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Abstract—Primary channel statistics have recently gained in-
creasing attention due to its remarkable role in the performance
improvement of Dynamic Spectrum Access (DSA)/Cognitive Ra-
dio (CR) systems. These statistics can be calculated from the
outcomes of spectrum sensing, which is the well-known method
used to identify the available instantaneous opportunities in
the spectrum. Computing statistical information from spectrum
sensing, however, may sometimes be unreliable due to the fact
that spectrum sensing is imperfect in the real world and errors
are likely to occur in the sensing decisions. In this context, this
work provides a detailed analysis of a broad range of primary
channel statistics under Imperfect Spectrum Sensing (ISS) and
finds a set of closed-form expressions for the calculated statistics
under ISS as a function of the original primary channel statistics,
probability of error, and the employed sensing period. In addi-
tion, the obtained mathematical expressions are employed to find
and propose novel estimators for the primary channel statistics,
which outperform the existing estimators in the literature and can
provide accurate estimations of the original statistics even under
high probability of error of spectrum sensing. The correctness
of the obtained analytical expressions and the accuracy of the
proposed estimators are corroborated with both simulation and
experimental results.

Index Terms—Cognitive radio, dynamic spectrum access, pri-
mary activity statistics, spectrum sensing.

I. INTRODUCTION

THE spectrum scarcity problem has been exacerbated
by continuing developments in the wireless communi-

cation technology while using the same limited amount of
electromagnetic spectrum resource. The inefficient use and
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management of the radio spectrum has further increased the
challenge to provide the bandwidth required by emerging
technologies such as the Internet of Things (IoT), which is
expected to support a myriad of wirelessly interconnected
devices in the coming few years [1]. In addition, it has been
reported by several international regulatory bodies, including
the Federal Communications Commission (FCC) in the USA
and the Office of Communications (Ofcom) in the UK, that
the majority of the allocated spectrum bands are significantly
underutilised due to an old-fashioned policy based on a
fixed spectrum allocation [1], [2]. Dynamic Spectrum Access
(DSA) [3] based on the Cognitive Radio (CR) [4] concept
was introduced as a revolutionary solution to provide high
spectrum utilization for wireless communications and meet
the ever-increasing demand for spectrum. In DSA/CR systems,
the frequency spectrum will be exploited dynamically instead
of allocating different bands statically for particular wireless
services, in which secondary (unlicensed) users (SUs) will
be permitted to use the frequency channels of the spectrum
opportunistically when the primary (licensed) users (PUs) are
absent within their allocated channels, so as to ensure that no
harmful interference will occur between SUs and PUs. The
focus of this work is on interweave spectrum sharing where
SUs are interested in the available opportunities in the time
domain of the primary channels [4].

SUs in DSA/CR systems are required to have spectrum
awareness about the activity and inactivity patterns of the
primary channels in order to know when (i.e., the time
instants) and where (i.e., the frequency channels) they can
access the primary spectrum or must vacate it upon the return
of PUs. Spectrum sensing is one of the methods used to
provide spectrum awareness to DSA/CR systems, by which the
instantaneous state of the primary channel is sensed directly
by the SUs and a binary decision (either idle or busy) is made
at each sensing event. Sensing decisions are made based on a
predefined signal processing algorithm such as the widely used
energy detection (ED) method [5]–[7], and they are directly
affected by the Signal to Noise Ratio (SNR) of the sensed PUs
signals. Therefore, when the detected PU signal is sufficiently
strong (i.e., high SNR), Perfect Spectrum Sensing (PSS) can
be achieved. However, in reality DSA/CR devices are more
likely to operate under low SNR conditions and therefore
errors will often occur in the sensing decisions, which leads
to an Imperfect Spectrum Sensing (ISS) scenario.
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In addition to observing the instantaneous status of the
primary channel, sensing decisions can further be exploited
to provide a broad range of statistical information about the
primary channels. Primary channel statistics have recently
gained increasing attention due to its remarkable role in the
performance improvement of DSA/CR systems, and they can
find a wide range of applications in wireless communication
networks [8]–[10]. The utilization of these statistics include,
but is not limited to:

• Spectrum prediction [11]–[14], in which the historical
statistical data of the spectrum can be exploited, using
various spectrum prediction algorithms (e.g., machine
learning [12]), to predict or infer the future behaviour
of the PUs and thus their spectrum activity.

• Spectrum sensing [15], in which an appropriate threshold
for energy detection of the spectrum sensing can be
selected based on the statistical information.

• Channel selection [16]–[19], in which DSA/CR systems
can exploit the statistical parameters of the primary
channels to select the most appropriate one that can be
offered to the SUs.

• Radio resource management decisions [20]–[22], in
which statistical information can also help DSA/CR
systems to take decisions to mitigate the interference
between PUs and SUs, optimise the system performance
and enhance the utilization of the spectrum.

Since channel statistics are estimated from the outcomes of
spectrum sensing, they may differ from the original statistics
of the channel. Under high SNR conditions (i.e., under PSS),
reasonable accuracy can be obtained, which is only affected
by the time resolution imposed by the used sensing period
[23]. On the other hand, under low SNR conditions (i.e.,
under ISS) channel statistics can significantly be inaccurately
estimated due to the presence of errors in the spectrum sensing
observations.

In the literature, primary channel statistics have been anal-
ysed under PSS (as in the recent work [23]) more comprehen-
sively than under ISS. The majority of existing work where
ISS has been considered has only focused on the estimation
of the channel duty cycle (DC) (e.g., [24]–[26]), paying less
attention to other equally important statistical properties of
the primary channel. Few studies (e.g., [27]–[29]) have also
considered the mean of the idle/busy periods of the primary
channel, but they are constrained to a typically (exponential)
distribution to model the idle/busy periods, which in practical
scenarios is not a realistic assumption [30]. In this context,
reconstruction techniques have been proposed to improve
the estimation of the primary channel statistics under ISS
[31]–[33]. These works however suffer from the following
limitations: 1) no closed-form expressions are provided for
these statistics, only heuristic estimation methods in the form
of algorithms, and 2) the employed reconstruction algorithms
assume perfect knowledge about some of the primary channel
parameters (e.g., the minimum idle/busy period). The limi-
tations of previous works and the lack of a comprehensive
research work in the literature that analyses a wider range
of primary channel statistics under ISS motivates this work,

where a detailed analysis for various statistical parameters of
the primary channel under ISS is carried out and a relation
between the estimated statistics under ISS and the original
statistics is provided in closed-form without introducing any
constraints or requiring any prior-knowledge on the primary
channel activity. The contribution of this work can therefore
be highlighted as follows:

1) A set of closed-form expressions is developed for the
statistics calculated under ISS as a function of the original
primary statistics, probability of error, and the employed
sensing period. The obtained expressions are useful in
DSA/CR systems since they can provide insights on how
spectrum sensing configurations can affect the estimation
of statistics in the presence of sensing errors.

2) A set of novel estimators is proposed to accurately
estimate the primary channel statistics even under high
probability of error. The proposed estimators outperform
the conventional methods proposed in the literature to
estimate the statistics of the primary channel.

3) The derived analytical results for the estimated statistics
and the proposed estimators are both validated by means
of simulations and hardware experiments.

The remainder of this work is organised as follows. First,
Section II introduces the system model considered in this
work. Section III provides an explanation about the analysis
procedures followed in this work to analyse primary channel
statistics. Afterwards, a broad range of statistical parameters
are analysed including the minimum period (Section IV), the
mean period (Section V), the channel duty cycle (Section VI)
and the distribution of the periods (Section VII), where novel
analytical results and estimators are obtained. The correctness
of the conducted analysis for the statistical parameters, includ-
ing the closed-form expressions and the novel estimators, is
validated by means of simulations and hardware experiments
in Section VIII. Finally, conclusions are drawn in Section IX.

