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Abstract—Dynamic Spectrum Access (DSA) / Cognitive Radio
(CR) systems can benefit from the knowledge of the activity
statistics of primary channels, which can use this information
to intelligently adapt their spectrum use to the operating envi-
ronment. Particularly relevant statistics are the minimum, mean
and variance of the on/off period durations, the channel duty
cycle and the governing distribution. However, most DSA/CR
systems have limited resources (power consumption, memory
capacity, computational capability) and an important question
arises of how many on/off period observations are required (i.e.,
the number of observed on/off periods, referred to as observation
sample size in this work) to estimate the statistics of the primary
channel to a certain desired level of accuracy. In this work, closed-
form expressions to link such sample size with the accuracy of the
observed primary activity statistics are proposed. A comprehen-
sive theoretical analysis is performed on the required number of
observed on/off periods to obtain a specific estimation accuracy.
The accuracy of the obtained analytical results is validated and
corroborated with both simulation and experimental results,
showing a perfect agreement. The analytical results derived in
this work can be used in the design and dimensioning of DSA/CR
systems in which the spectrum awareness function relies on
spectrum sensing.

Keywords— Cognitive radio, spectrum sensing, spectrum
awareness, primary activity statistics, sample size.

I. INTRODUCTION

Dynamic Spectrum Access (DSA) principle [1–3], relying
on the Cognitive Radio (CR) paradigm, has been proposed as
a promising solution to improve spectral efficiency [4]. A CR
is designed for autonomous reconfiguration of the transmitter
parameters based on changing radio environment [5]. CRs can
increase spectrum efficiency by allowing unlicensed/secondary
users (SU) to opportunistically access licensed/primary user
(PU) bands. By sensing the primary channel periodically,
DSA/CR users can identify the idle/busy times of the channel
and transmit with minimal, non-harmful interference to PUs.

While the main role of spectrum sensing is to determine
the instantaneous on/off state of the primary channel, spectrum

Manuscript received March 11, 2018. M. López-Benítez and D. Patel would
like to thank the financial support received from UKIERI under the DST
Thematic Partnerships 2016-17 (grant ref. DST-198/2017). K. Umebayashi
would like to thank the supports received from the MIC/SCOPE #165003006,
and JSPS KAKENHI Grant Numbers JP15K06053, JP15KK0200.

Al-Tahmeesschi and M. López-Benítez are with the Department of Elec-
trical Engineering and Electronics, University of Liverpool, United Kingdom
(email: {Ahmed.Al-Tahmeesschi, M.Lopez-Benitez}@liverpool.ac.uk).

D. Patel is with the School of Engineering and Applied Science, Ahmed-
abad University, India (email: dhaval.patel@ahduni.edu.in).

J. Lehtomäki is with the Centre for Wireless Communications, University
of Oulu, Finland (email: jannel@ee.oulu.fi).

K. Umebayashi is with the Graduate School of Engineering, Tokyo Uni-
versity of Agriculture and Technology, Japan (email: ume_k@cc.tuat.ac.jp).

sensing decisions can also be exploited to estimate the duration
of past busy/idle periods and hence primary activity statistics
such as the minimum, mean and variance of the on/off period
durations, the channel duty cycle and the underlying distri-
bution. This information can in turn be employed to access
the spectrum more effectively and improve the CR system
performance [6, 7] by selecting the most appropriate channel
for transmission [8], reducing the switching time delay [9, 10],
selecting an appropriate threshold for energy detection [11],
forecasting the primary occupancy pattern to minimise the
interference [12, 13], and thus increase the overall spectrum
efficiency. This information could be obtained from other
alternatives such as databases. However, the sensing-based
approach has significant advantages including lower cost and
complexity, independence of external systems and better suit-
ability for highly dynamic radio environments [14].

In the literature, several studies have considered the problem
of estimating primary activity statistics based on sensing
decisions, mostly focusing on the estimation of the channel
duty cycle. In [15], the estimation of the channel occupancy
rate (duty cycle) based on different approaches was studied
analytically in the presence of sensing errors. A mathematical
analysis on the estimation of the mean on/off durations as
well as the duty cycle under DSA was presented in [16]
and references therein. An analytical study on the estimation
of the distribution of busy/idle periods based on spectrum
sensing was presented in [17], while several methods for
the classification of such distribution were proposed in [1]
under the assumption of no sensing errors. To overcome the
degrading effect of sensing errors on the estimated primary
activity statistics, several algorithms were proposed in [18, 19].

