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Abstract—Cognitive radio (CR) serves as an effective solution
to the spectrum scarcity issue in current wireless communication.
Spectrum sensing is one of the key enabling technologies for CR.
Spectrum sensing based on single user detection often suffers
from wireless channel ailments such as path loss, fading, and
shadowing. Cooperative spectrum sensing (CSS) is proposed
to overcome these adverse channel effects. However, CSS is
often an easy target for malicious users (MUs). The Byzantine
attack is a major hurdle in the success of the CR. Hence, the
identification of MUs in the CR network is essential to improve
the detection performance of CSS. In this work, we propose a
Gaussian mixture model based anomaly detection algorithm for
the identification of MUs. We first show that the presence of MUs
degrades the CSS performance. Theoretical analysis is carried
out to understand the intuition behind the proposed algorithm.
The effectiveness of the proposed algorithm in detecting attackers
is demonstrated for different attack scenarios. The performance
of the proposed algorithm in detecting MUs is compared with
existing algorithms. Based on the MU detection algorithm, a
weighted sum based CSS algorithm is proposed that can eliminate
the effects of attackers on the CSS performance.

Index Terms—Cognitive Radio, Cooperative Spectrum Sensing,
Byzantine Attack, Gaussian Mixture Model.

I. INTRODUCTION

AN exponential rise in the number of wireless services
has been caused by the growing demand for wireless

communication in many aspects of human life. Due to this
exponential increase, the electromagnetic spectrum is being
overcrowded, and hence there is a shortage of spectrum to host
the upcoming wireless services. The Federal Communications
Commission (FCC) has reported that some spectrum bands
are underutilized. This is due to the current static spectrum
allocation policy [1]. This motivates the researchers to change
the spectrum allocation policy. Dynamic spectrum allocation
can help increase spectrum utilization by identifying unused
frequency bands and allocating them to other applications.
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These unused frequency bands are called spectrum holes.
The cognitive radio (CR) technology makes it possible for
unlicensed users, also known as secondary users (SUs), to use
licensed frequencies without interfering with authorized users
[2]. The identification of spectrum holes is called spectrum
sensing, which is one of the significant tasks of CR. In CR,
the SUs sense the presence or absence of the primary user
(PU), which has access to the spectrum, by spectrum sensing
and access the spectrum accordingly.

The detection performance of spectrum sensing using a sin-
gle SU suffers from wireless channel effects such as multipath
fading and shadowing. Cooperative spectrum sensing (CSS) is
an ideal candidate to overcome these issues. In CSS, multiple
SUs utilize local spectrum sensing technology, reporting their
individual spectrum data to a fusion center (FC). The FC
is responsible for determining the PU status and channel
access based on a fusion rule. Cooperative spectrum sensing
in the open wireless environment may be tricked by malicious
alliances and vulnerable to spectrum sensing attacks [3]. The
users who perform this kind of practice are called malicious
users (MUs) or Byzantine attackers, and the practice is called
the Byzantine attack also known as the spectrum sensing data
falsification attack (SSDF). The Byzantine attack is typically
carried out on purpose by malicious users with the objective to
mislead honest secondary users (HSUs) into learning that the
PU channel is occupied when it is free and to mislead HSUs
into learning that the PU channel status is free in case it is
occupied [4], [5]. Although the above mentioned objectives
are listed separately, this does not imply that a malicious user
must only carry out attacks for one of them. Malicious users
may attack for both reasons to maximize their attack utility
[6]. Hence, it becomes necessary to identify and eliminate the
Byzantine attackers from the CR network.

A. Related Works

Researchers have proposed techniques to detect the MUs
from the CR network [7]. A Bayesian learning based defense
strategy against Byzantine attacks is investigated in [8]. In [9],
a robust defense framework is proposed for defense against
data falsification attacks, and the effectiveness of the proposed
algorithm is analyzed under different practical scenarios. An
entropy-based weighted CSS scheme is proposed in [10] for
performance improvement under Byzantine attack. An effec-
tive entropy based weighted algorithm is recently proposed
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for defense against Byzantine attack in [11]. A sequential
0/1 for CSS algorithm is proposed in [12] where cooperating
secondary users (CSUs) are restricted to report either 0 or
1, and it is shown that the proposed algorithm improves
CSS performance under SSDF attack. A similar algorithm
called sequential single voting (SSV) rule is proposed in
[13], where trust value mechanism is used to evaluate the
reliability of the data received from CSUs. The information
received from MUs are suppressed using thresholding. A
secure CSS called generalized voting-sequential and differ-
ential reporting is proposed in [14]. Authors also propose a
single signaling transmission scheme similar to SSV. In [15],
a robust weighted algorithm based on the reputation value
called weighted differential sequential symbol is proposed.
A double reputation based detection algorithm is proposed
in [16] to separate out MUs from honest users. In [17], an
online learning based algorithm for cooperating user selection
in CSS is proposed. A joint spectrum sensing and resource
allocation algorithm is proposed in [18], where spectrum
resources are allocated to different CSUs based on their past
behavior. Reduced resources are allocated to CSUs that are
performing poorly, incentivizing them for good behavior and
motivating them to stop attacking or leave the network. The
techniques reported in [8]–[18] consider hard combining based
CSS. The performance of CSS under the soft combining
rule in the presence of Byzantine attack is analyzed in [19].
To detect malicious users, a block outlier method (BOM) is
proposed in [20] which uses a block-wise approach to estimate
the energy levels of the received signals and identifies the
outliers within each block. In [21], the performance of CSS
is analyzed under the presence of Byzantine attackers and an
algorithm is proposed where the fusion center removes most
likely malicious value from the data fusion improving the
performance under attack. A modified outlier removal (ROM)
based secure fusion strategy is proposed in [22], where the FC
conditionally removes outliers from the data fusion process
which are most likely to have come from MUs.