II. SYSTEM MODEL

We consider a single primary channel which is occupied
by a PU and this occupation is represented by a sequence
of idle/busy periods in the time-domain. The idle and busy
times can be modelled to follow a particular distribution that
according to the experimental measurements in [30] can be
accurately described by a Generalised Pareto (GP) distribution.
In our analysis, however, this information will be considered to
be unknown to the DSA/CR system. By performing spectrum
sensing, DSA/CR systems will try to estimate the duration of
the idle/busy periods of a primary channel. This is achieved by
observing the state of the channel periodically at a constant
time interval referred to as the sensing period Ts . At every
sensing event a binary decision is made, either H0 to represent
the idle state or H1 to represent the busy state of the PU
channel. As a result, the output of spectrum sensing will
be a set of binary decisions. Based on these decisions the
idle/busy periods of a primary channel can be estimated. When
the channel state toggles from idle to busy or reversely, the
time interval elapsed since the last toggle will be calculated
as T̂i to represent the PSS estimation of the real periods Ti
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Fig. 1: Estimation of idle/busy periods based on spectrum
sensing: (a) under perfect spectrum sensing (PSS), (b) under
imperfect spectrum sensing (ISS) [31].

(where i refers to the type of the period, i = 0 for idle
and i = 1 for busy), as shown in Fig. 1(a). This estimation
provides a reasonable level of accuracy for the individual
periods of Ti when no errors are assumed to occur in the
sensing events Hi (i.e., the accuracy is only affected by the
time resolution Ts of the periodic sensing events). However,
occasional errors in the sensing events Hi are likely to occur
in practice, especially under low SNR conditions. These errors
can be categorised into two types: false alarms (which occur
when an idle state of the channel is reported as a busy state)
and missed detections (which occur when a busy state of the
channel is reported as an idle state). The estimated periods in
the presence of the sensing errors are denoted as T̆i to represent
the ISS estimation of the real periods Ti as shown in Fig.
1(b), where the impact of a false alarm is illustrated. Sensing
errors can be modelled as i.i.d. random variables for each
sensing event with a fixed probability of false alarm Pf a and a
fixed probability of missed detection Pmd , which is a common
modelling approach in the DSA/CR literature. The value of
these probabilities in a practical scenario will depend on the
system’s operating conditions as well as the configuration
of the employed spectrum sensing algorithm, which is an
algorithm-specific problem and therefore is out of the scope of
this work. However, the system designer can always know how
a particular sensing algorithm will behave in terms of these
error probabilities (e.g., in an energy detector these proba-
bilities can be easily related to the selected energy decision
threshold). Therefore, these probabilities can be assumed to
be known in practice. The characterisation of the spectrum
sensing algorithm performance in terms of its false alarm and
missed detection probabilities makes the analysis presented in
this work valid irrespective of the specific spectrum sensing
algorithm implemented in the DSA/CR system.

III. ESTIMATION OF THE PRIMARY CHANNEL ACTIVITY
STATISTICS UNDER ISS

DSA/CR systems can estimate the idle/busy periods of the
primary channel by using spectrum sensing decisions. Based
on a sufficiently large set of such periods [34], DSA/CR
systems can also obtain the statistical information of the
primary channel activity. Since this work is concerned with
the estimation of the primary activity statistics in the presence
of sensing errors (i.e., considering a realistic spectrum sensing
scenario), the set of idle/busy periods observed under ISS,
as shown in Fig. 1(b), is the one considered in this work
for statistics calculations. Therefore, a set {T̆i,n}

Niss

n=1 of Niss

periods observed under ISS is used to estimate the statistical
parameters of the primary channel.

The idle/busy period durations T̆i observed under ISS are
affected by several configuration parameters of the spectrum
sensing algorithm. These parameters include the employed
sensing period Ts and the selected value of probability of
error (i.e., Pf a and Pmd), which in the case of ED depend on
the selected energy decision threshold [5]–[7]. The estimation
of the primary activity statistics under ISS, therefore, can be
analysed based on these parameters and a relationship between
the statistics estimated under ISS and the original statistics
can be found as a function of Ts , Pf a and Pmd . Note that the
analysis of the sample size parameter Niss , which represents
the number of idle/busy periods used to calculate the statistics,
is out of the scope of this work and therefore it will be assumed
to be sufficiently large to provide accurate results.

In order to find a mathematical relationship between the
statistics estimated under ISS and the original statistics of the
primary channel, three stages of analysis are required:

1) Finding a relationship between the statistics estimated
under ISS and the statistics estimated under PSS.

2) Finding a relationship between the statistics estimated
under PSS and the original statistics.

3) Combining the second relationship with the first one
results in the desired relationship (i.e., the relationship
between the statistics estimated under ISS and the original
statistics).

The relationship obtained in the first stage of this analysis
should be as a function of the sensing period Ts , Pf a, and Pmd

as mentioned above, while the relationship in the second stage
should only be as a function of the sensing period Ts as PSS
is assumed with no sensing errors (i.e., Pf a = Pmd = 0).
Since the second relationship (i.e., between the statistics
estimated under PSS and the original statistics) has already
been analysed in [23], this work focuses on the analysis of the
first relationship (i.e., between the statistics estimated under
ISS and the statistics estimated under PSS), which has not been
covered yet in the literature. Furthermore, the final relationship
between the statistics estimated under ISS and the original
statistics will then be achieved by combining the analysis
presented in [23] with the analysis carried out in this work,
which considers the same set of statistical metrics as in [23],
namely the minimum period, mean of periods, duty cycle, and
distribution of the estimated periods.
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IV. ESTIMATION OF THE MINIMUM PERIOD

The minimum period µi of a primary channel is the shortest
time that a primary channel can be active or inactive. This
parameter can help determine the minimum opportunistic time
that can be exploited by the SUs, or the minimum time that the
SUs need to wait until a new opportunity becomes available
in the primary channel. DSA/CR systems can estimate the
minimum period µi of the channel from spectrum sensing
observations. Although this parameter has already been studied
in [23] under PSS and in [31] under ISS, we summarise the
analysis here in order to make this work self-contained.

Based on a given set {T̂i,n}
Npss

n=1 of Npss periods observed
under PSS, [23] found that the estimated minimum period
µ̂i under PSS can be expressed as a function of the original
minimum period µi and sensing period Ts ≤ µi as [23, eq.
(7)]:

µ̂i = min
(
{T̂i,n}

Npss

n=1

)
=

⌊
µi
Ts

⌋
Ts, Ts ≤ µi , (1)

where b·c denotes the floor operator. As it can be appreciated
from (1), the minimum period can be correctly estimated under
PSS (i.e., µ̂i = µi) when Ts is an integer submultiple of the
true minimum (i.e., when Ts = µi/k, k ∈ N+), otherwise µ̂i <
µi [23]. On the other hand, the minimum period cannot be
estimated correctly under ISS because the minimum observed
period would be equal to the duration of a single sensing error,
which in turn is equal to the sensing period Ts [31], no matter
how low the probability of error is. Therefore, from a given set
{T̆i,n}

Niss

n=1 of Niss periods observed under ISS, the minimum
estimated period would be [31]:

µ̆i = min
(
{T̆i,n}

Niss

n=1

)
= Ts . (2)

As it can be noticed from the observed periods under ISS
in Fig. 1(b), the minimum busy (idle) period would be the
duration of the single false alarm (missed detection), which
is equal to Ts (the same applies to missed detections during
busy periods). Since (2) shows that the estimated minimum
period under ISS is solely dependent on the sensing period
Ts (regardless of the original value of the minimum), it is
impossible to find, from this expression, an exact relationship
between the estimated minimum period µ̆i under ISS and the
original minimum µi .

