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Abstract—With the knowledge of channel occupancy rate
(COR), cognitive radios can significantly improve their perfor-
mance in exploring and exploiting spectrum holes. However,
most existing COR estimators suffer from overestimation or
underestimation even at high signal-to-noise ratios (SNRs). The
iterative threshold-setting algorithm (ITA) is promising to address
this issue. In this work, we revisit ITA and provide a thorough
theoretical analysis of ITA. First, we prove that ITA converges to
the true COR with a sufficiently large number of traffic samples.
Then, we investigate its convergence when the number of traffic
samples is small, and show that ITA deviates from the true COR
especially at low SNRs. To address this issue, we analyze the
upper bound of the number of traffic samples required to achieve
a certain estimation error, and further propose an improved ITA
(iITA). The proposed iITA enables us to achieve a prespecified
estimation accuracy by adaptively adjusting the number of
traffic samples. Extensive simulation results are provided, which
validate our analyses and demonstrate the superior performance
of ITA and iITA compared to state-of-the-art COR estimators.

Index Terms—Cognitive radio, channel occupancy rate, con-
vergence mechanism, iterative algorithm, primary user traffic.

I. INTRODUCTION

YNAMIC spectrum access (DSA) is promising to im-

prove the spectrum efficiency and alleviate the problem
of spectrum shortage. Cognitive radio is one of key technolo-
gies for DSA [1]. In cognitive radio (CR), the knowledge of
primary user (PU) traffic can be used to significantly improve
the performance of functionalities (such as spectrum sensing
and channel selection) of secondary users (SUs), thereby
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leading to more efficient spectrum utilization [2]-[5]. A key
parameter characterizing PU traffic is the channel occupancy
rate (COR), which represents the occupancy rate of a licensed
channel by PUs. It is shown in [6] that the performance of
spectrum sensing depends on COR, and in [7] that the sensing
performance can be improved by using prior information of
COR. In [8], it is shown that the probability of connectivity
among SUs can be improved approximately by 50% with the
knowledge of COR.

Many DSA schemes assume the perfect knowledge of the
COR of PUs [9]. However, the exact knowledge of COR is
normally unavailable at SUs, and COR estimation needs to
be performed by using measured energy levels from multiple
sensing durations. A variety of COR estimators have been
proposed [10]-[19]. In [10], the holding time lengths of PU
states (ON and OFF) are estimated with the assumption of
perfect spectrum sensing, which are then used to calculate
the COR. The impacts of sample size and imperfect spectrum
sensing on estimating the holding time lengths of PU states are
analyzed in [11] and [12], respectively. In [13], a maximum
likelihood (ML) estimator was employed to estimate the
COR of PUs based on traffic samples (a traffic sample is
an estimated energy level of a sensing duration). The issue
with the ML estimator is that the computational complexity
increases with the number of traffic samples quickly, and it
requires the probability density functions of ON/OFF durations
of PUs, which, however, are often unavailable [14]-[16].
Different from the ML estimator based on traffic samples, the
method in [17] takes the average of the binary decision results
of spectrum sensing from a number of sensing durations to
estimate the COR. This method was called averaging estimator
with uniform sampling (AE-US) [18] and has been applied to
the estimation of channel occupancy rate in [19]. The decision
threshold for spectrum sensing in AE-US is often set based on
a target false-alarm probability (Py), which results in severe
overestimation or underestimation of the COR when Py is
not properly set [2]. In [2], an improved channel occupancy
rate (ICOR) estimation method was proposed to alleviate the
issue of overestimation or underestimation by transforming
the result of AE-US linearly with the use of P;. In [18],
an AE with non-uniform sampling (AE-NS) was proposed,
where the first and last traffic sample intervals are larger
than others, then, an AE with weighted samples (AE-WS)
was proposed, where the weights of the first and last traffic
samples are larger than the others. It was shown in [18] that



AE-NS and AE-WS outperform AE-US when the number of
traffic samples is small. However, AE-NS and AE-WS are
designed and configured with the assumption that the PU
periods are exponentially distributed, so the sample intervals
and the weighting coefficients need to be recalculated for other
distributions. In [20], a rank order filtering (ROF) based COR
estimator is proposed by identifying the states of primary users
at each sampling time instant. However, when the SNR is
low and the spectrum occupancy is high, the performance of
ROF noticeably degrades. Another way to acquire COR is
estimating the average length of holding time of channel states
[12], [21]-[23]. In [12] and [21], estimated channel states
under imperfect spectrum sensing are reconstructed by fitting
the average length of channel holding time with the estimate
of a COR estimator, when both false-alarm and miss-detection
probabilities are known. In [22], a deep learning network is
trained based on a training data set for estimating COR, and
the work in [23] analyses the performance of methods pro-
posed in [10] under the assumption of exponentially distributed
holding time of channel states.

A drawback of the aforementioned estimators is that the
estimate of COR is significantly biased even at high signal-
to-noise ratios (SNRs) and with a large number of traffic
samples. To address this issue, in this work, we reformulate
the COR estimation problem by minimizing the mean-squared
error (MSE), and show that, with a sufficiently large number
of traffic samples, minimizing MSE leads to a minimized
estimation bias. This further leads to the iterative threshold-
setting algorithm (ITA) which was originally proposed in [24].
We conduct a thorough theoretical analysis of ITA. Inspired by
the analysis, we propose an improved ITA (iITA), where the
number of traffic samples is adaptively adjusted to meet the
requirement of estimation accuracy. The main contributions of
this work are summarized as follows.