Recently, researchers have started exploring the use of
machine learning for defense against Byzantine attack [23],
[24]. An unsupervised machine learning based MUs detection
algorithm is investigated in [23]. The authors used a one-
class support vector machine (SVM) to identify the MUs. In
[24], linear and non-linear SVM algorithm is proposed for
PU boundary detection. The effects of MUs on PU boundary
detection are also investigated. Three different versions of
the K-nearest neighbor (KNN) algorithm are explored for
attacker detection. An SVM based CSS algorithm against
Byzantine attack is proposed in [25]. In [26], a two stage
algorithm based on the combination of semisupervised SVM
and fast convergence K-means algorithm is proposed for
defense against SSDF attack. The algorithm in [26] requires
a set of labeled dataset which is difficult to get in ever
changing CR environment. A semi-supervised fuzzy c-means-
based (SSFCM) detection algorithm is proposed in [27] for
defense against SSDF attack. However, the paper considers the
quantise soft combining based CSS whereas in this paper soft
combining is considered. The SVM and c-means clustering
algorithms form circular clusters, which can be ill-suited for

non-circular data distributions, leading to poor model fits.
Moreover, these algorithms are computationally expensive,
limiting their practical use. In contrast, the Gaussian Mixture
Model (GMM) is a soft clustering approach well-suited for
overlapping and non-circular clusters of Gaussian distributed
data. Given that data received at the FC in CSS often exhibits
such characteristics, GMM emerges as the preferred choice
for modeling the data distribution. Therefore, we propose a
GMM-based attacker detection algorithm in this work, with
further key contributions detailed in the next section.

B. Contributions

In this work, we consider soft combining based CSS in the
presence of a Byzantine attack. The key contributions of the
work are as follows:

• The GMM based anomalies detection algorithm is pro-
posed for MUs detection.

• A theoretical analysis is carried out to derive the ex-
pression for the probability density function (pdf) of the
received energy at the FC from the MUs, which is then
used to build an intuition for the proposed algorithm.

• The effectiveness of the proposed algorithm in detecting
the MUs is demonstrated by considering various attack
scenarios in the result section.

• Finally, it is also shown that the proposed algorithm can
also be used to decide weights that can be assigned
to CSUs for weighted sum algorithm at the FC. It
demonstrated that using weights obtained using proposed
algorithm for different CSUs, the performance of CSS
can be improved significantly under attack from MUs
and the effects of MUs on the performance of CSS can
be completely eliminated.

Rest of the paper is organized as follows. Section II presents
the system model and attack model considered in the paper.
The proposed GMM based algorithm is discussed in section
III. Theoretical analysis is presented in section IV followed
by the results and discussion in section V. Finally, section VI
concludes the paper.

II. SYSTEM AND ATTACK MODEL

In this section, we first discuss the system model considered
in this paper and then we discuss the Byzantine attack model.

A. System Model

In this work, we consider a single primary user and M
number of CSUs collaborating to sense the presence or the
absence of the PU. The received signal at the ith CSU can be
modeled as

yi(n) =

{
wi(n); H0,

hi · si(n) + wi(n); H1,
(1)

where si(n) and wi(n) are the nth sample of the primary
user signal and the additive white Gaussian noise (AWGN),
respectively, with n = 1, 2, · · · , N and i = 1, 2, · · · ,M , and
hi represents the channel gain between PU and the ith CSU.
The main objective of this paper is to explore the application
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of GMM in detecting Byzantine attackers. Therefore, our
discussion is limited to the AWGN channel, and we assume a
constant channel gain of hi = 1. Similar channel model is as-
sumed in [20], [22], [28]–[30]. Nonetheless, it is important to
note that the analysis presented in this paper can readily be ex-
tended to incorporate fading effects by considering h to follow
a specific fading distribution. The performance of spectrum
sensing over fading channels has been investigated thoroughly
showing that the effect of fading with respect to AWGN is a
reduction of the detection performance that affects different
sensing approaches to similar extents [31]–[34]. Therefore, if
a given method performs better than another one in an AWGN
channel model it can also be expected to perform better under
channel models with fading and shadowing. However, the
performance would be slightly lower under fading than in
AWGN, but would still improve those methods that it is able
to outperform under AWGN. Additionally, we make the as-
sumption of a homogeneous cognitive radio network, where all
CSUs operate in similar environments, resulting in comparable
signal-to-noise ratios across the network. The signal and the
noise samples are independent and identically distributed (i.i.d)
with si(n) ∼ N (s; 0, σ2

si) and wi(n) ∼ N (w; 0, σ2
wi
). The

notation N
(
x;m,σ2

)
corresponds to the standard Gaussian

distribution with argument x and it is parameterized by mean
m and variance σ2. The free and occupied primary channels
are represented by hypotheses H0 and H1, respectively. In this
work, we consider centralised CSS where each CSU performs
energy detection [35], computes the received signal’s energy
and reports it to the FC which takes the final decision on
the occupancy of the PU channel. The energy, i.e., decision
statistic, at the ith CSU is computed as

Ei =
1

N

N∑
n=1

|yi(n)|2. (2)

After receiving the decision statistic from all M CSUs, the
FC computes final decision statistic TFC as

TFC =
1

M

M∑
n=1

Ei. (3)

The FC compares TFC with the threshold τ and if TFC < τ
PU channel is declared as free otherwise it is declared as busy.

B. Attack Model

In this work, we consider a Centralized Independent Proba-
bilistic Small-Scale (CIPS) attack with M users out of which
ML are malicious users [7]. In our analysis, we are examining
a soft Byzantine attack scenario. In this scenario, the MUs
monitor the energy levels of the channel. When they detect
that the energy exceeds a threshold value denoted as η, they
occasionally decrease the energy by a certain amount ∆, with
a probability of α1. Conversely, if the sensed energy falls
below η, they sometimes increase the energy by ∆, with a
probability of α0. If the MUs attack with α0 = α1 = 1, the
attack scenario is considered to be a hard Byzantine attack.