V. ESTIMATION OF THE MEAN PERIOD

A. Relationship Between the Mean Estimated Under ISS and
the Original Mean

One of the main statistical moments of the primary channel
activity is the mean of the idle/busy periods. For a given set
{T̂i,n}

Npss

n=1 of Npss periods estimated under PSS, the mean
E(T̂i) of the observed periods can be found by using the
conventional (unbiased) sample mean estimator m̂i:

E(T̂i) ≈ m̂i =
1

Npss

Npss∑
n=1

T̂i,n. (3)

The analysis in [23] has shown that the estimated mean
under PSS is approximately equal to the true mean of the

channel periods (i.e., m̂i ≈ E(Ti)). However, this does not
apply to the estimated mean under ISS because when an error
occurs in the sensing decisions (either false alarm or missed
detection), it will divide the original period duration Ti into
shorter fragments. As it can be noticed in Fig. 1(b), a single
false alarm error could corrupt the estimation of an idle period
T0 period by dividing it into three new shorter periods, which
are T̆0, T̆1, and T̆0. The duration of the T̆1 fragment is equal
to the sensing period Ts , while the durations of the two T̆0
fragments are random, depending on the position of the error
itself within T0.

Due to this phenomenon, the number of the observed
periods under ISS (Niss) would not be the same as the number
of the periods observed under PSS (Npss). As shown in
Fig. 1(b), with a single false alarm, the original T0 period
is estimated as two T̆0 periods and one T̆1 period. If there
were two false alarms within T0, then they would result in
three T̆0 and two T̆1 periods, and so on. Therefore, each false
alarm would produce an additional estimated idle period T̆0
and an additional estimated busy period T̆1 (a similar effect
would be observed with missed detections). As a result, the
number Niss of periods observed under ISS will be greater
than the actual number of the periods N (unlike under PSS
where no additional periods are produced during the spectrum
sensing process and thus Npss = N). Therefore, from a given
set {T̆i,n}

Niss

n=1 of Niss periods estimated under ISS, the mean
calculated using the following conventional mean estimator:

E(T̆i) ≈ m̆i =
1

Niss

Niss∑
n=1

T̆i,n (4)

would be highly inaccurate (indeed, much lower than the
original value of the mean). In order to find the relationship
between the mean calculated under ISS E(T̆i) and the original
value of the mean E(Ti) of the channel periods, we first find
its relationship with the mean calculated under PSS E(T̂i)
as discussed in Section III. The analysis will consider first,
without loss of generality, the sample mean for idle periods
(i.e., m̆0, m̆i with i = 0), and will be later on generalised to
both idle and busy periods. We start by taking the primary
channel periods illustrated in Fig. 1(b) as an example, which
leads to the following estimated mean idle period:

m̆0 =
1
2

2∑
n=1

T̆0,n =
T̆0,1 + T̆0,2

2
=

T̂0 − T̆1
2

=
T̂0 − Ts

2
.

The mean of the idle periods in Fig. 1(b) is the summation
of the two idle periods (T̆0,1 and T̆0,2) divided by 2. This
summation is equivalent to subtracting T̆1 from the estimated
period T̂0 under PSS, knowing that the produced T̆1 period
from the false alarm error is equal to the sensing period Ts .
In addition, the denominator 2, which represents the number
of the estimated idle periods under ISS (i.e., Niss), can be
substituted with the number of estimated idle periods under
PSS plus one for the single false alarm (i.e., Niss = Npss + 1).
This analysis of a single false alarm error within a single idle
period can be extended to a general form for any arbitrary
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number of false alarm errors within the whole set of idle
periods as:

m̆0 =

∑Npss

n=1 T̂0,n − Nf aTs

Npss + Nf a
, (5)

where Nf a represents the total number of false alarm errors
in the entire set of observed periods, which can be found by
multiplying the entire number of H0 events (i.e., idle sensing
decisions) by the probability of false alarm Pf a as:

Nf a =

∑Npss

n=1 T̂0,n

Ts
· Pf a . (6)

The above analysis has assumed no missed detection errors in
the sensing decisions of the channel periods (i.e., Pmd = 0).
However, missed detections will also lead to the presence of
some idle periods in the observed set. In order to find m̆0
by taking into consideration the missed detections as well, a
similar logic can be followed so that (5) can be rewritten to
include both sensing error types:

m̆0 =

∑Npss

n=1 T̂0,n − Nf aTs + NmdTs

Npss + Nf a + Nmd
, (7)

where Nmd represents the total number of missed detection
errors in the entire set of observed periods, which can be
found by multiplying the entire number of H1 events (i.e.,
busy sensing decisions) by the probability of missed detection
Pmd as:

Nmd =

∑Npss

n=1 T̂1,n

Ts
· Pmd . (8)

By substituting (6) and (8) in (7):

m̆0 =

∑Npss

n=1 T̂0,n −
∑Npss

n=1 T̂0,n
Ts

· Pf aTs +

∑Npss
n=1 T̂1,n

Ts
· PmdTs

Npss +

∑Npss
n=1 T̂0,n

Ts
· Pf a +

∑Npss
n=1 T̂1,n

Ts
· Pmd

.

(9)
Note that from (3), the term

∑Npss

n=1 T̂i,n can be written as:

Npss∑
n=1

T̂i,n = Npssm̂i . (10)

Therefore, using (10), expression (9) can be further simplified
to:

m̆0 =
m̂0(1 − Pf a) + m̂1Pmd

1 + m̂0
Ts

Pf a +
m̂1
Ts

Pmd

. (11)

Although this equation can provide a mathematical relation-
ship between the calculated mean under ISS, m̆0, and the
calculated mean under PSS, m̂0, it lacks some accuracy. The
reason is that there are some particular cases where sensing
errors (either false alarms or missed detections) will not
produce additional estimated idle periods (T̆0) and additional
estimated busy periods (T̆1). This will be analysed in the
following two particular cases.
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Fig. 2: Case I: A single sensing error at the edge of a period.

1) Case I: When a sensing error occurs at the edge of the
idle/busy period being estimated, the error period itself will
be adjacent to an actual idle/busy period. As a result, there
will be no additional fragments produced from such sensing
error (i.e., such error will only affect the duration of the
estimated periods). As shown in Fig. 2, the false alarm at the
left edge of the idle period is combined with the adjacent busy
period and both together are estimated as a single T̆1 period.
Therefore, there will be no additional T̆0 or T̆1 fragments
produced from such false alarm. The previous analysis has
assumed that all the sensing errors will produce an additional
idle period and an additional busy period without considering
the case explained here. To include this effect, the denominator
in (7), which represents the number of the estimated periods
under ISS (Niss = Npss + Nf a + Nmd), should not count
the cases when the sensing errors occur at the edges of the
periods since there will be no additional periods produced by
them. This can be attained by knowing that each estimated
idle/busy period will have two edges and these edges are
actually represented by sensing events H0/H1. Therefore, the
problem in the denominator of (7) and the resulting (11) can
be solved by subtracting the two sensing events for both edges
from the total number of sensing events within a single period
(or 2Npss from the entire number of the events within Npss

periods), and thus (11) can be corrected to yield:

m̆0 =
m̂0(1 − Pf a) + m̂1Pmd

1 +
(
m̂0
Ts
− 2

)
Pf a +

(
m̂1
Ts
− 2

)
Pmd

. (12)

2) Case II: It is also possible that some sensing errors will
not produce additional periods when they occur in bursts (i.e.,
they are consecutive to other errors). Fig. 3 shows how two
false alarms could occur consecutively in the sensing decisions
of an idle period. Although most of the sensing errors could
occur as individual periods (with a duration equal to Ts), it is
still possible, depending on the probability of errors, to observe
some occasional consecutive errors in the sensing decisions.
However, the probability of having two consecutive errors is
higher than that of having three or more consecutive errors as
also illustrated in [33, Fig. 3]. Consecutive errors will have
the same effect of a single error in terms of the number of
produced fragments. For example, the resulting fragments of
the two consecutive false alarms in Fig. 3 are T̆0, T̆1, and T̆0,
which is the same number of the resulting fragments from a
single false alarm observed in the example of Fig. 1(b). Since



IEEE TRANSACTIONS ON COMMUNICATIONS 6

 