(1) We prove that ITA converges to the true COR with an
arbitrary initial value, when the number of traffic samples
is sufficiently large. We also reveal that an asymptotically
unbiased estimate of COR can be achieved by adaptively
choosing a proper value of decision threshold in spectrum
sensing. Moreover, the convergence behavior of ITA is
visualized using evolution trajectory by examining the
cumulative distribution function (CDF) of traffic samples
and a function obtained by letting the expectation of the
estimation bias be zero. It is shown that the two functions
have a single intersection, which corresponds to the true
COR.

(2) To investigate the impact of a small number of traffic
samples on the performance of ITA, we analyze the
convergence behavior of ITA from geometrical and sta-
tistical analyses based on empirical CDF (ECDF). It is
revealed that ITA still converges with a small number of
traffic samples, but the convergence point depends on the
initial value of COR and may deviate from the true COR
severely.

(3) The upper bound of the number of traffic samples re-
quired to achieve a prespecified estimation accuracy is
derived. Based on the result, an improved ITA (ITA)
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Fig. 1. Diagrammatic sketch of PU states and time-slots of SUs.

estimator is proposed, where the traffic sample number
can be easily obtained through trial and error.

(4) Extensive simulation results are provided, which validate
the theoretical analysis and demonstrate the superior
performance of ITA and iITA, compared to existing COR
estimators. The two estimators can be implemented in
cognitive radio systems to acquire COR estimate effi-
ciently, thereby improving the system performance.

In terms of theoretical implication, we reveal that asymp-
totically unbiased estimation of COR can be achieved by
adaptively choosing a proper value of decision threshold in
spectrum sensing. Through the thorough analysis of ITA,
the convergence behavior of ITA is fully understood, which
further leads to new perspective on algorithm design and
the iITA algorithm. In terms of practical implication, the
implementation of the efficient algorithms ITA and iITA in
cognitive radio systems allows us to acquire accurate COR
estimates (especially the proposed ilTA to deal with small
number of traffic samples), therefore significantly improving
the performance of cognitive radio systems.

The remainder of this paper is organized as follows. In
Section II, the signal model is introduced. In Section III, after
revealing that the estimation bias dominates the estimation
accuracy of the averaging estimator, we reformulate the COR
estimation problem by minimizing the estimation bias, leading
to the ITA. In Section IV, we investigate the convergence
mechanism of ITA for both large and small number of traffic
samples, analyze the number of traffic samples required to
achieve a pre-set estimation accuracy, and an improved ITA
is proposed. Simulation results are provided in Section V,
followed by conclusions drawn in Section VI.

II. SIGNAL MODEL

Assume that the PU traffic follows a two-state (i.e., OFF
and ON) random process. Let Topr and Tpn be the off and on
durations of PUs, respectively. We assume that Topp and Ton
are independent random variables with unknown distributions.
Let u be the COR of the PU traffic during an observation
of several time-slots. Each SU time-slot consists of a sensing
duration and a silence/transmitting duration. The change of PU
state within a time-slot of SUs may cause interference from
SUs. To avoid unacceptable interference to PU transmissions,
it is required that the PU state keeps unchanged within a whole
time-slot duration for most time-slots. This requirement can
be satisfied by assuming that the length of an SU time-slot is
far smaller than the OFF and ON durations of the PU traffic,



and so is the length of sensing durations. This is illustrated in
Fig. 1. Since a small amount of time-slots within which the
PU state may change almost have no effect on the following
analysis, to simplify the derivation, we only consider the case
where the PU state keeps unchanged within a whole time-slot
duration in the following.

Assume that an observation interval consists of N time-
slots, i.e., N sensing durations of an SU. Let x,,(k) be the kth
sample of the received signal at the SU from the nth sensing
duration. It can be expressed as

(k) = zphn (k) sn (k) + wy (k) (1)

where z,, indicates the PU state at the nth time-slot, and
we use z, = 1 to represent that the PU is active and
zn, = 0, otherwise; h,(k) denotes the Rayleigh channel
coefficient from the PU to the SU, and it follows a complex
Gaussian distribution with mean zero and variance ofl, ie.,
hy(k) ~ CN(0,02); sn(k) denotes the PU signal, and it
is assumed that s, (k) has an average power of E; w, (k)
denotes additive white complex Gaussian noise with mean
zero and variance o2, i.e., wy,(k) ~ CN(0,02). Moreover,
we assume that h,(k), s,(k) and w, (k) are independent of
each other. The SNR is defined as SNR = 02 E/02. Let Ey
and F denote the average power of received signals at the
SU under z, = 0 and z, = 1, respectively. Then, we have
Ey =02 and By = 07 Es + 02. The COR which needs to be
estimated is defined as u = Prob(z, = 1).

Without loss of generality, we employ energy detection
(ED) for spectrum sensing. The test-statistic of ED at the nth

sensing duration is given by [28]
1 K=l
n ; 2
Tgp = i7d ];) |z (k)| 2

where K is the total number of samples within a sensing
duration. Let 2, be the decision of the PU state at the nth
sensing duration of the SU. Then, the false-alarm probability
is given by
P; = Prob(Tgp > Az, =0) 3)
= Prob(%,, = 1|z, = 0)

where A denotes the decision threshold of ED. The detection
probability is given by

Py = Prob(Tp > Az, = 1)

4
= Prob(z,, = 1]z, = 1). ®
Further, we can obtain that [25]-[27]
A—FE
Pr=Q ( ; E°> (5)
7z Fo
and
A—F
Pi=Q ( : E1> 6)
vEh

where Q(-) is the complementary function of the cumulative
distribution for a standard Gaussian random variable. Note
that P; and P, are monotonically decreasing functions with
respect to the decision threshold .