The immense majority of previous work relies on a sample-
based approach where primary activity statistics are estimated
based on individual sensing decisions. This approach can be
used to estimate the channel duty cycle (typically calculated
as the quotient between the number of busy sensing decisions
and the total number of sensing decisions), which has been the
parameter of interest in most previous work. In contrast, this
work considers a broader range of relevant primary activity
statistics that includes not only the channel duty cycle but
also the minimum on/off periods, the mean and variance of
on/off periods and the underlying distributions. These statistics
cannot be estimated based on the sample-based approach (at
least not in an evident manner), which motivates this work
to consider a period-based approach where the individual
on/off sensing decisions are first processed to estimate the
durations of each on/off period observed in the channel. Once
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a sufficient number of periods have been observed, the whole
set of activity statistics (not only the duty cycle) is estimated.
The main advantage of the period-based approach considered
in this work is the broader range of activity statistics that can
be estimated compared to the sample-based approach.

An important practical question in this context is how many
busy/idle (on/off) periods need to be observed by a DSA/CR
system (i.e., the observation sample size) in order to estimate
the primary channel activity statistics (in this work: minimum,
mean and variance of on/off times, channel duty cycle and the
underlying distribution) to a certain desired level of accuracy.
To the best of the authors’ knowledge, the only work that has
considered this problem is the study presented in [20], where
only the channel duty cycle is considered (estimated based on
individual on/off sensing decisions) and the required number
of individual sensing events is analysed. On the other hand,
this work considers a more general approach where primary
statistics are estimated based on a set of observed busy/idle
time durations (instead of individual sensing decisions), which
can be used to estimate a broader range of primary activity
parameters (not only the channel duty cycle).

This work presents a comprehensive analytical study on the
estimation of primary channel statistics based on spectrum
sensing decisions and determines the relation between the
number of observed on/off periods and the accuracy of the
resulting primary activity statistics. To the best of authors’
knowledge, this problem has not received a rigorous treatment
before in the literature. The accuracy of the derived closed-
form expressions is validated and corroborated with simulation
results as well as experimental results from a hardware proto-
type developed to this end.

The contributions of this work are outlined as follows:
1) Closed-form expressions are derived for the maximum

error of the minimum, mean and variance of the estimated
on/off periods, the channel duty cycle and the distribution
as a function of the observation sample size (and other
relevant parameters such as the sensing period). These
analytical results are useful to determine the number of
observed periods/samples required to guarantee a desired
maximum error in the estimated statistics. Expressions
for the required observation sample sizes are derived as
well.

2) Practical validation of the obtained analytical results,
not only with simulations but also with experiments, is
provided using a hardware prototype specifically designed
to replicate inexpensive low-end DSA/CR devices. This
scenario is closer to real-life DSA/CR scenarios than
using advanced and costly laboratory equipment.

3) A comprehensive study about the effect of the observation
sample size on the estimation of primary activity statistics
is carried out considering a practical primary activity
model based on the Generalised Pareto distribution,
which is proven to be a more accurate model compared to
the commonly used exponential distribution models [21].

The remainder of this paper is organised as follows. First,
Section II presents the considered system model and formu-
lates the problem addressed in this work. Subsequent sections
provide a detailed mathematical analysis on the sample size

TABLE I
MATHEMATICAL NOTATION USED IN THIS WORK.

Parameter Definition
N (Nx ) Sample size (for parameter x)

Ts Spectrum sensing period

Te Error in the estimation of a period

Ti / T̂i True/estimated period

µi / µ̂i True/estimated minimum period

Ψ / Ψ̂ True/estimated channel duty cycle

fTi (·) / f
T̂i
(·) PDF of true/estimated periods

FTi (·) / F
T̂i
(·) CDF of true/estimated periods

λ / λ̂ True/estimated scale parameter

α / α̂ True/estimated shape parameter

P(x) Probability of x

E(x) Expected value (mean) of x

V(x) Variance of x

M3(x) Third central moment of x

M4(x) Fourth central moment of x

C(x, y) Covariance of x and y

m̂i Sample mean of estimated periods

v̂i Sample variance of estimated periods

ṽi Corrected version of v̂i

εxr,max Maximum relative error of parameter x

DKS Kolmogorov-Smirnov distance

U(a, b) Uniform distribution within [a, b]

ξ Bernoulli random variable

ρ Confidence level

Sub-indices: i = 0 for idle periods, i = 1 for busy periods.

required to provide an arbitrarily accurate estimation of the
minimum period (Section III), the mean and variance of the
observed periods (Section IV), the channel duty cycle (Section
V) and the underlying distribution of the observed periods
(Section VI). The obtained analytical results depend on the
real/actual parameters of the PU traffic, which are unknown
to the SU; this problem is overcome with an iterative stopping
algorithm that enables an accurate estimation of the required
sample size in practical implementations, which is presented
in Section VII. The simulation and experimental methodology
employed in this work to validate the correctness and accuracy
of the analytical results is described in Section VIII, while
the obtained numerical results are presented in Section IX.
Finally, Section XI summarises and concludes this work. Table
I summarises the mathematical notation used in this work.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this work, without loss of generality, a single SU is
considered to detect PU activity on a single frequency band
and channel through spectrum sensing decisions. The SU
senses the channel with a certain periodicity of Ts time units
(t.u.), which is referred to as sensing period. The sensing
decisions are introduced as a binary alternating state: busy
(H1) when the PU signal is present and idle (H0) when the PU
signal is absent. The computed elapsed time (at SU) between
two PU state changes is considered as an estimation T̂i of the
real period duration Ti (i = 0 for idle periods and i = 1 for
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Fig. 1. Considered model. Ts , T1 and T̂1 represent the sensing period, original
period duration and estimated period duration, respectively. T x

e and T
y
e are

the errors in the estimated period.