 

𝑻𝒔 𝑻𝟎 

𝓗𝟏 

𝑻𝟏 

𝓗𝟏 𝓗𝟏 𝓗𝟎 𝓗𝟎 𝓗𝟏 𝓗𝟏 𝓗𝟏 𝓗𝟎 𝓗𝟎 𝓗𝟏 𝓗𝟏 𝓗𝟎 𝓗𝟎 𝓗𝟏 𝓗𝟎 𝓗𝟏

˘ 

busy busy fa fa 

  

𝑻𝟎 𝑻𝟎 ˘ ˘ 
Fig. 3: Case II: Two consecutive sensing errors in the middle
of a period.

there are no additional fragments resulting from consecutive
errors, the denominator of (7) should therefore not count these
errors. This can be attained by subtracting the probability of
having consecutive errors from the probability of error itself.
As a result, Pf a and Pmd used in (6) and (8) to find Nf a and
Nmd should be modified as follows:

P̀f a = Pf a −

∞∑
j=2

P j
f a
= Pf a

(1 − 2Pf a

1 − Pf a

)
, (13)

where P̀f a represents the probability of having false alarms as
separate periods, irrespective of being consecutive or isolated
errors, and the relation

∑∞
j=2 a j = a2

1−a , when |a| < 1 has been
used to obtain the final expression in (13). This also applies
to the consecutive missed detection errors, hence:

P̀md = Pmd −

∞∑
j=2

P j
md
= Pmd

(
1 − 2Pmd

1 − Pmd

)
. (14)

• Final closed-form expression of the mean:
Taking into account these two special cases, the final

expression for the estimated mean idle period under ISS, m̆0,
is obtained by introducing (13) and (14) into the denominator
of (12), which yields the final analytical result:

m̆0 =
m̂0(1 − Pf a) + m̂1Pmd

1 +
(
m̂0
Ts
− 2

)
P̀f a +

(
m̂1
Ts
− 2

)
P̀md

. (15)

The achieved expression in (15) provides the relationship
between the mean m̆0 estimated under ISS (for idle periods)
and the means m̂i estimated under PSS (for both idle and
busy periods), which satisfies the first stage of the analysis as
mentioned in Section III. On the other hand, the relationship
between the mean m̂i estimated under PSS and the original
mean mi was already analysed in [23], which shows that
the population mean of the periods observed under PSS is
exactly equal to the population mean of the original periods
(i.e., E(T̂i) = E(Ti)), thus providing the second stage of the
analysis as mentioned in Section III. Therefore, by assuming
a sufficiently large sample size (i.e., number of periods), the
sample means in (15) can be substituted by population means
so that the second relationship can be combined with the first
one to obtain the desired relationship between the estimated

mean under ISS and the original mean, which completes the
third stage of the analysis mentioned in Section III as:

E(T̆0) =
E(T0)(1 − Pf a) + E(T1)Pmd

1 +
(
E(T0)
Ts
− 2

)
P̀f a +

(
E(T1)
Ts
− 2

)
P̀md

. (16)

A similar analysis can also be followed to find the estimated
mean of the busy periods E(T̆1). Therefore, the final closed-
form expression for the estimated mean of the idle/busy
periods E(T̆i) under ISS can be expressed in a compact form
as:

E(T̆i) =
E(Ti) − (−1)i E(T0)Pf a + (−1)i E(T1)Pmd

1 +
(
E(T0)
Ts
− 2

)
P̀f a +

(
E(T1)
Ts
− 2

)
P̀md

, (17)

which provides the final expression for the estimated mean
E(T̆i) under ISS as a function of the original mean E(Ti),
probabilities of error Pf a and Pmd , and sensing period Ts .

B. Mean Estimation Method

The closed-form expression obtained in (17), which pro-
vides a mathematical relationship between the estimated mean
under ISS and the original mean, suggests a novel method to
accurately estimate the original mean of the channel periods
from the outcomes of the ISS estimates. In this section we
propose a novel method to accurately estimate the original
value of the mean of the idle/busy periods from the ISS
observations. The analytical result in (17) summarises two
expressions, namely the estimated mean of idle periods under
ISS (when i = 0) and the estimated mean of busy periods
under ISS (when i = 1), which can be rewritten in explicit
form as:

E(T̆0) =
E(T0) − E(T0)Pf a + E(T1)Pmd

1 +
(
E(T0)
Ts
− 2

)
P̀f a +

(
E(T1)
Ts
− 2

)
P̀md

, (18)

E(T̆1) =
E(T1) + E(T0)Pf a − E(T1)Pmd

1 +
(
E(T0)
Ts
− 2

)
P̀f a +

(
E(T1)
Ts
− 2

)
P̀md

. (19)

The above two expressions can be solved for the original mean
periods (i.e., E(T0) and E(T1)) as shown in (20) and (21),
respectively. By substituting (21) in (20), a new expression can
be derived in (22), denoted as E(T̃0), to represent the accurate
estimation of the original mean E(T0) as a function of the
estimated mean under ISS (i.e., E(T̆0) and E(T̆1)), probability
of errors (i.e., Pf a and Pmd), and sensing period (i.e., Ts).
Similarly, the estimator for the mean of the busy periods
E(T̃1) can be derived by substituting (20) in (21). The final
expression for the mean estimator of the idle/busy periods
E(T̃i) can be written in compact form as shown in (24).

The result in (24) represents a novel method to accurately
estimate the original value of the mean of the channel periods
based on the estimated mean under ISS, probabilities of error,
and sensing period. It is worth mentioning that the probabilities
of error Pf a and Pmd , and sensing period Ts are all configured
based on the spectrum sensing algorithm used by the CR
system and are known. Therefore, this method is applicable in
real hardware implementations, as opposed to most previous
estimation methods proposed in the existing literature.
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E(T0) = E(T̆0)
1 − 2P̀f a − 2P̀md

1 − Pf a −
P̀f a

Ts
E(T̆0)

+ E(T1)

P̀md

Ts
E(T̆0) − Pmd

1 − Pf a −
P̀f a

Ts
E(T̆0)

(20)

E(T1) = E(T̆1)
1 − 2P̀f a − 2P̀md

1 − Pmd −
P̀md

Ts
E(T̆1)

+ E(T0)

P̀f a

Ts
E(T̆1) − Pf a

1 − Pmd −
P̀md

Ts
E(T̆1)

(21)

E(T0) ≈ E(T̃0) =

(
E(T̆0)(1 − Pmd) − E(T̆1)Pmd

) (
1 − 2P̀f a − 2P̀md

)
(
1 − Pf a −

P̀f a

Ts
E(T̆0)

) (
1 − Pmd −

P̀md

Ts
E(T̆1)

)
−

(
P̀f a

Ts
E(T̆1) − Pf a

) (
P̀md

Ts
E(T̆0) − Pmd

) (22)

E(T1) ≈ E(T̃1) =

(
E(T̆1)(1 − Pf a) − E(T̆0)Pf a

) (
1 − 2P̀f a − 2P̀md

)
(
1 − Pf a −

P̀f a

Ts
E(T̆0)

) (
1 − Pmd −

P̀md

Ts
E(T̆1)

)
−

(
P̀f a

Ts
E(T̆1) − Pf a

) (
P̀md

Ts
E(T̆0) − Pmd

) (23)

E(Ti) ≈ E(T̃i) =

(
E(T̆i)(1 − P1−i

md
Pi
f a
) − E(T̆1−i)P1−i

md
Pi
f a

) (
1 − 2P̀f a − 2P̀md

)
(
1 − Pf a −

P̀f a

Ts
E(T̆0)

) (
1 − Pmd −

P̀md

Ts
E(T̆1)

)
−

(
P̀f a

Ts
E(T̆1) − Pf a

) (
P̀md

Ts
E(T̆0) − Pmd

) (24)