The decision results {Z,,n = 1,2,---, N} are often used
to estimate the COR wu. However, existing estimators may
give rise to significant estimate deviation. In the following, we
investigate the reason and introduce ITA-based COR estimator
and its modified version to overcome the problem.

III. CHANNEL OCCUPANCY RATE ESTIMATION WITH
ITERATIVE THRESHOLD SETTING

Fig. 1 shows a diagrammatic sketch of PU states and time-
slots of an SU. In each time-slot, the SU makes a decision
on the PU state in the sensing duration and then transmits or
keeps silent according to the decision in the following S/T
duration. The decisions from N successive sensing durations
are employed to estimate the COR. As each decision Z,, takes
on 2, = 1 when PU is claimed to exist, and 2,, = 0 when PU
is claimed to be absent, according to [18], the average of IV
decisions can be used for estimating the COR as

1 N
azﬁgzn. (7

If we assume that nearly perfect sensing performance is
achieved, i.e., P =~ 0 and Py =~ 1, @ is a good estimate of w.
However, sensing errors are inevitable, which can degrade the
estimation performance significantly.

We analyze the bias and MSE of the estimator in (7).
Conditioned on the latent variable z,,, Z,, follows a Bernoulli
distribution with probabilities'

Prob(z, =1) = uPy+ (1 — u) Py (8)
and
Prob(z, =0) = u(l — Py) + (1 —u)(1 — Py). ©)]
Therefore, the variance of Z,, can be obtained as

Vizn] = (uPs+ (1 —u)Py) (uw(l — Pg) + (1 —w)(1 — Py)).

(10)
Considering that the elements in {Z,,Vn} conditioned on
the latent variables {z,,Vn} are independent and identically
distributed [29], we can obtain that 4 follows a scaled binomial
distribution and its expectation and variance are respectively
given by

E[d]zuPd—l—(l—u)Pf (11

V] = % (uPg+ (1 —u)Py) (u(l — Pg) + (1 —u)(1 — Py))
(12)

where E[-] and V][] denote the expectation and variance
operators, respectively. Then, the estimation bias and MSE
can be respectively obtained as

evias = B[t)] —u=uPs+ (1 —u)Pf —u (13)

and

emse = V[i] + efiy- (14)

With a sufficiently large N, we can obtain from (12) that
V@] =~ 0. Thus,

2
EMSE R Ehigs- (15)



Algorithm 1 ITA for estimating COR
Initialization:
1: Select a value for u(?) € (0,1).
2: | = 0 (index).
3: repeat
4: I+ 1+1.
s: Obtain AY by solving ul"DPy(\) + (1 —
ul=D)Pr(N) — u=1) = 0 with the bisection algorithm.
6: Obtain V) using (7) or (19) with decisions by com-
paring T2 (n = 1,2,--- , N) with A(),
7: until [0 — (D] < e
Output: A\ is the optimized decision threshold, and u(*) is
an estimate of the COR.

According to (15), the estimation bias dominates the MSE.
Hence, we focus on the analysis of the estimation bias of
the estimator (7). In [18], the performance of the estimator is
analyzed for the two cases of imperfect sensing with Py =
0.05, P; = 0.95 and Py = 0.1, P; = 0.9. For the former
case, we can obtain that the estimation bias epj,s = 0.05—0.1u
and for the latter, epj,s = 0.1 — 0.2u. These indicate that the
estimation bias ey, is small only when u is close to 0.5,
otherwise the absolute estimation bias ep;,s is high when u
is far away from 0.5. More generally, they indicate that the
estimation bias is small only for specific u when P; and Py
are determined.

Next, we introduce the ITA which can decrease the estimate
bias to be sufficiently small. Note that Py and P; are mono-
tonically decreasing functions with respect to the decision
threshold A, and the range of epy,s in (13) is [—u,1 — u].
Hence, epjps can be reduced to zero by optimizing A. Once
an unbiased estimate is achieved, i.e., epjps = 0, (13) gives

€bias = UP3(A) + (1 —u)Pr(A) —u = 0. (16)

Equation (16) involves two variables u and A. It is noted
that, with a fixed value of u, uP;(\) + (1 — u)Pf(\) — u
is a monotonically decreasing function of A. Hence, with
the true value of the COR wu*, there is a unique solution
of A to (16), which is denoted by A*. As u* is unknown,
we cannot determine A*. Note that, with N traffic samples,
one can obtain an estimate of COR with (7) by comparing
the traffic samples with a threshold. This leads to the ITA
[24] for estimating the COR. In other words, we start with
any initial value of v € (0,1) and determine the value of
A and estimate u alternately. The algorithm is summarized
in Algorithm 1. It is interesting that the iterative algorithm
converges to u* and \* for a sufficiently large NV, which will
be proved in the next Section. It is noted that the optimization
of the decision threshold here is purely to achieve an unbiased
estimate of the COR and this may cause the variation of Py
with SNR as shown in Sec. V-B. It should be distinguished
from the decision threshold in spectrum sensing to achieve a

pre-specified Py.
The iteration stopping criterion is given by [30]
lu® — Y] < ¢ (17)

I'The condition “.|zn” will be omitted without confusion in the following.
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Fig. 2. Illustration of ITA.

where [ denotes the iteration index and e is a small number. In
the iterative algorithm, the solution of A to u(Y) Py(\) + (1 —
u®D)Ps(\) —u® = 0 can be obtained by the bisection algo-
rithm, as u Py(\) + (1 —u®) Py (A\) —u® is a monotonically
decreasing function with respect to A.