busy periods) as illustrated in Fig. 1, where the estimation
of the duration of a busy period is shown (idle periods can
be estimated using the same method). Following the approach
shown in Fig. 1, the SU estimates a set {T̂i,n}Nn=1 of N observed
periods of the same type, which is used to calculate the
primary activity statistics of interest. A wide range of statistics
is considered in this work, including the minimum, mean and
variance of the observed periods T̂i , the PU channel duty
cycle, and the underlying distribution (this includes the activity
statistics most commonly used in the DSA/CR literature).

The main objective of this work is to explore the relation
between the number of observed periods N (the observation
sample size) and the accuracy of the estimated primary ac-
tivity statistics mentioned above. To this end, explicit closed-
form expressions are derived for the estimation error of each
primary activity statistic as a function of the sample size N
(and other involved parameters). This is essential to enable
DSA/CR systems determine whether the estimated statistics
of the primary user activity are sufficiently accurate, or more
observations are required instead.

III. ESTIMATION OF THE MINIMUM PERIOD

The estimation of the minimum primary activity time (both
busy/on and idle/off times) has a great deal of importance
when it comes to spectrum sensing and DSA/CR in general
[17, 22], as it determines the minimum amount of time that
a DSA/CR will have to wait before the primary channel is
available (minimum busy time) and the minimum amount of
time it will be available for transmission (minimum idle time).
In some cases, the true minimum period is known, for example
in the case of primary systems that use some form of regional
beacon signals with real-time information [14] or when the
radio technology of the primary system is standardised (e.g.,
the slot duration of GSM). Otherwise, it needs to be estimated.

Based on a set {T̂i,n}Nn=1 of N observed periods T̂i estimated
as shown in Fig. 1, the minimum period duration or minimum
primary (in)activity time, denoted as µ̂i , can be obtained as:

µ̂i = min
n

(
{T̂i,n}Nn=1

)
(1)

Note that the periods T̂i estimated as shown in Fig. 1 are
integer multiples of the sensing period Ts , however the same
original period Ti can lead to two possible estimated periods,
either T̂i = bTi/TscTs = kTs , k ∈ N+ (where b·c is the floor
operator) or T̂i = dTi/TseTs = (k + 1)Ts , k ∈ N+ (where d·e is
the ceil operator). The actual estimated period depends on the
relative (random) position of the sensing events with respect

to the beginning/end of the original period Ti . Based on this
observation, the estimated periods can be modelled as:

T̂i =
(⌊

Ti
Ts

⌋
+ ξ

)
Ts (2)

where ξ ∈ {0, 1} is a Bernoulli random variable. Introducing
(2) into (1), and noting that min(Ti) = µi and min(ξ) = 0, it
can be seen that the estimated minimum period is given by:

µ̂i = min(T̂i) = min
[( ⌊

Ti
Ts

⌋
+ ξ

)
Ts

]
=

⌊
µi
Ts

⌋
Ts (3)

The main question that this work aims to answer is how
many primary periods N need to be observed in order to
estimate each primary activity statistic to a certain degree of
accuracy. From (3) it can be observed that, in the particular
case of the estimation of the minimum period duration, the
estimation error is mainly given by the employed sensing
period Ts and increasing the sample size N will not improve
the accuracy of the estimated minimum µ̂i . However, if the
observation sample size N is not sufficiently large, a longer
period T̂i > µ̂i = bµi/TscTs might be selected as the minimum
observed period, thus potentially leading to a less accurate
estimation. Therefore, in the particular case of this section,
the relevant question is how many primary periods N need to
be observed to ensure that the estimated minimum period is the
most accurate possible estimation, in other words, ensure that
at least one instance of the period µ̂i = bµi/TscTs is observed
in the set {T̂i,n}Nn=1.