VI. ESTIMATION OF THE DUTY CYCLE

The Duty Cycle (DC), also referred to as the channel
occupancy rate or the channel load, is one of the most
widely used statistical metrics in DSA/CR systems due to
its simplicity and applicability in enhancing the efficiency
of spectrum utilization. The DC of the primary channel is
traditionally estimated from the spectrum sensing observations
by dividing the number of busy sensing events over the entire
number of the sensing events [35]–[37]. Although this is
the most widely used approach in the literature, it is highly
sensitive to the presence of the sensing errors. On the other
hand, and in the context of PSS, another method was proposed
in [38] to estimate the DC of the primary channel denoted as
Ψ, based on the mean of the idle/busy periods as:

Ψ =
E(T1)

E(T1) + E(T0)
. (25)

The observed idle/busy periods T̂i under PSS can serve to
obtain an accurate estimation for the mean E(T̂i) and thus an
accurate estimation of the DC of the primary channel as well.
However, in the ISS scenario, the observed idle/busy periods T̆i
could be significantly corrupted because of the sensing errors,
as explained in Section V, and the estimated mean of these
periods could be highly inaccurate. Therefore, estimating the
DC of the channel under ISS as given in (26), which depends
solely on the mean of the observed periods, would be highly
inaccurate (i.e., Ψ̆ , Ψ).

Ψ̆ =
E(T̆1)

E(T̆1) + E(T̆0)
, Ψ. (26)

An alternative approach is here proposed based on the analysis
presented in Section V and the new mean estimator E(T̃i) in
(24), which can be used to estimate the mean of the idle/busy
periods accurately under ISS even when the probability of
sensing error is high. This estimator can also be exploited
to find the DC of the channel under ISS. Therefore, by

substituting the mean estimator of (24) in (25), a new DC
estimator Ψ̃ is obtained as:

Ψ̃ =
E(T̃1)

E(T̃1) + E(T̃0)
≈ Ψ, (27)

where E(T̃0) and E(T̃1) are the accurate estimations of E(T0)
and E(T1) provided by (22) and (23), respectively, and thus the
obtained Ψ̃ provides an accurate estimation of the true DC Ψ.

VII. ESTIMATION OF THE DISTRIBUTION

A. Relationship Between the Distribution Estimated Under ISS
and the Original Distribution

The idle/busy periods observed from sensing decisions are
integer multiples of the sensing period (i.e., T̆i = kTs , k ∈ N+)
and, as discussed in Section IV, the minimum estimated
period under ISS is Ts , which is due to the occurrence of
isolated sensing errors. As a result, the distribution of the
idle/busy periods estimated under ISS is discretely shaped with
a discrete step of Ts , starting from the minimum period Ts up
to the maximum multiple integer of Ts observed in the channel.
In order to find a closed-form expression for the Probability
Mass Function (PMF) of the idle/busy periods under ISS as a
function of the original PDF, probabilities of error, and sensing
period, this analysis considers, without loss of generality, the
case of idle periods, introducing the false alarms first and
missed detections later on, similar to the procedure followed
in Section V for the estimation of the mean idle period.
• Impact of false alarms:

False alarms occur in the sensing decisions of the idle
periods with a probability Pf a > 0. This means that any
sensing decision H0 within a T0 idle period as shown in
Fig. 1(b) will have a probability of Pf a to be a false alarm,
and a probability of 1 − Pf a not to be a false alarm (i.e.,
to be a correct decision). Consequently, to find the PMF of
idle periods under ISS, denoted as fT̆0

(T̆0 = kTs), we need
to consider all the possible cases in which the observed idle
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Fig. 4: Case I: An idle period T̆0 = kTs observed between two
busy periods without sensing errors.

periods under ISS, T̆0 = kTs , could be affected by the presence
of sensing errors. This can be summarised into three possible
cases, which are analysed in detail below.

1) Case I: In this case, an idle period is observed between
two busy periods without having any false alarms as shown in
Fig. 4. The probability of having such case can be calculated
as:

P(T̆0 = kTs | T̂0 = kTs) = (1 − Pf a)
k, (28)

which is the probability of having k correct decisions in k
sensing events within an idle period (i.e., k non-false alarms).
To find the unconditional PMF of such periods from a set
{T̂0,n}

Npss

n=1 of Npss idle periods observed under PSS, such
probability should be multiplied by the ratio N I

pss/Niss as
follows:

f I
T̆0
(T̆0 = kTs) =

(1 − Pf a)
kN I

pss

Niss
, (29)

where N I
pss represents the number of periods observed under

PSS with a duration equal to kTs (i.e., T̂0 = kTs), which is
given by fT̂0

(T̂0 = kTs)Npss . Thus, (29) can be written as:

f I
T̆0
(T̆0 = kTs) =

(1 − Pf a)
k fT̂0
(T̂0 = kTs)Npss

Niss

= β(1 − Pf a)
k fT̂0
(T̂0 = kTs), (30)

where β is defined to be the ratio Npss/Niss < 1, and it can
be found as (see the Appendix):

β =
Npss

Niss
=

1

1 +
(
E(T0)
Ts
− 2

)
P̀f a +

(
E(T1)
Ts
− 2

)
P̀md

. (31)

The expression obtained in (30) represents the PMF of the
observed ISS idle periods resulting from Case I as shown in
Fig. 4.

2) Case II: Another case where an idle period can be
observed under ISS occurs between a single false alarm and
the edge of the adjacent busy period as shown in Fig. 5. The
probability of having such case is:

P(T̆0 = kTs | T̂0 ≥ (k + 1)Ts) = 2Pf a(1 − Pf a)
k, (32)

which is the probability of having a single false alarm and k
non-false alarms in at least k +1 sensing events within an idle
period. Note the presence of the factor of 2 because this case
could occur at the left and right ends of an idle period next to
a busy period. Therefore, following the same principle as in
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Fig. 5: Case II: An idle period T̆0 = kTs observed between a
busy period and a false alarm.

Case I, the unconditional PMF of such periods can be found
by multiplying (32) by the ratio N I I

pss/Niss as:

f I I
T̆0
(T̆0 = kTs) =

2Pf a(1 − Pf a)
kN I I

pss

Niss
, (33)

where N I I
pss represents the number of periods observed under

PSS with a duration (T̂0 ≥ (k + 1)Ts), which is given by
Npss

(
1 − FT̂0

(kTs)

)
where FT̂0

(kTs) represents the Cumulative
Distribution Function (CDF) of the idle periods observed under
PSS. Thus, (33) can be written as:

f I I
T̆0
(T̆0 = kTs) =

2Pf a(1 − Pf a)
kNpss

(
1 − FT̂0

(kTs)

)
Niss

= 2βPf a(1 − Pf a)
k
(
1 − FT̂0

(kTs)

)
, (34)

The expression obtained in (34) represents the PMF of the
observed ISS idle periods resulting from Case II as shown in
Fig. 5.

3) Case III: The last case where an idle period can be
observed under ISS occurs between two false alarms within
the original idle period as shown in Fig. 6. The probability of
having such case is:

P(T̆0 = kTs | T̂0 ≥ (k + 2)Ts) =

(
T̂0
Ts
− (k + 1)

)
P2
f a(1 − Pf a)

k,

(35)
which is the probability to have two false alarms and k non-
false alarms in at least k + 2 sensing events within an idle
period. For example, if T̂0 = (k + 2)Ts , the result of the above
probability would be P2

f a(1 − Pf a)
k . Therefore, following the

same principle as in Cases I and II, the unconditional PMF of
such periods can be found as:

f I I I
T̆0
(T̆0 = kTs) =

(∑Npss
n=1 T̂ I I I

0,n
Ts

− (k + 1)N I I I
pss

)
P2
f a(1 − Pf a)

k

Niss
,

(36)
where N I I I

pss represents the number of periods observed under
PSS with a duration (T̂0 ≥ (k + 2)Ts) and

∑Npss

n=1 T̂ I I I
0,n is their

summation. Thus, (36) can be written as (37).
The expression obtained in (37) represents the PMF of the

observed ISS idle periods resulting from Case III as shown in
Fig. 6.