These modified energies are sent to FC. The attack model can
be mathematically formulated as follows{

P (E
′

m = Em +∆|Em < η) = α0;

P (E
′

m = Em −∆|Em > η) = α1;
(4)

where m = 1, 2, . . . ,ML, Em is the malicious user’s observed
energy, E

′

m is falsified sensing results from mth MU, α0 is the
attack probability of false alarm, α1 is the attack probability
of miss detection, η represents the attack threshold, and ∆ is
a positive value called the attack strength. The attack strength
∆ represents the degree to which a malicious user diverges
from their actual measurement when reporting it to the fusion
center. The greater the value of ∆, the larger the deviation.
If malicious users attack with a higher ∆, the likelihood
of the fusion center making an incorrect decision based on
receiver information increases, thus raising the probability of
a successful attack. However, malicious users employing a
high ∆ are more likely to be detected by the fusion center, as
their reports deviate significantly from other reports. Hence,
the MUs generally do not attack with abnormally high values.

C. Dataset

In this work we make use of simulated dataset. We consider
M number of CSUs out of which there are ML number of
CSUs which are malicious. The MUs attack with false alarm
attack probability α0 and miss detection attack probability α1.
We assume that the number of MUs in the CR network is less
than the number of honest users, i.e., ML < M

2 [7], [36]. At
each sensing instance (i.e., each sensing round), all the CSUs
perform spectrum sensing on the PU channel using energy
detection and compute the energy using Eq. (2). Each CSU
reports its energy value to the FC. The energy vector received
at the FC at the j

th
sensing instance is given by

Ej = [Ej,1, Ej,2, . . . , Ej,M ]
T
, (5)

where [·]T represents the transpose operator. The energy vector
reported at the FC are recorded for every sensing instance
to create the dataset. At every sensing instance, the PU is
considered to be active with probability p so that we have data
samples consisting of both the hypothesis H0 and H1. Let us
say the data is recorded for P number of sensing instances,
then the dataset will be of P ×M dimension. Experiments are
carried out for different parameter settings.

III. PROPOSED GMM BASED ALGORITHM

Utilizing the Central Limit Theorem, we observe that the
data follows a Gaussian distribution, making the application
of GMM an appropriate choice for modeling the data dis-
tribution. In this scenario with only two classes, GMM can
be easily applied to capture the Gaussian mixture distribution.
After obtaining the model, we can straightforwardly determine
outliers by assessing the likelihood of each data point. Data
points residing in the lower probability regions are identified as
anomalies. These anomaly counts are subsequently employed
in the proposed algorithm for the detection of MUs. Next,
we will discuss the GMM clustering algorithm, followed by
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the GMM-based attacker detection algorithm and the weighted
CSS algorithm. GMM is an unsupervised machine learning
algorithm for clustering. The GMM fits mixture of Gaussian
on the training data and forms the clusters by finding param-
eters of Gaussian distributions lying in the data. In this work,
due to the one dimensional nature of the data, the univariate
GMM model is used. The mixture Gaussian probability density
function (pdf) with K number of Gaussian pdfs is given by

f (x;µ, σ, ϕ) =

K∑
j=1

ϕjN (x;µj , σj) , (6)

where ϕj represents the wight of jth distribution with∑K
j=1 ϕj = 1 and N (x;µj , σj) is the Gaussian pdf such that

N (x;µj , σj) =
1

σj

√
(2π)

exp

(
− (x− µj)

2

2σ2
j

)
. (7)

Here, µj and σ2
j represent the mean and variance of jth

distribution, respectively, and j = 1, 2, . . . ,K. The GMM
estimates the unknown parameters µj , σj and ϕj for each
cluster using expectation maximization (EM) algorithm [37].
Let us consider a training vector Ē = {E1, ..., EL} with L
training samples. The EM algorithm is used to maximize the
log-likelihood function given by

U
(
Ē;µ, σ, ϕ

)
=

L∑
l=1

ln

 K∑
j=1

ϕj .N (El;µj , σj)

. (8)

An EM is an iterative algorithm which iteratively optimizes
the parameters of GMM. The steps involved in EM are as
follows

1) Firstly, the parameters µj , σj and ϕj are initialized
randomly to calculate the initial value of log-likelihood
using Eq. (8).

2) E step: Using the current parameter values, quantities
v(zlj) called responsibilities are evaluated as

v(zlj) =
ϕjN (El;µj , σj)∑K

p=1 ϕpN (El;µp, σp)
. (9)

3) M step: The parameters µj , σj and ϕj are re-estimated
using the current responsibilities as

µnew
j =

1

Lj

L∑
l=1

v (zlj)El, (10)

σnew
j =

√√√√ 1

Lj

L∑
l=1

v (zlj)
(
El − µnew

j

)2
(11)

Lj =

L∑
l=1

v (zlj) and ϕnew
j =

Lj

L
. (12)

4) The log-likelihood is again evaluated using new param-
eters and checked if the log-likelihood is converged.
Convergence can be assessed by examining either the
parameter values or the log-likelihood function. If these
values exhibit negligible changes, typically denoted by
a small value such as ϵ, it indicates that convergence has

been achieved. If the convergence criteria is not satisfied
then return to E step (step 2) and perform another EM
iteration.