To answer this question, let first determine the probability
that an observed period T̂i is equal to the best possible estima-
tion of the minimum period given by (3), i.e., µ̂i = bµi/TscTs .
A period with duration T̂i = µ̂i = bµi/TscTs will be observed
if Ti ∈ [bµi/TscTs, dµi/TseTs] and ξ = 0, therefore the
probability to observe one instance of µ̂i can be obtained as:

P
(
T̂i= µ̂i

)
=P

( ⌊
µi
Ts

⌋
Ts ≤Ti ≤

⌈
µi
Ts

⌉
Ts

)
E (P(ξ=0))

= P
(
µi ≤ Ti ≤

⌈
µi
Ts

⌉
Ts

)
E (P(ξ = 0)) χ0

=

[
FTi

(⌈
µi
Ts

⌉
Ts

)
− FTi (µi)

]
E (P(ξ = 0)) χ0

= FTi

(⌈
µi
Ts

⌉
Ts

)
E (P(ξ = 0)) χ0 (4)

where FTi (·) is the Cumulative Distribution Function (CDF)
of the original periods Ti and FTi (µi) = 0, P(ξ = 0) is the
probability that ξ = 0 in the model of (2) which can be
calculated as:

P(ξ = 0) = P
(
T̂i =

⌊
Ti
Ts

⌋
Ts

)
=

⌈
Ti
Ts

⌉
Ts − Ti

Ts
=

⌈
Ti
Ts

⌉
−

Ti
Ts

(5)

the expected value of which is given by:

E (P(ξ = 0)) =
∫
T

P(ξ = 0) fTi (T) dT

=

∞∑
m=0
(m + 1)

[
FTi ((m + 1)Ts) − FTi (mTs)

]
−
E(Ti )
Ts

(6)
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where fTi (·) is the Probability Density Function (PDF) of the
original periods Ti , and χ0 is a correction factor for P(ξ = 0)
given by:

χ0 =

⌈
µi
Ts

⌉
Ts − µi

Ts
=

⌈
µi
Ts

⌉
−
µi
Ts

(7)

Notice that for any arbitrary period Ti , the width of the interval
[bTi/TscTs, dTi/TseTs] is Ts . However, around the minimum
period µi it holds that Ti ∈ [µi, dµi/TseTs] (since Ti ≥ µi ≥
bµi/TscTs) and the width of such interval is dµi/TseTs − µi
instead of Ts . Therefore, a scaling coefficient χ0 is required
for the probability P(ξ = 0) as shown in (7).

The probability to observe at least one instance of µ̂i in the
N observed periods can be related to the binomial distribution:

Pµ̂iobs = 1 −
[
1 − P

(
T̂i = µ̂i

)]N
(8)

Finally, by specifying a probability of occurrence of the
minimum, Pµ̂iobs, the minimum number of periods required to
ensure the observation of the minimum period µ̂i is:

Nµ̂i =
log

(
1 − Pµ̂iobs

)
log

(
1 − P

(
T̂i = µ̂i

)) (9)

Notice that increasing the sample size will not improve the ac-
curacy of the estimated minimum µ̂i itself, but the probability
that a period µ̂i is observed (otherwise a longer period T̂i > µ̂i
might be selected as the minimum period, thus potentially
leading to a more inaccurate estimation).

IV. ESTIMATION OF THE MEAN AND VARIANCE

Given a set of N observed periods {T̂i,n}Nn=1, the mean E(T̂i)
and variance V(T̂i) of the provided durations can be estimated
directly from the (unbiased) sample moments:

E(T̂i) ≈ m̂i =
1
N

N∑
n=1

T̂i,n (10)

V(T̂i) ≈ v̂i =
1

N − 1

N∑
n=1

(
T̂i,n − m̂i

)2
(11)

Since the estimated periods {T̂i,n}Nn=1 are integer multiples
of the sensing period Ts as discussed in Section III, the sample
moments obtained as shown in (10) and (11) will be affected
by an error associated with the employed finite sensing period
Ts . For the purposes of the analysis carried out in this section,
the estimated periods can be modelled as T̂i = Ti + Te, where
Te represents the above mentioned estimation error. Such error
can be represented by the sum of two error components T x

e and
Ty
e shown in Fig. 1 (i.e., Te = Ty

e −T x
e ). Both error components

can take values within the interval [0,Ts] and can be assumed
to be uniformly distributed (i.e., T x

e ,T
y
e ∼ U(0,Ts)); the

analysis of simulation results indicated that this assumption

is valid. The impact on the estimated moments can thus be
modelled as:

E(T̂i) = E(Ti) + E(Te)

= E(Ti) + E(T
y
e ) − E(T

x
e ) = E(Ti) (12)

V(T̂i) = V(Ti) + V(Te)

= V(Ti) + V(T
y
e ) + V(T

x
e ) = V(Ti) +

T2
s

6
(13)

where E(Ty
e ) − E(T x

e ) = 0 since T x
e and Ty

e are identically
distributed, V(Te) = V(T

y
e ) + V(T x

e ) assuming that T x
e and Ty

e

are independent (the same assumption can be found in [1, 17]),
and V(T x

e ) = V(T
y
e ) = T2

s /12 is the variance of the uniform
distribution U(0,Ts) of T x

e and Ty
e . As appreciated in (12), the

estimated sample mean m̂i is not affected by the employed
sensing period. On the other hand, as observed in (13), the
estimated sample variance v̂i is affected by an error factor of
T2
s /6, which is constant and known. Based on (13), the effect

of Ts can be removed by applying to (11) the appropriate
correction factor:

ṽi = v̂i −
T2
s

6
(14)

where ṽi is the observed variance after correction (i.e., the
corrected sample variance). This approach eliminates the im-
pairments imposed by the use of a finite sensing period Ts

in the estimated moments and is able to provide an accurate
estimation of the real moments of Ti based on the estimated
period durations {T̂i,n}Nn=1, provided that a sufficiently large
number of periods N is captured.

Notice that the estimation error Te resulting from the use
of a finite sensing period Ts cannot be reduced by increasing
the observation sample size N , therefore it is necessary to
first correct the sample moments (in this case, the sample
variance) as discussed above in order to remove such error.
Once the sample moments have been corrected, the resulting
estimations can then be made arbitrarily close to the true
population moments of the original periods Ti by taking a
sufficiently large number of period observations N . Thus, the
question to answer in this section is how large does the set
{T̂i,n}Nn=1 need to be (i.e., what is the required value of N) so
that the sample mean m̂i and the corrected sample variance
ṽi of the set {T̂i,n}Nn=1 are as close as desired to the original
population moments, i.e., m̂i ≈ E(Ti) and ṽi ≈ V(Ti).

Since the estimators m̂i in (10) and ṽi in (14) are unbiased
(i.e., E(m̂i) = E(Ti) and E(̃vi) = V(Ti)), the sample size
required for a certain estimation error can be determined based
on the standard errors of the estimators, which are related to
their variances [23, p.229] as:

V(m̂i) =
V(T̂i)

N
(15)

V(̃vi) = V(̂vi) =
1
N

(
M4(T̂i) − [V(T̂i)]2

N − 3
N − 1

)
(16)
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where M4(T̂i) is the fourth central moment of T̂i , given by:

M4(T̂i) = E
(
[T̂i − E(T̂i)]4

)
= E

(
[Ti − E(Ti) + Te − E(Te)]

4)
= M4(Ti) + 6V(Ti)V(Te) +M4(Te)

= M4(Ti) + V(Ti)T2
s +

T4
s

15
(17)

where V(Te) = V(T x
e )+V(T

y
e ) = T2

s /6 and M4(Te) = M4(T x
e )+

6V(T x
e )V(T

y
e ) + M4(T

y
e ) = T4

s /15, since V(T x
e ) = V(T

y
e ) =

T2
s /12 and M4(T x

e ) = M4(T
y
e ) = T4

s /80.
Given an estimator ω, it is possible to define a confidence

interval of κ standard deviations around the expected value of
the estimator such that the estimated values are within that
interval with a minimum probability ρ (confidence level):

P
(
|ω − E(ω)| ≤ κ

√
V(ω)

)
≥ ρ (18)

If the estimator ω is unbiased, its relative error can then be
bounded by εωr,max ≈ κ

√
V(ω)/E(ω). Based on this, the relative

errors of the estimators m̂i in (10) and ṽi in (14), which are
unbiased (i.e., E(m̂i) = E(Ti), E(̃vi) = V(Ti)) are:

εm̂i
r,max ≈

κ

E(Ti)

[
1
N

(
V(Ti) +

T2
s

6

)] 1
2

(19)

εṽir,max ≈
κ

V(Ti)

[
1
N

(
M4(Ti) −

N − 3
N − 1

[V(Ti)]2+

+
2N

3(N − 1)
T2
sV(Ti) +

7N + 3
180(N − 1)

T4
s

)] 1
2

(20)

which relates the maximum relative error of the estimators m̂i

and ṽi to the observation sample size N (as well as the sensing
period Ts and the moments of the original periods Ti).

The value of κ for a certain confidence level ρ can be
derived from concentration inequalities (some examples are
shown in Table II). However, this approach usually leads to
loose upper bounds on the maximum relative error as it will
be shown in Section IX. A much tighter result can be found by
noting that m̂i and ṽi can be assumed to be normally distributed
by the central limit theorem. The inequality in (18) can be
rewritten for a normal distribution as follows:

P
(
εωabs ≤ ε

ω
abs,max

)
= P

(
|ω − E(ω)| ≤ κ

√
V(ω)

)
=

∫ E(ω)+κ
√
V(ω)

E(ω)−κ
√
V(ω)

e
− 1

2

(
ω−E(ω)
√
V(ω)

)2

√
2πV(ω)

dω

= erf
(
κ
√

2

)
≥ ρ (21)

Solving (21) for κ yields the relation κ ≥
√

2 erf−1(ρ).
It is worth noting that the approach employed to determine

the relation between κ and ρ has a significant impact on the
accuracy of (19) and (20) as well as the mathematical results
derived later on for other PU activity statistics. The relations
shown in Table II are concentration inequalities and therefore
provide bounds on the true value of the maximum estimation
error, while the relation κ ≥

√
2 erf−1(ρ) obtained from (21) is

an approximation to the true value of the maximum estimation

TABLE II
RELATION BETWEEN κ AND ρ FOR VARIOUS CONCENTRATION

INEQUALITIES [24].