The iterative process of ITA is illustrated in Fig. 2, where
11} denotes an indicator function. We can see that ITA
consists of three main operation modules: spectrum sensing,
averaging decisions and calculating decision threshold.

IV. PERFORMANCE ANALYSIS OF ITA AND IMPROVED ITA

In this section, we first analyze the convergence of the
ITA with a sufficiently large number of traffic samples, and
investigate the evolution trajectory of the estimation with
iterations. For a small number of traffic samples and in the
low SNR regime, we find that the iterative algorithm may
get stuck at a point far from the true value. To address
this issue, we examine the possible range to which the ITA
converges from the perspective of probability framework, and
then investigate the asymptotic performance of the estimator.
After that, we analyze the number of traffic samples required
to guarantee an estimation accuracy, and then propose an
improved ITA which can achieve an expected estimation
accuracy by adaptively adjusting the number of traffic samples.
Finally, the computational complexity of ITA is analyzed.

A. Performance Analysis with Large Sample Size and Evolu-
tion Trajectory

In Algorithm 1, with w(~1)| the Ith iteration produces A(*)
and v, First, \(!) is obtained by solving

ul=D = VP 0) (1w P AD), (18)

and the solution \() is unique. Then, u(") is obtained by
comparing Ty (n=1,2,---, N) with A, ie.,

1 N
0= = V30
u —N;zn

where 737(11) =1 for T{, > )\(l), and 2,(11) = 0 otherwise. With
the number of traffic samples NV, we can obtain that

19)

u¥) = Prob(z, = 1)Prob(2, = Uz, =1)

+ Prob(z, = 0)Prob(2, = 1|z, = 0) (20)
—w PO + (1= )Py (A0)
where
Py(\D) = Nlu* > lirs a0z 1)



and 1
D (DY =
Pr(AY) = N — ") ; Lipn saw)z, =0y (22)

with 1;4 being an indicator function.

Theorem 1: The ITA algorithm (Algorithm 1) converges to
(\*,u*) for a sufficiently large N.

Proof 1: First, we prove the convergence of the algorithm
for the case u(®) > u*.

It can be easily virified that NE)IEOO Py(AD) = P;(A®) and

lim Py(A®) = P;(A(D). Hence, with a sufficiently large

N—+oc0
N, (20) can be rewritten as
u = w* Py(AD) + (1 — u*)Pr(AY) (23)

where P;(A()) and Py(A\(")) can be calculated by (5) and (6).
We rewrite (16) as

g(A\) = f(u) (24)
where on the left-hand side
1 — Py(N)
A= ———+ 25
g(A) PN (25)

is a monotonically increasing function with respect to A and
on the right-hand side
1w

fu) =

is a monotonically decreasing function with respect to u. Note
that (24) holds with (A*,u*), i.e.,

(26)

u

g(\*) = f(u?). 27)
Without loss of generality, we let
ul=Y > u* (28)

for an arbitrary [ > 1. Then, we can obtain A0 by solving
g(\) = ful=h). (29)

Because g(A) is a monotonically increasing function, f(u) is
a monotonically decreasing function and u= > u*, we can
obtain that

AD <\ (30)

which indicates that A\ is underestimated at the [th iteration
(compared with A*). Further, the underestimated decision
threshold A" will produce higher Py and P; (compared with
P;(\*) and Py(\*)) and then an overestimated COR u(!), i.e.,

u® > y*. (€2))

This implies that v(/~1) and u() are at the same side of u*,
and both of them are larger than v* for any I.

Next, we prove that u(!) decreases with respect to . Note
that the average power of received signals at an SU is
statistically smaller under Ho (i.e., Ey) than H; (i.e., Eq).
Hence, following (5) and (6), we can obtain that

P;(AD) > Py(AD).
From (18) and (20), we can obtain that

u(l_l) . u(l) _ (u(l—l) _ u*) (Pd()\(l)> _ Pf()\(l)>) . (33)

(32)

Note that the right-hand side of (33) is larger than zero. Thus,
for u=1 > u*, we have

NS NON (34)
Combining (31) and (34) gives
w0 > 0 > g (35)

This indicates that u(") decreases with the iteration number ,
and it converges to some value. Therefore,

lim (u(l) — u(lfl)) =0.
=400

(36)

With the above derivations, we will show that u(® converges
to u*. As

P;(ADy — P, (AD) > 0, (37)
according to (33) and (36), we can obtain that
: (I-1) _ % —
l_l}l_ri_noo (u u ) 0. (38)

which indicates that (") converges to u*. Then, \(!) converges
to A*.

Similarly, we can also prove the convergence of the algo-
rithm for the case u(®) < u*, which is shown in Appendix
A.

|

In the COR estimator, A and u are alternatively calculated
based on an initial value u. It can be obtained that the optimal
value (u*, \*) is the intersection of the two functions

u=uPy(\) + (1 —u)Ps(N) (39)

and

u=u"Pi(A\) + (1 —u")Ps(A). (40)

The former one is for calculating A in each iteration as in (18)
and the latter represents obtaining an updated estimate of
by comparing a sufficiently large number of traffic samples
with a decision threshold A. Fig. 3 shows the curves of the
functions in (39) and (40) where u* = 0.3, K = 100 and
SNR = —10dB, and the evolution trajectory of A and u with
iteration from an initial value of © = 0.9 is represented by
dashed lines with arrow heads. It can be observed from the
trajectory that the required iteration number is small to achieve
an estimate with a small error.