Next, we discuss the GMM based anomaly detection algorithm
for MUs detection. Since we know that the received energy
in CSS corresponds to H0 or H1, we fit GMM on the data
using K = 2. As the likelihood function in Eq. (8) exhibits
multiple local maxima, the GMM algorithm may not always
converge to the global maximum; instead, it may converge to
a local maximum based on the initial conditions. To address
this challenge, the EM algorithm is executed iteratively with
various initializations, thereby increasing the probability of
discovering the global maximum. The parameters that yield
the maximum log-likelihood are selected among the multiple
runs of the EM algorithm. In our experimentation, we have
executed EM for GMM with ten different initializations. Once
the GMM has converged, it can be used to find the anomalies,
also known as the outliers. Note that the anomaly and outlier
words are used interchangeably in this paper. The anomalies
are obtained using the GMM based algorithm, and the anomaly
counts are derived for all the CSUs. The number of outliers
in a particular CSU is used to decide whether the CSU is
malicious or not. The anomaly counts for different users
are compared with the threshold, and if the anomaly count
of a particular CSU is less than the threshold, then it is
declared as a malicious user; otherwise, it is declared as a
genuine CSU. The steps involved in the proposed approach
are mentioned in Algorithm 1. We use the OTSU algorithm
to derive the threshold given in Algorithm 2. The algorithm
in Algorithm 1 considers only one PU. However, it can be
readily extended to accommodate multiple PUs. In this paper,
we have considered the case where K = 2, meaning we
fitted a mixture of two Gaussian pdfs to the data received
at the FC using the GMM. In the scenario with more PUs,
the number of Gaussian pdfs used for modeling the mixture
of Gaussian pdfs will depend on the total number of PUs
considered. If there are, for example, P PUs, we would need
to consider K = P + 1 pdfs to fit the data. Consequently, we
can apply the GMM to model the data by fitting a mixture
of Gaussian pdfs to the information received at the FC. Once
the model is successfully fitted, we can apply the proposed
algorithm to detect MUs, as detailed in Algorithm 1. Once
attackers are detected, the FC has the option to exclude the
compromised CSUs from cooperation. While removing the
MUs from the CRN may seem like a logical step if the MUs
are always attacking, it is important to note that MUs often
refrain from constant attacks to avoid easy detection. In such
scenarios, we can employ a weighted sum-based algorithm.
This approach does not involve simply removing the MUs
from the network but instead employs a weighted algorithm
that assigns less significance to the data received from them.
The proposed algorithm for MUs detection can also be utilized
to determine the appropriate weights for the weighted sum-
based CSS algorithm. The detailed description of the weighted
sum-based algorithm is provided in Algorithm 3.
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Algorithm 1 Anomaly Detection Algorithms
• Step 1: Reshape the dataset of size P ×M in the shape

L× 1 to form Ē training vector, where L = M · P .
• Step 2: Set K = 2 and fit GMM on the data using

EM algorithm to find the parameters µj , σj and ϕj for
j = 1, 2.

• Step 3: With the trained GMM, compute density for each
element in vector Ē.

• Step 4: Set density threshold by flagging ω % of lower
density values as anomalies or outliers.

• Step 5: Declare elements in vector Ē, which are having
densities lower than the density threshold as anomalies.

• Step 6: From the total anomalies detected in L×1 vector,
calculate the number of anomalies coming from each
CSU in the original P ×M dataset.

• Step 7: Declare CSU as MU if the number of
anomalies in that CSU is less than threshold λ =
min [λotsu,Ω% of (ω% of P )], where Ω defines the ex-
pected percentage of minimum anomalies from GUs and
λotsu is computed using an OTSU Algorithm [38] given
in Algorithm 2.

Algorithm 2 OTSU Thresholding to compute λotsu

Input: Let a vector A = [A1, A2, ..., AM ] contains the number
of anomalies in each CSU. Initially take i = 1.

• Step 1: Choose Ai as threshold and split the vector A in
lower (Al) and upper (Au) sets as

Al = {Aj : ∀Aj < Ai}

Au = {Aj : ∀Aj ≥ Ai} ,

for j = 1, 2, . . . ,M .
• Step 2: Find: Nall number of elements in A, Nl Number

of elements in Al and Nu number of elements in Au.
• Step 3: Compute weights Wl and Wu as: Wl = Nl

Nall
,

Wu = Nu

Nall

• Step 4: Compute variances σ2
l and σ2

u of Al and Au

respectively.
• Step 5: Find the variance for the threshold Ai using:

σ2
Ai

= Wlσ
2
l +Wuσ

2
u.

• Step 6: Increase i by 1 and repeat steps 1 to 5 for each
element in A.

• Step 7: The threshold with least variance (σ2
Ai
) is se-

lected as λotsu.

IV. THEORETICAL ANALYSIS

In this section, we first give the theoretical analysis for
the CSS and derive the probability of false alarm (Qf ) and
detection (Qd).

A. Detection Probabilities for CSS

In CSS, each CSUs compute energy of the received signal
using Eq. (2) and report it to the FC. For relatively large N,
using central limit theorem, the energy computed at the CSUs

Algorithm 3 Weighted Sum based CSS Algorithm
Input: Let a vector C = [c1, c2, ..., cM ] contains the number
of anomalies in each CSU.