Inequality Relation
Chebyshev κ ≥ 1/

√
1 − ρ

Cantelli κ ≥
√
ρ/(1 − ρ)

Vysochanskij-Petunin κ ≥ 2/3
√

1 − ρ
Sobolevev κ ≥

√
−4 ln((1 − ρ)/2)

Bernstein κ ≥
√
−2 ln(1 − ρ)

error. As such, the latter can be expected to be more accurate.
This will be shown and discussed in detail in Section IX.

The observation sample size required to guarantee a prede-
fined maximum relative error follows from (19) and (20):

Nm̂i
≈

(
κ

E(Ti) ε
m̂i
r,max

)2 (
V(Ti) +

T2
s

6

)
(22)

Nṽi ≈

(
κ

V(Ti) ε
ṽi
r,max

)2 (
M4(Ti) − [V(Ti)]2 +

2T 2
s V(Ti )

3 +
7T 4

s

180

)
(23)

where N � 3 has been assumed in (20). This assumption
is reasonable as a relatively large observation sample size is
usually required for an accurate estimation.

It is worth noting that the required sample size for the
estimation of moments (sample mean m̂i and corrected sample
variance ṽi) may in some cases be relatively high, depending
on the desired level of estimation accuracy, the statistics of
the original periods Ti and the employed sensing period Ts .
In DSA/CR devices with limited memory capabilities, this
problem can be overcome by computing the sample moments
based on recurrence formulae [25] instead of storing the
complete history of the N past observed period durations.

V. ESTIMATION OF THE DUTY CYCLE

The duty cycle is an important statistic commonly used to
characterise the level of occupancy of a primary channel or
frequency band (defined as the probability that the primary
channel is busy, i.e., occupied by a PU signal).

The duty cycle can be estimated based on individual spec-
trum sensing decisions as the ratio of the number of sensing
events with a busy/on (H1) decision to the total number
of sensing events. The work reported in [20] provides an
analytical study on the sample size (understood in this case
as the number of individual sensing events) required for an
arbitrarily accurate estimation of the duty cycle based on this
approach. However, taking into account that the duty cycle,
denoted as Ψ, can be related to the mean value of idle and
busy periods as follows:

Ψ =
E(T1)

E(T0) + E(T1)
(24)

an estimation thereof, denoted as Ψ̂, can also be obtained based
on the sample mean estimator m̂i in (10) as shown below:

Ψ̂ =
m̂1

m̂0 + m̂1
(25)



6

where m̂0 and m̂1 represent the sample mean of idle/off
and busy/on periods, respectively. This section provides an
analytical study on the observation sample size N (i.e., number
of periods in the observed set {T̂i,n}Nn=1) required for an
arbitrarily accurate estimation of the duty cycle based on (25).

The standard error (i.e., the standard deviation, or equiv-
alently the variance) of the estimated sample mean can be
propagated through (24)–(25) to obtain the standard error (or
variance) of the estimated duty cycle [26, 27]:

V(Ψ̂) =

(
∂Ψ̂

∂m̂0

)2

V(m̂0) +

(
∂Ψ̂

∂m̂1

)2

V(m̂1) (26)

Based on (18), the relative error of the duty cycle estimated
from (25) is obtained as:

εΨ̂r,max ≈
κ

E(Ψ̂)

√
V(Ψ̂)

=
κ

Ψ

[
1

N[E(T0) + E(T1)]4

{
[E(T1)]

2
(
V(T0) +

T2
s

6

)
+

+ [E(T0)]
2
(
V(T1) +

T2
s

6

)}] 1
2

(27)

where E(Ψ̂) = Ψ and V(Ψ̂) is obtained by introducing (13)
and (15) into (26) and solving the derivatives.

The observation sample size required to guarantee a given
maximum relative error follows from solving (27) for N:

N
Ψ̂
≈

(
κ

Ψ εΨ̂r,max

)2 Ψ2
[
V(T0) +

T 2
s

6

]
+ (1 − Ψ)2

[
V(T1) +

T 2
s

6

]
[E(T0) + E(T1)]

2

(28)
where κ can be obtained from concentration inequalities (Table
II) or the normal approximation as described in Section IV.