B. Impact of Small Traffic Sample Size

The COR u with respect to A in (40) can be regarded as an
empirical cumulative distribution function with a sufficiently
large number of traffic samples (i.e., N — +00). With a more
practical value of N, (40) becomes

w=u*Py(\) + (1 —u*)Ps(N) (41)

where P;()\) and Pf()) are defined in (21) and (22). Hence,
the curve of (41) is not a deterministic one as that of (40).
Equation (41) represents a stepped line, which may have multi-
ple intersections with the curve of (39). Fig. 4 shows the curves
of the functions in (39) and (41) when v* = 0.3, K = 100,
N =100 and SNR = —10dB. Multiple intersections around
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Fig. 3. Curves of the functions in (39) and (40) when u* = 0.3, K = 100
and SNR = —10dB. Dashed lines show the evolution trajectory of A and w
with iteration from an initial value of v = 0.9.
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Fig. 4. Curves of the functions in (39) and (41) when v* = 0.3, K = 100,
N =100 and SNR = —10dB. The stepped line comes from a realization of
100 traffic samples, and intersections vary with different realizations.

u* = 0.3 can be found in Fig. 4, which indicates that the
algorithm converges to v = 0.4 when the initial value of u is
larger than 0.4, while converges to v = 0.27 when the initial
value of u is smaller than 0.27. By increasing SNR to —5dB,
Fig. 5 shows that the curves of the functions in (39) and (41)
have only one intersection at v = 0.3. Hence, the algorithm
will converge to v = 0.3 with an initial value of v no matter
larger or smaller than 0.3.
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Fig. 5. Curves of the functions in (39) and (41) when u* = 0.3, K = 100,
N = 100 and SNR = —5dB. The stepped line comes from a realization of
100 traffic samples, and intersections vary with different realizations.

the perspective of probability framework, and then investigate
the asymptotic performance of the estimator.

First, we consider the case of u(®) > u*. Given that u(!~1
has been obtained from the (I — 1)th iteration, we can derive
the probability

n=Prob (u® < ult=) 42)

where 7 denotes the confidence of the event u() < u(=1),
Equation (42) means that the estimate u® at the Ith iteration
moves from u(‘~1) toward (rather than the inverse direction)
u* with a probability of 7.

As u“~1) has been given at the (I — 1)th iteration, we can
get A() with (18) and then uY) with (19) at the Ith iteration.
With the central limit theorem [31], it can be obtained that
u) approximately follows a Gaussian distribution with mean
E[u"] and variance V[u(], i.e.,

u® ~ N (E[u(l)],V[u(l)]) . 43)

Similar to (11) and (12), the mean and the variance of u(") are
respectively given by

E[u®] = u*Py(AD) + (1 — u*) Py (AD) (44)
and
V[u(l)] = 1 (u*P ()\(l)) + (1 —u")P (A(Z)))
N d f

x (w (1= Pa®) + (1= w)(1 = P (X0))).

It has been proved in Sec. IV-A that the ITA converges to u* (45)
with a sufficiently large V. However, it has been shown that,
with a small or more practical number of traffic samples and Moreover, (18) leads to
at low SNRs, the estimator may not converge to u*. Next we (1-1) Pr(A®)
examine the possible range to which the ITA converges from u —1_ P;(AD) + Py(AD)” (46)

0]
VN (=mohispom — u PaA) = (1= w)Pr(0))
Prob (u(z) < u(zq)) —1-0Q I=Pa(A\D)+P;(AD) a(AY) = ( )Pr(AY) @)

\/(U*Pd(w) + (1= w)Pr(AD)) (w (1 — Py(AW)) + (1 — u*)(1 — Pr(AD)))
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Combining (42)-(46) gives (47) at the bottom of this page.

For the case of u(®) < u*, the same result as in (47) can
also be derived for Prob (u() > u(!=1).

Fig. 6 shows the probability that u(") at the Ith iteration
moves toward u* from different u(!~1) of the (I—1)th iteration
when u* = 0.3 and K = 100. It is observed from Fig. 6 that
the probability approaches zero as u{!~1) is close to zero or
one. This implies that we should not choose u(?) too close
to zero or one. For other values of u(!~1), the probability
of u“~1) moving toward u* is high when u(!~1 is far away
from u*. In other words, ITA will converge to a value far from
u* with a low probability, especially for N = 1000. Around
u*, a notch of probability whose value is less than one is
formed, that indicates the range of possible estimates of the
ITA. Moreover, it is depicted that the width of the notch is
narrowed by increasing SNR or the number of traffic samples.
This implies that the average estimation error can be decreased
by increasing SNR or the number of traffic samples. Fig. 7
shows the probability that (") at the Ith iteration moves toward
u* from different u(!~1) of the (I — 1)th iteration when u* =
0.7 and K = 100. The same conclusions as those in Fig. 6

can also be drawn.

When N goes to infinity, based on the above analyses, we
can obtain that A(") converges to \* with a probability of one.
Let u() be the final estimate of COR, i.e., 4, then, from (44)
we have

E[i] = u*Py(\*) + (1 — u*)Pr(A*) = u*  (48)

which implies that the expectation of the estimate equals its
true value when NN goes to infinity, i.e., the estimate obtained
by the ITA is asymptotically unbiased.

C. Required Traffic Samples With Constraint of Estimation
Error

We have demonstrated the convergence of ITA with large
sample size N and analyzed the impact of /N. Here we analyze
the upper bound on N in order to achieve a pre-set estimation
accuracy.