• Step 1: Compute weights for each CSU as

wi =
ci

M∑
j=1

cj

(13)

where i = 1, 2, . . . ,M .
• Step 2: Using the weights computed in step 1, derive the

decision statistic at the FC as

Tweighted
FC =

1

M

M∑
n=1

wi · Ei. (14)

• Step 3: The FC compares Tweighted
FC with the threshold

τ and if Tweighted
FC < τ , the PU channel is declared as

free otherwise it is declared as occupied.

can be modeled using a Gaussian distribution [21], [22], [39].
Using this, the pdf of energy at the ith CSU is given by

fTi(x) =

{
N
(
x;µ0, σ

2
0

)
; H0,

N
(
x;µ1, σ

2
1

)
; H1,

(15)

where µ0 = σ2
w, σ2

0 = 2
N σ4

w, µ1 = (1 + γ)σ2
w, σ2

1 =
2
N (1 + γ)

2
σ4
w and γ =

σ2
s

σ2
w

represents the signal to noise
ratio. The FC computes the decision statistic as given in Eq.
(3) which is the sum of energies received from all the CSUs
scaled by the number of CSUs M . Since the pdf of energy
at the CSU is modeled using Gaussian pdf, its sum will also
follow Gaussian pdf. Using this property, the pdf of decision
statistic at the FC can be modeled as

fFC(x) =

N
(
x;µfc,0, σ

2
fc,0

)
; H0,

N
(
x;µfc,1, σ

2
fc,1

)
; H1,

(16)

where µfc,0 = µ0, σ2
fc,0 =

σ2
0

M , µfc,1 = µ1 and σ2
fc,1 =

σ2
1

M .
Using the pdf derived in Eq. (16), the probabilities Qf and
Qd can be obtained as

Qf = Q

(
τ − µfc,0

σfc,0

)
, and Qd = Q

(
τ − µfc,1

σfc,1

)
, (17)

where τ represents the detection threshold.

B. Intuition behind the Proposed Algorithm

In this section, we give theoretical basis for the intuition
behind the proposed MUs detection algorithm. We first derive
the probability density function of the energy received at the
FC from the MUs. Let us consider the first scenario when
the PU is absent. In this case, the pdf of reported energy
under false alarm attack from the MUs can be modeled using
truncated Gaussian distribution as

ffa
H0

(x) =


N (x−∆; µ0, σ2

0)
1
2

[
1+erf

(
η−µ0
σ0

√
2

)] , −∞ < x ≤ η +∆

0, elsewhere
(18)
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Fig. 1. Probability density functions considering different scenarios.

where erf(x) is the error function. The detailed derivation of
ffa
H0

(x) in Eq. (18) is given in Appendix A. Similarly, the pdf
of reported energy under miss detection attack from the MUs
can be modeled as

fmd
H0

(x) =


N (x+∆; µ0, σ2

0)

1− 1
2

[
1+erf

(
η−µ0
σ0

√
2

)] , η −∆ ≤ x < ∞

0, elsewhere
(19)

The detailed derivation of Eq. (19) is given in Appendix B.
The MUs make false alarm attack with probability α0 and
they attack when their computed energy is greater than attack
threshold η. Also, the MUs carry out miss detection attack
with probability α1 and attacks when their measured energy
is below η. Using this, the pdf of received energy at the FC
under H0 from the MUs can be obtained as

fmu
FC,H0

(x) = α0P
0
H0

ffa
H0

(x) + α1P
1
H0

fmd
H0

(x)

+
(
1− α0P

0
H0

− α1P
1
H0

)
fH0(x), −∞ < x < ∞. (20)

where

P 0
H0

=

∫ ∞

η

fH0(x)dx and P 1
H0

=

∫ η

−∞
fH0(x)dx. (21)

Following the similar procedure, the pdf of energy received
at FC under hypotheses H1 can be obtained as

fmu
FC,H1

(x) = α0P
0
H1

ffa
H1

(x) + α1P
1
H1

fmd
H1

(x)

+
(
1− α0P

0
H1

− α1P
1
H1

)
fH1(x), −∞ < x < ∞. (22)

where

ffa
H1

(x) =


N (x−∆; µ1, σ2

1)
1
2

[
1+erf

(
η−µ1
σ1

√
2

)] , −∞ < x ≤ η +∆

0, elsewhere
(23)

fmd
H1

(x) =


N (x+∆; µ1, σ2

1)

1− 1
2

[
1+erf

(
η−µ1
σ1

√
2

)] , η −∆ ≤ x < ∞

0, elsewhere
(24)

P 0
H1

=

∫ ∞

η

fH1
(x)dx, and P 1

H1
=

∫ η

−∞
fH1

(x)dx (25)

In Fig. 1 we plot the pdfs considering different scenarios
considering M = 10, ML = 3, α0 = α1 = 0.3, η = 1.4,

∆ = 0.2, N = 100 and γ = 0 dB. The dataset is generated
using the mentioned parameters and GMM is fitted considering
two classes. The pdf plot considering all users are plotted using
the parameters obtained from GMM. The plot for pdf of HSUs,
the weighted sum of pdfs given Eq. (16) under H0 and H1 is
obtained considering weights obtained using GMM. Similarly,
the pdf of MUs is obtained by taking the weighted sum of
pdfs in Eq. (20) and Eq. (22) considering weights obtained in
GMM. We can see in Fig. 1 that the pdf of HSU is closer to the
pdf obtained after GMM whereas the pdf of MU is deviating
from the other pdfs. The reason behind this is that the number
of MUs are less than the number of HSUs and hence the
parameters obtained after GMM will be biased towards the
pdf of honest users (HUs). Since the attack is such that when
the energy computed by MU is less than η, it attacks by adding
∆ to it and when it is above η it attacks by subtracting ∆ with
certain probability, the pdf of MUs will shrink. The outliers are
defined as the samples which lie in low probability region. In
Fig. 1, the area under any curve below the horizontal line will
give the probability of outliers. We can see that this probability
will have small value for MU compared to the HU. For the
particular position of the line in Fig. 1, the value obtained for
MU is 0.0164 whereas for HU it is 0.0179. Hence, the number
of outliers will be less in data received from MUs compared
to those in HUs.