The analysis presented so far has considered all the possible
cases that can lead to the observation of an idle period under
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f I I I
T̆0
(T̆0 = kTs) =

(∑∞
m=k+2

(
mTs fT̂0

(T̂0=mTs )
)
Npss

Ts
− (k + 1)Npss

(
1 − FT̂0

((k + 1)Ts)

))
P2
f a(1 − Pf a)

k

Niss

=
NpssP2

f a(1 − Pf a)
k

Niss

©­­«
E(T̂0) −

∑k+1
m=1

(
mTs fT̂0

(T̂0 = mTs)

)
Ts

− (k + 1)
(
1 − FT̂0

((k + 1)Ts)

)ª®®¬
= βP2

f a(1 − Pf a)
k

(
E(T̂0)

Ts
−

k∑
m=1

(
m fT̂0
(T̂0 = mTs)

)
− (k + 1)

(
1 − FT̂0

(kTs)

))
. (37)

f f a

T̆0
(T̆0 = kTs) = β(1 − Pf a)

k

[
fT̂0
(T̂0 = kTs) + 2Pf a

(
1 − FT̂0

(kTs)

)
+ P2

f a

(
E(T̂0)

Ts
−

k∑
m=1

(
m fT̂0
(T̂0 = mTs)

)
− (k + 1)

(
1 − FT̂0

(kTs)

)) ]
.

(38)
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Fig. 6: Case III: An idle period T̆0 = kTs observed between
two false alarms.

ISS (due to false alarms only) and the corresponding PMF
was obtained for each case separately. Therefore, a general
expression for the PMF that jointly considers the three cases
can be obtained by combining (30), (34) and (37) as in (38).

The expression f f a

T̆0
(T̆0 = kTs) obtained in (38) represents

the PMF of the periods observed under ISS as a function of
the corresponding PMF, CDF, and mean period that would be
estimated under PSS as well as the probability of false alarm
and the sensing period. Since the missed detections were not
considered in the previous analysis (i.e., Pmd = 0), next section
studies the effect of the missed detections on the calculation
of the estimated distribution.
• Impact of missed detections:

Under imperfect sensing, missed detections can also occur
in the sensing decisions of the busy states of the channel,
so that a busy state H1 can be incorrectly reported as an
idle state H0. Therefore, any H1 sensing event within a T1
period will have a probability of Pmd to be misdetected, and
a probability of 1−Pmd not to be misdetected. Since there will
be additional idle periods T̆0 resulting from missed detections
as shown in Fig. 7, we need to consider these periods as well
when calculating the PMF of the idle periods. Therefore, the
probability of observing an idle period within a busy period
due to missed detections can be calculated as:

P(T̆0 = kTs | T̂1 >= (k+2)Ts) =

(
T̂1
Ts
− (k + 1)

)
Pk
md(1−Pmd)

2,
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Fig. 7: An idle period T̆0 = kTs observed within a busy period
because of missed detections.

which is the probability to have k consecutive missed detec-
tions between two non-missed detections within at least k + 2
sensing events of a busy period. Therefore, to find the PMF
of such periods from a set {T̂1,n}

Npss

n=1 of Npss busy periods
the following can be yield:

f md
T̆0
(T̆0 = kTs) =

(∑Npss
n=1 T̂1,n

Ts
− (k + 1)Npss

)
Pk
md
(1 − Pmd)

2

Niss

= β

(
E(T̂1)

Ts
− (k + 1)

)
Pk
md(1 − Pmd)

2. (39)

Note that the idle periods resulting from missed detections
are more likely to occur as single periods (i.e., k = 1) than
consecutive periods, and it is very unlikely that the whole
sensing events of a busy period are missed detected. The
obtained expression f md

T̆0
(T̆0 = kTs) in (39) represents the

PMF of the idle periods observed under ISS (due to missed
detections only).
• Final closed-form expression of the distribution:

After analysing the impact of false alarms and missed
detections on the estimation of the PMF of the idle periods
observed under ISS, the final closed-form expression can
be obtained by combining (38) with (39) as in (40). After
simplifying (40), expression (41) is finally obtained.

The analytical result in (41) provides a closed-form relation
between the PMF of the idle periods observed under ISS,
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fT̆0
(T̆0 = kTs) = β(1 − Pf a)

k

[
fT̂0
(T̂0 = kTs) + 2Pf a

(
1 − FT̂0

(kTs)

)
+ P2

f a

(
E(T̂0)

Ts
−

k∑
m=1

(
m fT̂0
(T̂0 = mTs)

)
− (k + 1)

(
1 − FT̂0

(kTs)

))
+

(
E(T̂1)

Ts
− k − 1

)
Pk
md
(1 − Pmd)

2

(1 − Pf a)
k

]
. (40)

fT̆0
(T̆0 = kTs) =

[
fT̂0
(T̂0 = kTs)

(
P2
f a − 2Pf a + 1

P2
f a

)
−

k−1∑
m=1

fT̂0
(T̂0 = mTs)

(
m − k +

2 − Pf a

Pf a

)
+
E(T̂0)

Ts
+

2 − Pf a

Pf a
− k +

(
E(T̂1)

Ts
− k − 1

)
Pk
md
(1 − Pmd)

2

P2
f a
(1 − Pf a)

k

]
βP2

f a(1 − Pf a)
k . (41)

fT̆0
(T̆0 = kTs), and the PMF fT̂0

(T̂0 = kTs), and the mean
E(T̂i) of the periods that would be estimated under PSS as
well as the probabilities of sensing errors Pf a and Pmd ,
and sensing period Ts . In other words, (41) satisfies the first
stage of the analysis procedure mentioned in Section III. On
the other hand, the expression of the estimated PMF under
PSS, fT̂0

(T̂0 = kTs), as a function of the original PDF was
provided in [23], which satisfies the second stage of the
analysis mentioned in Section III. Therefore, by combining the
second relationship with the first one, the relationship between
the estimated PMF under ISS and the original PDF can then
be achieved, which completes the third stage of the analysis
mentioned in Section III.

B. Distribution Estimation Method

The closed-form expression in (41) suggests a novel method
to accurately estimate the PMF of the channel periods under
PSS, and therefore the original PDF, from the outcomes of the
ISS estimates. Consequently, the analytical result in (41) can
be solved for the PMF obtained under PSS fT̂0

(T̂0 = kTs) as a
function of the PMF obtained under ISS fT̆0

(T̆0 = kTs), E(T̆i),
Pf a, Pmd and Ts . This can be achieved by simplifying (41) as
shown below:

fT̆0
(T̆0 = kTs) = ak

[
c · fT̂0

(T̂0 = kTs)

−

k−1∑
m=1

[
fT̂0
(T̂0 = mTs)

(
m − k +

2 − Pf a

Pf a

)]
+ bk

]
,

(42)

where

ak = βP2
f a(1 − Pf a)

k, (43a)

bk =
E(T̂0)

Ts
+

2 − Pf a

Pf a
− k +

(
E(T̂1)

Ts
− k − 1

)
Pk
md
(1 − Pmd)

2

P2
f a
(1 − Pf a)

k
,

(43b)

c =

(
P2
f a − 2Pf a + 1

P2
f a

)
. (43c)

The equation shown in (42) can then be solved to find fT̂0
(T̂0 =

kTs) as follows:

fT̂0
(T̂0 = kTs) =

1
c

[
fT̆0
(T̆0 = kTs)

ak

+

k−1∑
m=1

[
fT̂0
(T̂0 = mTs)

(
m − k +

2 − Pf a

Pf a

)]
− bk

]
.

(44)

Equation (44) can be used as a recursive formula (where k ∈
N+) whose initial value can be found for k = 1 and successive
values can be found by iterating over k as shown in (45).