As the number of traffic samples is N and the averag-
ing estimator is used, all the possible estimates of u* are
{%, %, e ,%} From (47) we can obtain the probability
that the next iteration gets closer to u* when the current
iteration takes a value from {+, 2, -, ¥=1}

Given u(® with u(®) < u*—q, a lower bound of probability
that the estimate eventually falls within [u*—«, u* 4] is given
by

Prob (v —a < 4 < u* + )

= H Prob (ugo) < uE”)

(49)

(€0)

i

where « is a tolerable estimation error, u

represents the
estimate from uz(-o)

after one iteration, and U = {u(o),u(o) +
%7u(0) + %7 Jut —al.

Similarly, a lower bound of probability that the estimate
eventually falls within [u* — o, u* + a] when u(®) > u* + o

is given by

Prob (u* —a <4 < u” + )

=TT Prob (u«” > u”) (50)
wPev
where V = {u®, u® — L 4@ — 2 ... 4 a}.

Since (47) is a monotonically increasing function with
respect to IV, (49) and (50) also monotonically increase with
N. Given o, u(® and Prob (u* — o < @ < u* + @), we can
obtain IV by solving (49) or (50) with the bisection algorithm.
It is noted that in the calculation of N, we assume that the
iteration experiences all possible estimates. In practice, we
do not need such a large number of iterations. Hence, the
calculated NV is larger than the one actually required and is an
upper bound.

Fig. 8 shows the required IV of the upper bound and Monte
Carlo simulation results at different SNR when u* = 0.3, a =
0.05 and Prob (u* —a < & < u* +a) = 0.9. It is observed
from Fig. 8 that the upper bound of IV is larger than the one
obtained from Monte Carlo simulations, but the gap between
them is not that big. This is consistent with what we described
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Fig. 8. Companions of Ns obtained through analysis (upper bound) and
Monte Carlo simulations at different SNR when u* = 0.3 and K = 100.
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Fig. 9. Comparisons of Ns obtained through analysis (upper bound) and
Monte Carlo simulations at different SNR when u* = 0.7 and K = 100.

above and shows that the value of /N obtained through the
theoretical analysis about NV is reasonable and valid. Fig. 9
shows the upper bound of N and its Monte Carlo simulation
results at different SNR when u* = 0.7. The same conclusions
as those in Fig. 8 can be drawn.

D. Improved ITA

Based on the convergence analysis of ITA and the analysis
of the required sample number NV, it can be concluded that
ITA can achieve a good performance with a large N, but
its performance will be degraded when the number of traffic
samples is small at low SNR. To effectively control the
estimation error of COR, a modified version of the ITA is
proposed by introducing a variable N.

Although we have known the upper bound of N, the use
of the upper bound will cause a waste of resources as the
bound may be considerably larger than N. To avoid this, we
propose a new method that can find an appropriate number of
N based on the given tolerable estimation error «. Given a
traffic sample size N; at current time ¢, we can estimate the
COR by using ITA. Hence, one can estimate COR at the time
t, i.e., Uy, with the initial value being previous estimate ;—1

tet+1 “n

Nest Auy —
s =1 R fe——
n = Hrip>a e =

Neyp =Ne+ Ny

Ue Uy I
4’{ Delay H Aup = |1y — U4 ‘

n .
Tep

epias (e, Aes1) = 0

Fig. 10. Illustration of iITA.

at time ¢t — 1. The difference between the current estimate
and the previous estimate 4,_; is given by

Aut: "LALt—'LALt,1|. (51)
After getting Au;, we can recalculate the traffic sample size
for the next time ¢ + 1 as

Auy — o

Niy1 = Ne+ Ny (52)

where N, is a positive integer.

Fig. 10 shows the iterative process of the iITA, where we
can see that iITA includes additional modules for adaptively
adjusting the number of traffic samples, compared to ITA.

E. Computational Complexity

Next, we analyze the complexity of the iterative algorithm
of ITA and iITA. Note that P;(\) and Pf(\) can be easily ob-
tained from a look-up table of the CDF for a Gaussian distribu-
tion. Thus, only 2 multiplications and 3 additions are required
to obtain the value of u(! =) Py(A\)+(1—ul=D) Pr(A) —ull—1).
Therefore, with a tolerance error § relative to the initial inter-
val, the maximum iteration number of the bisection algorithm
is given by [30]

Nbisec = logz % (53)
Let N; be the maximum iteration number for u®. Then the
COR estimator requires at most 2/N; Vy; e multiplications and
3N Npisec additions. Taking § = 1073 and N; = 12 as an
example, at most 240 multiplications and 360 additions are
required for the iterative algorithm. Hence, the algorithm has
a low computational complexity.

V. SIMULATION RESULTS

Extensive simulation results are provided to demonstrate the
superiority of the ITA and the improved estimator, compared
to state-of-the-art estimators. The noise variance o2 and the
Rayleigh channel variance o7 are all set to one. Then, the
PU average power can be calculated with SNR x o2 /o2.
Considering that the performance of energy detection (which
is employed for spectrum sensing in our proposed method)
depends on SNR (no matter what combination of PU average
power and Rayleigh channel variance is), in the simulations,
we keep the channel variance o unchanged and adjust the
PU average power to achieve different SNRs. Moreover, the
lengths of ON and OFF durations are randomly drawn from
generalized Pareto distributions [10]. The location, scale and

shape parameters of the distribution are set as pon = porr = 1,
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Convergence of the proposed algorithm for u* = 0.7 at different

Bon = 3, Porr = 1 and &on = &opr = 0.5 for u* = 0.7, and
pon = porr = 1, Bon = 1, Borr = 3 and &on = &orr = 0.5
for «* = 0.3. The unit of the parameters for the generalized
Pareto distribution is time-slot, i.e., the primary user has the
minimum holding time of one time-slot but has no limit on
the maximum holding time.