V. RESULTS AND DISCUSSION

In this section, we first demonstrate the effects of the
existence of MUs in the CSS network on the performance of
CSS using the receiver operating characteristic (ROC) plot.
It is also shown that the detection performance improves
significantly once the MUs are detected and eliminated from
cooperating. We then demonstrate the effectiveness of the
proposed algorithm in detecting the MUs in different scenar-
ios. First, we consider a scenario in which we have varied
the activity patterns of the PU by incorporating different
percentages of H0 and H1 cases when creating the dataset.
Then, we explore various attack scenarios, including different
attack probabilities and varying numbers of attackers within
cognitive radio networks. Without loss of generality, we have
kept first ML users as MUs, and the remaining M−ML CSUs
as honest users.

We proceed to illustrate the efficacy of our proposed al-
gorithm in detecting MUs under diverse PU activity patterns.
Employing a mixture model with K = 2, as expressed in Eq.
(6), we employ GMM to fit mixture of two Gaussian pdfs,
one corresponding to H0 and the other to H1, to our dataset.
The proportion of each Gaussian distribution is determined
by the PU’s activity pattern. When the dataset exhibits a
higher proportion of H0 hypotheses, the respective Gaussian
distribution within the mixture model will have high ϕ1 value.
We proceed to showcase the effectiveness of our proposed
algorithm in MUs detection under varying proportions of H0

and H1 samples within the data. This demonstration highlights
the algorithm’s robustness in scenarios where clusters exhibit
unequal sizes. We first consider the case when the samples
in the dataset belong to 50% H0 and 50% H1 case at SNR
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Fig. 2. The bar plot of outlier counts vs. CSU number considering M = 10,
ML=3, α0 = 0.3, α1 = 0.3 for H0=H1=50% in the dataset.

γ = −10 dB. The number of sensing instances are kept as
P = 5000 with M = 10 CSUs. The number of MUs is
selected as ML = 3 with attack threshold η = 1.08 and attack
strength ∆ = 0.2. The size of the dataset is kept the same
for all analyses in this section. In the proposed algorithm, ω
is selected as 20 indicating 20% outliers, and the Ω is chosen
to be 95. Using this, the threshold λ turns out to be 950.
Please take note that increasing the value of ω will result in
more energy values being flagged as anomalies, potentially
causing non-anomalous data points to be misclassified as
anomalies. Nevertheless, the key observation stands: MUs will
consistently exhibit fewer anomalies compared to HSUs. As a
result, the algorithm retains its effectiveness, even in scenarios
where some valid reports are erroneously labeled as anomalies.
Each CSU’s outliers count is compared with the threshold
λ, and if the count is higher than λ, the respective CSU
is declared as an HU; otherwise, it is a MU. Fig. 2 shows
the bar plot for outliers counted from each CSU using the
proposed algorithm. The black horizontal line in the figure
represents the threshold λ. The MUs are colored in red, which
are the first three CSUs, which we intentionally kept during
data generation. Hence, the results indicate that the proposed
algorithm successfully detects the MUs.

Next, we consider the case when 60% samples belong to
the H0 case in the dataset. Hence, from the total of 5000 data
samples, we have 3000 samples belonging to the H0 case, and
the remaining 2000 belongs to the H1 case. Other parameters
are kept the same as in previous section. The dataset is fed
to the proposed algorithm for MUs detection, and the result
outliers count values are plotted as bar plots in Fig. 3. The
figure shows that the first three CSUs are declared as MUs,
which are indeed the MUs. A similar analysis is carried out for
the case when 80% data samples belong to the H0 class and
only 20% belong to the H1 class indicating that the channel
occupancy is very sparse. The plot in Fig. 4 indicates that the
proposed algorithm efficiently detects the MUs. We see that
the proposed algorithm is efficient in detecting MUs under
different proportion data samples belonging to two hypothesis
H0 and H1 in the dataset. In Fig. 5, we demonstrate the
effectiveness of the proposed algorithm in detecting the MUs
under different attack probabilities. The plots are obtained
for CSU number vs. the number of outliers obtained using
the proposed algorithm. The values of attack probabilities
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Fig. 3. The bar plot of outlier counts vs. CSU number considering M = 10,
ML=3, α0 = 0.3, α1 = 0.3 for H0 = 60% and H1 = 40% in the dataset.
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Fig. 4. The bar plot of outlier counts vs. CSU number considering M = 10,
ML=3, α0 = 0.3, α1 = 0.3 for H0 = 80% and H1 = 20% in the dataset.

are varied from 0.3 to 0.6. We can see that under all the
attack probabilities, the outlier counts from the first three MUs
are below the threshold, which indicates that the proposed
algorithm correctly detects the MUs under all the considered
scenarios. We can also note that the count values of MUs are
very close to the threshold for small attack probabilities, and
it may become difficult to detect them. This happens because,
with low attack probabilities, the MUs attack very rarely,
resulting in the pdf of MUs very similar to the honest one.
However, the MUs do not attack with very low attack probabil-
ity in general because the detection performance of CSS will
be affected only marginally with small attack probabilities.
The MUs would like to have higher degradation in the CSS
performance; hence they do not attack with a very small attack
probability. We can also note that the difference in the count
between MUs and the HSUs increases with an increase in the
attack probability, making it easier to declare them as MUs.
In Fig. 6, we demonstrate the effectiveness of the proposed
algorithm when there are different numbers of attackers in the
network. The plots are obtained for ML = 0, 1, . . . , 4, which
corresponds to 0% attackers to the 40% attackers. We can
see that the proposed algorithm efficiently detects the variable
number of MUs. Also, note that when there are no MUs, the
count values are higher than the threshold, indicating that there
are no MUs in the network. Note that the effectiveness of the
proposed algorithm under different scenarios such as different
SNR, different α0 and α1, and different attack strengths can
be demonstrated using similar plots, but due to the page
limitations, we have not added those plots. In Fig. 7 we show