Note that the mean period E(T̂i) in (43b) can be substituted
with the corresponding mean estimator (24) proposed in
Section V-D. As a result, the expression in (45) represents the
estimator for the PMF of the periods that would be observed
under PSS as a function of the PMF and mean obtained under
ISS as well as Pf a, Pmd , and Ts . Notice that the resulting PMF
estimated from (45) is still a discrete distribution. A continuous
estimation of the original distribution can be obtained by
interpolating through the middle points of each discrete step
in this PMF fT̂0

(T̂0 = kTs), which is justified by the analytical
result obtained in [23, eq. (38)].

VIII. NUMERICAL, SIMULATION AND EXPERIMENTAL
RESULTS

In order to validate the analyses carried out in this work, we
compare the results obtained from the numerical evaluation
of the derived closed-form expressions with the counterpart
obtained by means of both simulations and hardware exper-
iments. Simulations are based on Matlab following a similar
approach as in [31]. We generate a sequence of a sufficiently
high number of idle/busy periods Ti with random durations
drawn from a Generalised Pareto distribution (using µi = 10
t.u., λi = 30 t.u. and αi = 0.25 as the values for the loca-
tion, scale and shape parameters, see [31] for details). Then
spectrum sensing is performed on the generated periods by
employing a sensing period of Ts , using different values within
the interval (0, µi). The calculated idle/busy periods from the
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fT̂0
(T̂0 = kTs) =


1
c

[
fT̆0
(T̆0 = kTs)

ak
− bk

]
for k = 1

1
c

[
fT̆0
(T̆0 = kTs)

ak
+

k−1∑
m=1

[
fT̂0
(T̂0 = mTs)

(
m − k +

2 − Pf a

Pf a

)]
− bk

]
for k > 1

(45)

sensing decisions represent the corresponding sequence of
periods T̂i that would be observed by a DSA/CR system under
PSS. Introducing sensing errors on the PSS decisions, based on
the selected value of Pf a and Pmd , leads to the corresponding
sequence of idle/busy periods T̆i that would be observed under
ISS. Finally, we can calculate the statistics of the periods
T̆i resulting from ISS and compare them with the original
statistics of the generated periods Ti . The experimental results,
on the other hand, are obtained by using a hardware Prototype
for the Estimation of Channel Activity Statistics (PECAS). A
detailed description of such prototype and its hardware and
software implementations can be found in [39], where it was
originally published. The transmitter, which represents the PU,
generates a sequence of idle/busy periods from a Generalised
Pareto distribution (similar to the simulations settings) and
transmits 105 pairs of the generated idle/busy periods using a
433 MHz ON-OFF Keying (OOK) modulator with an output
power of 2 dBm. The receiver, which represents the SU, uses
a Software-Defined Radio (SDR) with a gain of 50 dB to
observe the idle/busy activity at 433 MHz. Different sensing
periods Ts (0 ms < Ts < 10 ms) are employed by the SDR
to sense the channel activity periodically. The receiver is
placed sufficiently far away from the transmitter to ensure
that the desired probability of missed detection is reached
(further distance for higher probability of missed detection).
The probability of false alarm is tuned by adjusting the energy
decision threshold at the receiver. At each sensing event,
samples are taken from the detected signal at a sampling rate
of 106 samples/second for a duration of 3 ms. These samples
are processed by an energy detection algorithm to decide the
status of the channel (either idle or busy). Using the outcomes
of the sensing decisions, the duration of the idle/busy periods
can be estimated at the receiver side and their statistics can
therefore be calculated. By comparing these statistics with the
original statistics of the periods generated at the transmitter,
the accuracy of the analytical results achieved in this work
can be verified experimentally under realistic conditions and
practical limitations of both transmitter and receiver. It is worth
mentioning that the unit of the time used in the evaluation
of the analytical expressions is given in a general form of
time unit (t.u.). In the experimental scenario, however, where a
specific unit needs to be selected, 1 ms is used as the reference
time unit (i.e., 1 t.u. = 1 ms).

A. Estimation of the Minimum Period

The accuracy of the result in (2) for the estimated minimum
period µ̆i under ISS was evaluated in [31] by means of
simulations. We include here this evaluation for completeness
and corroborate the simulation validation with experimental
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Fig. 8: Relative error of the calculated minimum period µ̆i
under ISS.

results as well. The accuracy is evaluated by calculating the
relative error of the estimated minimum idle period µ̆0 under
ISS with respect to its original value µ0 as | µ̆0 − µ0 | /µ0.
Assuming µ0 = 10 t.u. and Pf a = Pmd = 0.1, the relative
error can be found for different Ts values as shown in Fig.
8. The obtained results from simulations and experiments
perfectly match the analytical expression given by (2), which
thus corroborate its correctness and accuracy. It can also be
noticed that as Ts increases the relative error decreases. This is
because the estimated minimum period under ISS is µ̆0 = Ts

and its value will approach the true minimum µ0 as Ts tends
to µ0, thus making the relative error tend to zero accordingly.
Same observations can also be noticed for any non-zero value
of Pf a and Pmd and they are also valid for the estimated
minimum busy period µ̆1 under ISS.

B. Estimation of the Mean Period

This section validates the analysis presented in Section V
for the estimated mean period. First, Fig. 9 shows the relative
error of the mean period estimated under ISS E(T̆i) with
respect to the original mean period E(Ti) as a function of
the employed sensing period. The results shown in Fig. 9
are obtained by numerically evaluating the analytical result
in (17) as well as by means of simulations and hardware
experiments, for both low (Pf a = Pmd = 0.01) and high
(Pf a = Pmd = 0.1) probabilities of sensing errors. As it can be
appreciated, there exists a perfect agreement among all three
curves, thus demonstrating the accuracy of the closed-form
expression obtained in (17) for the estimated mean period.
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Fig. 9: Relative error of the calculated mean E(T̆0) under ISS.
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Fig. 10: Accuracy of the proposed mean estimator E(T̃i).

Fig. 10 compares the accuracy of the estimator for the mean
period proposed in (24) with that attained by the conventional
mean estimator shown in (4) as well as the best reconstruction
algorithm proposed in [31] (named as Method 1 in [31],
which discards the observed periods shorter than the minimum
period µi). As it can be noticed, when the mean period is
directly estimated from the channel periods observed under
ISS based on (4), the resulting estimate is highly inaccurate.
On the other hand, the proposed estimator in (24) provides
a nearly perfect estimation under low probabilities of sensing
errors (Pf a = Pmd = 0.01) and a remarkable accuracy even
under high probabilities of sensing errors (Pf a = Pmd = 0.1),
which approaches the exact mean period as the employed
sensing period increases. In all cases, the proposed estimator
will always provide more accurate results than the direct
calculation and the reconstruction method of [31].

C. Estimation of the Duty Cycle

This section validates the analysis presented in Section VI
for the estimated DC. Fig. 11 shows the relative error of
the DC estimated under ISS when the estimation is obtained

based on the conventional DC estimator (i.e., as the ratio
of busy sensing decisions to the total number of sensing
events) as well as the proposed DC estimator, which is
based on mean period estimator in (24), a shown in (27).
In addition, the proposed estimator is also compared with
the best reconstruction algorithm from [31]. The results are
shown for different combinations of low/high probabilities of
sensing errors and for the whole range of possible DC values.
In order to reproduce different DC values, the parameters
of the Generalised Pareto distribution of idle periods is first
configured as discussed at the beginning of Section VIII (i.e.,
µi = 10 t.u., λi = 30 t.u. and αi = 0.25), which leads to a mean
idle period of 50 t.u., while the scale and shape parameters
of the Generalised Pareto distribution of busy periods (i.e., λ1
t.u. and α1) are adjusted (with µ1 = 10 t.u. kept constant) in
order to provide the mean busy period required for the desired
DC value. A sensing period of Ts = 5 t.u. is here considered
for illustrative purposes but similar results are obtained for
other values of the sensing period as well. As it can be clearly
observed, the proposed DC estimator significantly outperforms
the conventional method widely used in the literature to
estimate the DC as well as the reconstruction method of [31]
when a realistic scenario of ISS is considered. The relative
error is almost zero in all cases, even when high probabilities
of sensing errors are considered (e.g., Pf a = Pmd = 0.1 in
Fig. 11(a)). The excellent level of accuracy achieved by the
proposed DC estimation approach, even in the presence of
severe probabilities of sensing errors, highlights its practical
utility in realistic scenarios.