VI. ESTIMATION OF THE DISTRIBUTION

The distribution of the busy/on and idle/off times provides
a complete characterisation of the PU activity statistics and
its accurate estimation is therefore of great importance in
the context of DSA/CR systems. Several methods can be
used to estimate the distribution of the PU busy/idle times
based on a finite set {T̂i,n}Nn=1 of N observed periods T̂i . The
most commonly used method is the direct calculation of the
empirical CDF of the set {T̂i,n}Nn=1. The main drawback of
this method is that the estimated distribution has a discrete
domain (even though the original distribution is in general
continuous) since the periods T̂i estimated as shown in Fig. 1
are integer multiples of the sensing period Ts . This leads to
an irreducible estimation error that depends on the employed
sensing period Ts and cannot be improved by increasing the
sample size N [17]. This limitation can be overcome by the
method of moments proposed in [22], where the parameters
of the primary distribution are estimated based on the sample
moments of the set {T̂i,n}Nn=1. This alternative method relies on
the assumption of a particular model for the PU distribution.

A common assumption frequently employed in the literature
is that idle/busy periods follow an exponential distribution
[16, 28–30], which simplifies analytical studies. Field mea-
surements, however, have shown that this model is unrealistic

[31–33]. A more realistic and broader model is the Generalised
Pareto (GP) distribution [21]. While many models are available
in the literature for the PU traffic, most of them have been
developed based on a single radio technology (see [21] and
references therein). On the other hand, the work conducted
in [21] demonstrated that the GP model can provide a very
accurate fit to the distribution of PU periods over wide range
of radio technologies (including amateur, paging, TETRA,
mobile communications, DECT, ISM band and others). This
may be explained by the versatility of the GP distribution,
since many of the models widely used in the literature can
be obtained as particular cases (exponential or Pareto) or ap-
proximated very accurately (generalised exponential, gamma
or Weibull, among others). The analysis presented in this
section considers the GP distribution model, which leads to
more realistic and widely applicable results.

According to the GP model, the CDF of the original periods
Ti is given by [34, ch. 20]:

FTi (T) = 1 −
[
1 +

αi(T − µi)
λi

]−1/αi

, T ≥ µi (29)

where µi > 0, λi > 0, αi ∈ R are the location, scale and shape
parameters, respectively. Based on (29), the method proposed
in [22] provides an estimated distribution:

FT̂i (T) = 1 −
[
1 +

α̂i(T − µ̂i)

λ̂i

]−1/α̂i

, T ≥ µ̂i (30)

Parameter µ̂i represents the estimated minimum period and its
value is assumed to be known to a reasonable level of accuracy
(µ̂i ≈ µi). According to the method of moments, the scale and
shape parameters are estimated as [34, ch. 20]: .

λ̂i =
1
2

(
1 +
(m̂i − µ̂i)

2

ṽi

)
(m̂i − µ̂i) (31a)

α̂i =
1
2

(
1 −
(m̂i − µ̂i)

2

ṽi

)
(31b)

where the sample mean m̂i and the corrected sample variance
ṽi are obtained as shown in (10) and (14), respectively, and
µ̂i ≈ µi . Introducing the MoM estimates provided by (31)
into (30) provides a continuous estimation of the distribution
of PU on/off times. Such estimation can be made arbitrarily
close to the true distribution in (29) by increasing the number
of periods N used to calculate m̂i and ṽi .

To determine the observation sample size N required for an
arbitrarily accurate estimation, it is necessary to express the
error in the estimated distribution as a function of N . This can
be achieved by propagating the standard error of m̂i and ṽi ,
V(m̂i) and V(̃vi) in (15) and (16) respectively, through (31):

V
(
λ̂i

)
=

(
∂λ̂i
∂m̂i

)2

V(m̂i) +

(
∂λ̂i
∂ṽi

)2

V(̃vi) + 2
∂λ̂i
∂m̂i

∂λ̂i
∂ṽi
C(m̂i, ṽi)

(32a)

V
(
α̂i

)
=

(
∂α̂i
∂m̂i

)2
V(m̂i) +

(
∂α̂i
∂ṽi

)2
V(̃vi) + 2

∂α̂i
∂m̂i

∂α̂i
∂ṽi
C(m̂i, ṽi)

(32b)



7

Since the sample mean and sample variance are not inde-
pendent, the covariance between both, denoted as C(m̂i, ṽi),
needs to be included in (32). Such covariance is given by
C(m̂i, ṽi) = M3(Ti)/N [35] where M3(Ti) is the third central
moment of the population distribution.