8

CSUs

1 2 3 4 5 6 7 8 9 10

N
u
m
b
e
r
o
f
O
u
t
li
e
r
s

750

800

850

900

950

1000

1050

1100

1150

α0 = α1 = 0.3

α0 = α1 = 0.4

α0 = α1 = 0.5

α0 = α1 = 0.6

λ
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Fig. 6. Plot of outlier counts vs. CSUs for different values of ML with
α0 = α1 = 0.3, M = 10 and ∆=0.5.

the plot for detection probability vs. accuracy for the proposed
algorithm. The x-axis represents the values of α0 and α1, and
the plot is obtained at the SNR of γ = 0 dB with ∆ = 0.5,
M = 10 and ML = 3. We can see that, the accuracy of the
proposed algorithm increases with the attack probability and
achieves almost 100% accuracy at the attack probability of
0.5 or above that. We see that, if the attack probability is very
low, the algorithm fails in identifying the attackers. However,
if the MUs are attacking with very small probability, their
effect on the performance of CSS is very marginal. Hence,
even if the MUs are not detected in such scenario will not
affect the performance of CR network. In Fig. 8, we compare
the performance of proposed algorithm with the Tietjen-Moore
(TM) test based algorithm proposed in [20]. Since TM test
based algorithm decides about the MUs based on observations
received in single sensing instance, it is sensible to compare
the performance considering α0 = α1 = 1, i.e., always
attack scenario. In addition, the TM test algorithm requires an
information about the number of MUs in the network in order
to detect them. To get the information about the number of
MUs, a clustering based algorithm is used in [20]. In obtaining
the plot for TM test, we have given the information about the
number of MUs as an input to the TM test algorithm. No
such information is required in the proposed algorithm and it
can detect MUs blindly. We can see from the plot that the
proposed algorithm detects the MUs with high accuracy even
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Fig. 7. Detection accuracy vs. Attack probability for proposed algorithm.

with very small values of ∆. To make the plot comparable,
the values of ∆ selected for TM test is very high compared
to that considered for the proposed algorithm. We can observe
that, even with high values of ∆, the TM test algorithm
performs poorly compared to the proposed algorithm. For
example, the proposed algorithm achieves 100% accuracy at
∆ = 0.3 whereas it requires ∆ = 45 to achieve 100% accuracy
with TM test algorithm. One class SVM based algorithm is
proposed in [24] for MUs detection. The plot for accuracy of
one class SVM is not included here since its performance in
detecting the MUs is very poor with the parameters selected.
The one class SVM can detect MUs only if the MUs are
using very high value of ∆. Furthermore, the algorithm also
requires the percentage of MUs as an input which is also not
available to the FC. In addition, the proposed algorithm has
lower complexity than the single class SVM based algorithm
proposed in [24] and the c-means clustering based algorithm
proposed in [27]. The GMM based anomaly detection al-
gorithm has complexity of order of O (ILK), whereas the
OTSU thresholding and the weighted sum based CSS algo-
rithms’ complexity is of order of O (M), hence the overall
complexity of the proposed algorithm is O (2M + ILK),
where, I is the number of iterations. The single class SVM
based algorithm exhibits a significantly higher complexity of
O
(
2M3I1 + L2 +M2 +MkI2

)
, where, I1 and I2 denote the

number of iterations in their respective algorithms, k signifies
the number of nearest neighbors. Additionally, the c-means
clustering-based algorithm also exhibits a higher complexity of
O
(√

JcLnz + JcL+MQLc + 2MQK2I
)
, where, Lnz de-

notes the number of non-zero elements in a matrix obtained
from Micali’s blossom algorithm, Jc is a parameter specific to
the c-means clustering algorithm, Lc represents the number of
intervals in which FC collects falsified data and the maximum
quantization level is denoted as Q.

Finally, the effect of three MUs on the performance of
CSS is demonstrated in Fig. 9. We see that the presence of
MUs significantly degrades the detection performance. For
example, for Qf = 0.1, we get Qd = 0.8 with CSS having
all HUs whereas we get Qd = 0.5 with CSS having three
MUs. This indicates that the detection probability has been
reduced by 36.7% due to the attack from MUs. The plots
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Fig. 9. Qf vs. Qd plot considering γ = −10 dB, M = 10, ML =
3, α0 = α1 = 0.6 comaparing the performance of proposed algorithm with
existing algorithms..

are shown for α0 = α1 = 0.6. The degradation in the
performance will be even higher if the MUs attack with
higher attack probabilities. We also show that the detection
and elimination of MUs from cooperating in decision making
would result in improved performance. We can see from the
plot in Fig. 9 that the detection probability after removing
the MUs increases to 0.7, indicating an improvement in the
performance. We can utilize the proposed algorithm in further
improvement of the CSS performance by assigning weights to
different CSUs based on the outlier counts and the weighted
sum can be taken at the FC to compute the decision statistic
as given in Algorithm 3. Since the outlier counts are less
in case of MUs and higher for HSUs, the weights obtained
using Eq. (13) are smaller for MUs and higher for HSUs.
Hence, in computing the decision statistic for weighted sum
based algorithm using Eq. (14) more importance is given to
data received from HSUs and less to the data received from
suspected MUs. It can be observed from the Fig. 9 that the
Qf vs. Qd plot obtained using the weighted sum algorithm
coincides with the plot when all HSUs are considered. This
shows that using the weights obtained from the proposed
algorithm in the weighted sum algorithm eliminates the effects
of MUs completely. Fig. 9 also compares the performance of
the proposed weighted algorithm with the algorithms proposed
in [21] and a ROM based algorithm in [22]. We can see that

the proposed algorithm significantly outperforms the algorithm
proposed in [21]. For example, for Qf = 0.1, Qd with the
proposed algorithm is 71.6% higher than Qd achieved with
an algorithm in [21]. The algorithm in [21] performs poorly
because it only eliminates the effect of one of the malicious
values, which is abnormally maximum from obtaining the
decision statistic. The algorithm can perform well when only
one MU exists, which attacks by sending a higher energy
value than it has observed. However, in practice, there can be
multiple MUs. In such cases, the performance of the algorithm
degrades. The proposed algorithm also performs better than
the ROM algorithm [22]. We can see that, for Pf = 0.1,
the detection probability for the proposed algorithm is 15.4%
higher than that with the ROM algorithm. The performance of
the ROM algorithm is similar to the one where we eliminate
MUs from cooperation. The ROM algorithm eliminates only
one malicious value, abnormally high or small. The algorithm
does not perform well when there are more MUs in the
network.