A. Convergence Speed

Fig. 11 shows the estimated COR with iteration number
for u* = 0.3 at different SNR. In the simulations, K = 100
and N = 10000. For each SNR, different initial values of «(®)
(e.g., u(® = 0.1 and 0.9) are selected. It can be observed from
Fig. 11 that the ITA algorithm converges for all initial values
for this group of traffic samples. Moreover, at SNR = 0dB,
the algorithm converges with only one iteration. With the same
parameters but v* = 0.7, Fig. 12 shows the estimated COR
with iteration number. It can be observed that the iterative
algorithm still converges fast.

B. Performance Evaluation with u*

In this subsection, we evaluate the performances of different
COR estimators when u* = 0.3 or u* = 0.7. RMSE (Root
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Fig. 13. RMSE of various estimators with different SNR when v* = 0.3,
K =100 and N = 1000.

Mean Square Error) and bias are adopted as criteria.

Fig. 13 shows the RMSE of the estimated COR versus SNR
for various estimators. In the simulations, ©* = 0.3, KX = 100
and N = 1000, and in each Monte Carlo trial, the initial value
of u(® is independently and randomly drawn from an uniform
distribution within the range of (0, 1). For the improved ITA
(iITA), we set & = 0.01 and 0.05, Ny = 1000, N, = 100
and we also set a lower bound for N as Ny, = 100. In Fig.
13, the RMSE of AE-US [17], AE-NS [18] and AE-WS [18]
with Py = 0.1 increases when SNR > —6dB. This is because
4 of AE-US, AE-NS or AE-WS with Py = 0.1 is already
overestimated at SNR = —6dB, and increased SNR (leading
to higher P;) makes the overestimation more severe. It can
be observed that iCOR [2] has better performance than AE-
US, AE-NS and AE-WS only when SNR is high, and this
observation is the same as in [2]. It can be also observed
that the reconstruction algorithm [12], [21] does not work
when SNR < —8dB as the constructed false-alarm probability
becomes negative. ITA has better performance than the others
except the ilTA when SNR > —16dB. When SNR < —16dB,
the performance of ITA degrades. This is because the range of
possible convergence values is large at low SNRs, and uniform
selection of initial value leads to performance degradation.
It can be seen that the RMSE of ilTA with o = 0.01 and
« = 0.05 are around 0.01 and 0.05 respectively at low SNR.

With the same parameter setting as in Fig. 13, Fig. 14
shows the bias of the estimated COR versus SNR for various
estimators. It can be observed that, with the increase of the
SNR, the COR is firstly underestimated and then overestimated
by these estimators except ITA and iITA, while the bias of ITA
and iITA approaches zero. iCOR has smaller bias than that of
AE-US, AE-NS and AE-WS when SNR > —5dB, while AE-
US, AE-NS and AE-WS have smaller bias than iCOR when
SNR < —5dB. Overestimation is observed at low SNR for
ITA, because the randomly initialized value u(?) is larger than
u* with a high probability. Also we can see that il[TA has
smaller absolute bias than ITA. When SNR> —10dB, it can
be observed that the bias of ITA and iITA is close to zero.
Moreover, it can be obtained from Fig. 14 that ITA and ilTA
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K =100 and N = 1000.
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Fig. 16. Bias of various estimators with different SNR when u* = 0.7,
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have the smallest bias (absolute value) among the estimators.

Fig. 15 shows the RMSE of the estimated COR versus SNR
for various estimators for v* = 0.7 when K = 100 and
N = 1000. The parameters of iITA are the same as those

Probability

SNR

Fig. 17. Achieved Py and Py of the proposed method at different SNR for
u* = 0.3 and v* = 0.7 when K = 100 and N = 1000.

in Fig. 13. In each Monte Carlo trial, the initial value of
19 is independently and randomly drawn from an uniform
distribution with the range of (0, 1). In the simulation results,
the RMSE of AE-US, AE-NS and AE-WS with Py = 0.1
increases when SNR > —4dB. This is because @ of AE-US,
AE-NS or AE-WS with Py = 0.1 is already overestimated at
SNR = —4dB, and increased SNR (leading to higher P;)
leads to a more severe overestimation. It can be observed
that iCOR has better performance than AE-US, AE-NS and
AE-WS only when SNR is high. ITA method has better
performance than the others. While the performance of ITA is
not very good when SNR is low, and from this figure and Fig.
13 we can see that iITA greatly improves the performance at
low SNRs by reducing a.

With the same parameter setting as in Fig. 15, Fig. 16
shows the bias of the estimated COR of u* = 0.7 versus
SNR for various estimators. It can be observed again that,
while SNR increases, other methods experience firstly under-
estimation and then overestimation. In contrast, the bias of
ITA approaches zero. Underestimation occurs at low SNR for
ITA, because the randomly initial value (9 is smaller than u
with a high probability. Also, iITA delivers better permanence
than ITA when SNR is very low.

Fig. 17 shows the achieved Py and Py of ITA at different
SNRs for u* = 0.3 and v* = 0.7 when K = 100 and N =
1000. It can be observed that Py = 0 and P; = 1 when
SNR> 0dB. This explains that the RMSE of ITA is close to
zero when SNR> 0dB, while the RMSEs of other methods
cannot approach zero as they have a constant nonzero Pr.