D. Estimation of the Distribution

This section validates the analysis presented in Section VII
for the estimated distribution. Fig. 12 compares the theoretical
expression in (41) for the PMF of the periods observed under
ISS with the equivalent results obtained from simulations and
hardware experiments. As it can be observed, there is a perfect
agreement for all the considered cases shown in Fig. 12. A
more quantitative comparison can be performed based on the
well-known Kolmogorov-Smirnov (KS) distance [40], which
in the context of this work is defined as the maximum absolute
difference between the CDF of the periods observed under ISS,
and the CDF of the original periods:

DKS = sup
kTs

| FTi (kTs) − FT̆i (kTs) | , where k ∈ N+. (46)

While the original period durations Ti and their CDF FTi (·) can
be assumed to be continuous in general, the periods observed
under ISS T̆i are integer multiple values of the employed
sensing period and therefore their CDF FT̆i (·) is discrete. In
order to enable the comparison between these continuous and
discrete distributions based on (46), the continuous distribution
FTi (·) is evaluated at discrete points for which FT̆i (·) is defined
(i.e., Ti = kTs , k ∈ N+). The KS distance as defined in the
context of this work in (46) is first evaluated numerically
based on (41) and then compared to the corresponding KS
distance obtained from simulations and hardware experiments.
The results are shown in Fig. 13 for different DC values
and probabilities of sensing errors. As it can be observed,
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Fig. 11: Relative error of the proposed DC estimator Ψ̃ for different Pf a and Pmd (Ts = 5 t.u.).
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Fig. 12: Estimating the PMF of the idle periods under ISS using different probabilities of error and when Ts = 1 t.u..
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Fig. 13: KS distance of the calculated distribution under ISS as a function of the sensing period for different DC values and
probabilities of sensing errors.

there is a perfect agreement among analytical, simulation and
experimental results, which validates the theoretical expression
obtained in (41).

In the same way we can examine the accuracy of the novel
estimator proposed in (45) to estimate the true distribution
of the periods observed under ISS. The proposed estimator
finds the PSS distribution from the ISS observations, which in
turn can be used to find the original distribution as detailed
in [23]. Therefore, by comparing the KS distance of the

proposed estimator with the KS distance resulting from the
direct estimation under ISS (without using any estimation
method), the improvement of the proposed estimation ap-
proach can be assessed. As it can be appreciated in Fig.
14, the proposed estimator leads to a significantly improved
accuracy in the estimation of the true distribution of the
periods based on the ISS outcomes, providing a nearly perfect
estimation (DKS ≈ 0) under low sensing error probability
and a significantly more accurate estimation even under high
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Fig. 14: KS distance of the proposed distribution estimator.

error probability (provided that the appropriate sensing period
is selected). In addition, the proposed estimator outperforms
the best reconstruction algorithm proposed in [31]. These
results highlight the feasibility of obtaining a highly accurate
estimation of the primary channel activity statistics from
spectrum sensing observations, even in the presence of sensing
errors, if the methods proposed in this work are employed.

E. Illustrative example

The purpose of this section is to show how the estimation
accuracy of the primary channel activity statistics significantly
affects the performance of the DSA/CR system. In this illustra-
tive example the problem of estimating the opportunistic data
rate that is available in the primary channels is considered.
Data rate estimation can help DSA/CR systems select the most
attractive (highest opportunistic data rate) primary channel that
can be offered to the SUs. The opportunistic data rate Rb

can be calculated from the primary channel duty cycle Ψ,
channel bandwidth W and spectrum efficiency η (based on
the modulation and coding schemes used by the DSA/CR
system) as Rb = (1 − Ψ)Wη. As discussed in Section VI,
the channel DC can not be estimated accurately under ISS
using the conventional method, thus providing an inaccurate
estimation for the data rate as well, as R̆b = (1 − Ψ̆)Wη. In
contrast, accurate estimation under ISS can be achieved using
the proposed DC estimator in (27), which in turn provides
accurate estimation for the data rate R̃b = (1− Ψ̃)Wη as well.
Fig. 15 shows the estimated data rate under ISS (assuming
W = 20 MHz and η = 2 bit/s/Hz) as a function of the
DC using the conventional method as well as the proposed
method, which are both compared with the estimated data
rate assuming a perfect knowledge of the DC as a reference.
As it can be noticed, when the channel DC is lower than
0.5, the conventional method would underestimate the actual
available data rate in the primary channel as the probability
of sensing error increases (which results in significant waste
of free capacity in the primary channel). In addition, when
the channel DC is greater than 0.5, the conventional method
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Fig. 15: Estimated opportunistic data rate under ISS as a
function of the DC.

would overestimate the actual available data rate in the primary
channel as the probability of sensing error increases (which
results in significant shortage of free capacity than expected
in the primary channel). On the other hand, the proposed DC
estimator can provide a perfect estimation of the available op-
portunistic data rate even under severe ISS (Pf a = Pmd = 0.3).
As a result, a more efficient exploitation of the frequency
spectrum can be achieved. This illustrative example shows
how inaccurate estimation of the primary channel activity
statistics under ISS can severely impact the performance of
the DSA/CR systems, and it highlights the importance of the
achieved analytical results in this work to provide accurate
estimations for primary channel statistics.

IX. CONCLUSION

Primary channel activity statistics can play an important
role in enhancing the performance of DSA/CR systems. How-
ever, in practice these statistics can be severely corrupted
by sensing errors under ISS to the extent that they would
not be of any practical use in DSA/CR systems. Therefore,
studying analytically the impact of sensing errors on statistics
estimation can help understand how their degrading effects
can be overcome. This work has derived a set of closed-form
expressions for a variety of primary channel statistics, which
establish the relationship between the statistics estimated under
ISS and their corresponding original values, as a function
of the parameters used by the DSA/CR system to configure
the spectrum sensing operation (i.e., probability of error and
sensing period). Furthermore, this work has proposed a set
of novel estimators for the studied primary channel statistics,
which have been proven by means of simulations and hardware
experiments to outperform the existing estimators widely used
in the literature and are able to provide highly accurate (nearly
perfect) estimations under ISS even under high probability
of sensing errors. The outcomes of this work will enable
DSA/CR systems to exploit a different range of primary
channel statistics, not only under PSS, but also under realistic
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spectrum sensing conditions (i.e., ISS), which in turn will open
further opportunities for possible future applications.

APPENDIX A
Calculation of the ratio β given in (31)

The ratio β = Npss/Niss can be derived as follows:

β =
Npss

Niss
=

Npss

Npss + Nf a + Nmd
. (47)

As explained in Case I and Case II of Section V, sensing errors
will not always produce additional periods. The number of
errors (Nf a and Nmd) that could result in additional periods
is found as:

Nf a =

(∑Npss

n=1 T̂0,n

Ts
− 2Npss

)
P̀f a, (48)

Nmd =

(∑Npss

n=1 T̂1,n

Ts
− 2Npss

)
P̀md . (49)

Equations (48) and (49) are similar to (6) and (8) but after
considering Case I and Case II of Section V. Furthermore,
(10) can be used to simplify (48) and (49) to yield:

Nf a = Npss

(
m̂0
Ts
− 2

)
P̀f a, (50)

Nmd = Npss

(
m̂1
Ts
− 2

)
P̀md . (51)

Taking into account that m̂i can be replaced by E(Ti) (as
explained in Section V-C) and substituting (50) and (51) into
(47), we can finally obtain the result presented in (31).
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