VI. CONCLUSION

In this paper, we study the performance of centralized CSS
under attack from MUs. A centralized independent probabilis-
tic small scale attack is considered, and it is demonstrated that
the performance of CSS degrades under attack from MUs. We
then propose an algorithm based anomaly detection using the
Gaussian mixture model for malicious user detection in CSS.
A theoretical analysis is carried out, and the pdf of energies
received at the FC from the MUs is derived. The derived
pdf is then used to discuss the intuition behind the proposed
algorithm. The proposed algorithm effectively detects the MUs
in the cognitive radio network. Once the MUs are detected,
one can eliminate them from cooperating in spectrum sensing
leading to improved sensing performance. The outlier counts
obtained using GMM based algorithm can be utilized to obtain
weights for weighed sum based CSS algorithm. The weights
obtained are such that, the algorithm gives less importance to
the information received from the MUs, and higher importance
to the data received from honest users leading to improved
CSS performance.

APPENDIX A
DERIVATION OF ffa

H0
(x) GIVEN IN EQ. (18)

In Eq. (18), ffa
H0

(x) represents the pdf of energy received at
the FC from the MUs when they carry out false alarm attack
under hypothesis H0. The MUs carry out attack by reporting
E

′
= Em + ∆ whenever the measured energy Em < η.

Since Em follows a Gaussian distribution given by Eq. (15)
under hypothesis H0, the pdf ffa

H0
(x) follows same shape as

he Gaussian pdf in Eq. (15) in the interval −∞ < x ≤ η.
Hence, to derive the pdf, we can truncate the Gaussian pdf in
the given interval as

f trunc
1 (x) = N

(
x;µ0, σ

2
0

)
;−∞ < x ≤ η (26)

Since Eq. (26) is truncated version of Gaussian distribution
function, it is not a proper pdf and does not satisfy the property
of the pdf, i.e., area under the curve is not 1. In order to
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make the function a proper pdf, we can divide the Eq. (26)
by its area. The area under the curve given in Eq. (26) is
obtained by computing the cumulative distribution function
(cdf) of Gaussian pdf which is given as

FH0
(x) =

η∫
−∞

N
(
x;µ0, σ

2
0

)
dx =

1

2

[
1 + erf

(
η − µ0

σ0

√
2

)]
.

(27)
Using this, the pdf of truncated Gaussian distribution can be
obtained by dividing Eq. (26) by FH0

(x) as

f trunc1
H0

(x) =
N
(
x;µ0, σ

2
0

)
1
2

[
1 + erf

(
η−µ0

σ0

√
2

)] ; −∞ < x ≤ η (28)

The Eq. (28) represents the truncated Gaussian distribution
where the Gaussian pdf is truncated in the interval −∞ < x ≤
η. However, in case of false alarm attack, the MUs attack by
adding ∆ to the measured energy and reporting this increased
energy to the FC. Hence, the pdf of under false alarm attack
will exist in the interval −∞ < x ≤ η+∆. Hence, we have to
modify the truncated Gaussian pdf given in Eq. (28) to exist in
interval −∞ < x ≤ η+∆ which will give us the pdf ffa

H0
(x)

in Eq. (18).

APPENDIX B
DERIVATION OF fmd

H0
(x) GIVEN IN EQ. (19)

The fmd
H0

(x) represents the pdf of energy received at the FC
under H0 when a MU carry out miss detection attack. The MU
attack by reporting E

′

m = Em−∆ whenever Em > η. Because
of Gaussian nature of Em, the pdf fmd

H0
(x) will have the same

shape as that of Gaussian pdf in the interval η ≤ x < ∞, and
can be modeled using a truncated Gaussian pdf. To derive the
intended pdf, we can truncate the Gaussian pdf as

f trunc
2 (x) = N

(
x;µ0, σ

2
0

)
; η ≤ x < ∞ (29)

To make the function given in Eq. (29) a proper pdf, we can
divide it by its area. The area under the truncated Gaussian
function given in Eq. (29) can be obtained by computing the
complementary cdf of Gaussian pdf as

F̄H0
(x) =

∞∫
η

N
(
x;µ0, σ

2
0

)
dx = 1−1

2

[
1 + erf

(
η − µ0

σ0

√
2

)]
.

(30)
Using this, the pdf of truncated Gaussian distribution can be
obtained by dividing the function in Eq. (29) by F̄H0(x) as

f trunc2
H0

(x) =
N
(
x;µ0, σ

2
0

)
1− 1

2

[
1 + erf

(
η−µ0

σ0

√
2

)] ; η ≤ x < ∞ (31)

The pdf of truncated Gaussian distribution is given in Eq. (31)
which exists in the interval η ≤ x < ∞. When the MUs carry
out miss detection attack, they subtract ∆ from the measured
energy and report this reduced energy to the FC. Hence, the
pdf of under miss detection attack will exist in the interval
η − ∆ ≤ x < ∞. Hence, we have to modify the truncated
Gaussian pdf given in Eq. (31) to exist in interval this interval
which will give us the pdf fmd

H0
(x) in Eq. (19).
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