AND K = 5)

Slot type Empirical DTMC+DC DTMC
Respected 41.37% 41.15% 23.84%
Missed 7.39% 7.23% 25.25%
Interfered 7.20% 7.81% 24.72%
Exploited 44.04% 43.81% 26.19%

a DSA/CR technique under study. For example, let’s assume
that a primary user tolerates a short communication disruption
provided that its duration is below a given threshold δd. In such
a case, the probability that the duration of interference periods
exceeds δd would be a more useful performance metric than
the average number of interfered slots. As shown in Figure
21, the distribution of interference periods resulting from the
medium access technique under study is accurately reproduced
by the proposed non-stationary DTMC modeling approach,
which is not the case of the stationary DTMC model. As a
result, the real interference to a primary user is accurately
estimated with the former, while it is significantly underes-
timated with the latter. Concretely, while the application of
the stationary DTMC model results in errors up to 9% in
the predicted interference probability, the prediction provided
by the proposed non-stationary DTMC model is around 1%
below the real value obtained from the real channel occupancy
pattern. Therefore, even when the stationary DTMC approach
is able to provide accurate estimates of average metrics, it fails
in providing acceptable results for other more sophisticated
performance metrics. These results demonstrate and highlight
the importance of employing realistic and accurate spectrum
occupancy models, as the one proposed in this work, for the
design and performance evaluation of DSA/CR techniques.

IX. CONCLUSIONS

Due to the opportunistic nature of the DSA/CR principle,
the behavior and performance of a secondary network de-
pends on the spectrum occupancy patterns of the primary
system. A realistic and accurate modeling of such patterns
becomes therefore essential. This work has demonstrated that
the stationary DTMC model widely used in the DSA/CR
literature in order to the describe the binary occupancy pat-
tern of primary channels in the time domain is not able to
reproduce relevant properties of spectrum use. As a result, a
non-stationary DTMC model with deterministic and stochastic
DC models has been developed. The proposed approach has
been validated with extensive empirical measurement results,
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Fig. 21. Interference results for DECT channel 9. Upper graph: distribution
of interference periods (K = 5). Lower graph: Probability of interference as
a function of the sensing frequency (δd = 4 secs).

demonstrating that it is able to accurately reproduce not only
the mean occupancy level but also the statistical properties of
busy and idle periods observed in real-world channels. The
importance of realistically and accurately modeling spectrum
use in the design and evaluation of DSA/CR techniques has
been highlighted with a practical case study.
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