Fig. 18 shows the RMSE for various estimators with dif-
ferent N at SNR = —10dB. In the simulations, u* = 0.3,
K =100, Ny = 1000, Ny = 100 and Npi, = 100. For iITA,
the RMSE is obtained with with different V. Considering that
the iCOR with Py = 0.01 does not work for N < 100, we
only evaluate it for N > 100. It can be seen that AE-WS, AE-
NS and AE-US have similar performance when N is large.
The performance of all estimators improves with N except
ilTA, and the performance gap between other methods and
ITA increases with N. From Fig. 18 we can see that whatever
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Ny is, the RMSE of ilTA with @ = 0.01 and o = 0.05 is about
0.01 and 0.05 respectively. This is because we have preset
tolerable estimation errors and iITA can automatically adjust
the traffic sample size to achieve the expected performance.
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With the same parameter settings, Fig. 19 shows the bias
for various estimators with different N at SNR = —10dB. It
can be observed that the bias of ITA and iITA approaches zero
quickly, while this is not the case for other methods. Moreover,
the absolute bias of the other methods increases slightly when
N is small.

Fig. 20 shows the RMSE for various estimators with d-
ifferent N at SNR = —10dB when v* = 0.7, K = 100,
Ny = 1000, Ny = 100 and Npyin = 100. For iITA, the RMSE
is obtained with different Ny. Considering that iCOR with
Py = 0.01 does not work for N < 100, we only evaluate it
for N > 100. It can be seen from Fig. 20 that AE-WS, AE-
NS and AE-US have similar performance when N is large.
The performance of all estimators improves with N except
ilTA, and the performance of ITA improves faster than other
methods. For ilTA, the same conclusion as those for Fig. 18
can be drawn. The corresponding results for the bias of these
estimators are presented in Fig. 21. The same conclusion as
from Fig. 19 can be drawn from Fig. 21.

Fig. 22 shows the RMSE for various estimators with dif-
ferent K at SNR = —10dB when uv* = 0.3, N = 1000,
Ny = 1000, Ny = 100 and Np;, = 100, and Fig. 23 shows the
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bias for various estimators with different K. It can be seen that
the RMSEs of AE-WS, AE-NS and AE-US with P, decrease
and then increase with K, since the COR is underestimated
with small K but overestimated with large K (as shown in
Fig. 23). Fig. 22 shows that the RMSEs of other methods

decrease with X when K < 1000, and ITA has smaller RMSE
than other methods. The RMSE of iITA with o = 0.01 and
a = 0.05 is around 0.01 and 0.05 respectively when K is
small and then decreases with K. Fig. 23 shows that the bias
of ITA and iITA goes to zero with K.

Fig. 24 shows the RMSE for various estimators with dif-
ferent K at SNR = —10dB when v* = 0.7, N = 1000,
Ny = 1000, Ny = 100 and Ny, = 100, and Fig. 25 shows
the bias for various estimators with different K. It can be
seen that the RMSEs of other methods decrease with K when
K < 1000, and ITA has smaller RMSE, and for iITA, the
same conclusion as those for Fig. 22 can be drawn. Fig. 25
shows that the bias of ITA and iITA goes to zero with K. In
contrast, AE-US, AE-NS and AE-WS overestimate COR if K
increases further.

VI. CONCLUSION

In this paper, we have given an thorough analysis of
the performance of COR estimation with iterative threshold
setting. We have proved the convergence of ITA in the
case with a sufficiently large number of traffic samples, and
investigated its convergence mechanism with small number of
traffic samples. We also analyze the upper bound on of the
number of traffic numbers that is required to achieve a pre-set
estimation accuracy. To improve its performance at low SNRs,
we have proposed an improved estimator. Numerical results
have shown that ITA delivers significantly better performance
than the state-of-the-art ones, and the improved ITA can
deliver better performance even at low SNRs by adaptively
adjusting the pre-set estimation accuracy.

In some scenarios, the minimum length of the holding
time of channel states may be several time-slots [12], [21]-
[23]. This feature has not been exploited by both ITA and
ilTA. Incorporating this feature of channel states will further
improve the estimation performance of COR, which is an
interesting direction to explore.

APPENDIX A
CONVERGENCE FOR THE CASE OF u(®) < ¢*

Without loss of generality, we let

w0 <y (A1)

for an arbitrary [ > 1. Then, we can obtain A(Y) by solving
g = fu!Y). (A2)

Considering that g(\) is a monotonically increasing function,
f(u) is a monotonically decreasing function and v~ < u*,
we can obtain that

2D > (A.3)

Hence, A will produce an underestimated COR u(®, i.e.,
uV <. (A.4)

Next, we prove that u() increases with respect to [. Note that
the average power of received signals at an SU is statistically
smaller under H, than ;. Hence, we can obtain that

Py(AD) > Pr(AD). (A.5)



From (18) and (20), we can obtain that
M“U—M”:@“ﬂguﬂ(&Qm)—PAM%).mﬁ)

Note that the right-hand side of (A.6) is smaller than zero.
Thus, we have

w1 < 0 (A7)
for u—1) < u*.
Combing (A.4) and (A.7) gives
uY <oV < ur, (A.8)

This implies that u® increases with the iteration number I,
and it converges to some value, and

lim (u(l) - u(l*U) —0. (A.9)
l—+oo
As
P;(AW) — P (MDY > 0, (A.10)
according to (A.6), we can obtain that
. * o (1-1)) _
Jlim (u u ) —0. (A.11)

which indicates that u(") converges to u*. Then, A(!) converges
to A*.
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