The standard errors obtained from (32) can be further
propagated through (30) to obtain (assuming µ̂i ≈ µi):

V
(
FT̂i (T)

)
=

(
∂FT̂i (T)

∂λ̂i

)2

V
(
λ̂i

)
+

(
∂FT̂i (T)

∂α̂i

)2

V
(
α̂i

)
(33)

and the absolute error of the estimated distribution can then
be written as: ���FTi (T) − FT̂i (T)

��� = κ√V(
FT̂i (T)

)
(34)

A common metric typically employed to quantify the dif-
ference between two CDFs is the Kolmogorov-Smirnov (KS)
distance, which is defined as [36]:

DKS = sup
T

���FTi (T) − FT̂i (T)
��� (35)

and can be obtained from (34) by solving:

∂

∂T

���FTi (T) − FT̂i (T)
��� = ∂

∂T

[
κ
√
V

(
FT̂i (T)

) ]
= 0 (36)

Unfortunately (36) cannot be solved in closed form. However,
it can be shown that the value of (33) is mainly dominated
(and can be approximated) by its first term. As a result, an
approximated result to (36) can be obtained by solving:

∂

∂T

���FTi (T) − FT̂i (T)
��� ≈ ∂

∂T

κ
√√√(

∂FT̂i (T)

∂λ̂i

)2

V
(
λ̂i

) = 0 (37)

which is maximised for T = µ̂i + λ̂i .
Combining (30)–(35) and evaluating the resulting expres-

sion in T = µ̂i + λ̂i yields the final expression for DKS:

DKS = κ (1 + αi)
− 1
αi
−1

[
1
λ2
i

V
(
λ̂i

)
+ (38)

+
[(1 + αi) ln(1 + αi) − αi]2

α4
i

V
(
α̂i

) ] 1
2

where V
(
λ̂i

)
and V

(
α̂i

)
are obtained from (32) and given by

(44). The relevant moments in (44) for the GP distribution are:

E(Ti) = µi +
λi

1 − αi
(39)

V(Ti) =
λ2
i

(1 − αi)2(1 − 2αi)
(40)

M3(Ti) =
2λ3

i (αi + 1)
(1 − αi)3(1 − 2αi)(1 − 3αi)

(41)

M4(Ti) =
3λ4

i (2α
2
i + αi + 3)

(1 − αi)4(1 − 2αi)(1 − 3αi)(1 − 4αi)
(42)

The result in (38) provides a closed-form relation between
the observation sample size, N , and the error of the estimated
CDF, FT̂i (T), in terms of the KS distance with respect to the
true distribution FTi (T). The observation sample size required

to guarantee a given KS distance follows from solving (38)
for N:

NFT̂i
(T ) =

(
κ

DKS

)2
(1 + αi)

− 2
αi
−2

[
1
λ2
i

Ω(Ti) + (43)

+
[(1 + αi) ln(1 + αi) − αi]2

α4
i

Υ(Ti)

]
where Ω(Ti) and Υ(Ti) are obtained from (44), assuming N �
3 and therefore (N − 3)/(N − 1) ≈ 1, and are given by (45).

VII. ITERATIVE STOPPING ALGORITHM

The analytical results obtained in previous sections provide
closed-form expressions for the required observation sample
size as a function of the desired estimation error for the
minimum period (9), mean (22), variance (23), duty cycle
(28) and distribution (43). Notice that such expressions depend
not only on the desired estimation error but also on the real
moments and/or distribution parameters of the PU traffic,
which are unknown to the SU (and indeed the parameters to
be estimated). As a result, such expressions cannot be used in
a real implementation directly, without further considerations.

To overcome this problem, an iterative stopping algorithm is
here proposed. The proposed algorithm is composed of three
steps that are executed every time a new idle/busy period is
observed (i.e., every time a new sample becomes available)1:

1) Update the calculated sample moments (mean, variance,
third/fourth central moments) based on appropriate recur-
rence equations [25] and apply any required correction
factors as appropriate (see the appendix).

2) Evaluate the expression for the estimation error – i.e.,
(19) for the mean, (20) for the variance, (27) for the
duty cycle, and (38) for the distribution – based on the
most recent sample estimates of the moments obtained in
previous step (instead of the true moments as shown in
such expressions) and the current sample size (number of
observed periods).

3) If the value obtained in previous step is lower than the
desired estimation error then stop, otherwise continue.

An example of how this algorithm would be implemented in
a real system for the estimation of the mean period is shown
in Algorithm 1 (the algorithm would need to be adapted to
other PU activity statistics according to the different obtained
analytical results but the operation principle would be the
same). The key idea is that the theoretical error expressions
are calculated by replacing the true moments (unknown to the
DSA/CR system) with their last (known) sample estimates.
In the shown example, (19) is evaluated by replacing E(Ti)
and V(Ti) with their corresponding sample estimates m̂i and
ṽi , respectively. It can be verified that such estimation error
decreases as the number of observed periods used to calculate
the sample estimates increases. When such value is lower than
the target/desired estimation error, the algorithm will indicate

1As discussed in Section III, the estimated minimum period cannot be made
arbitrarily accurate by increasing the sample size. Therefore the algorithm
proposed in this section is applicable to the rest of PU activity statistics (i.e.,
mean/variance of the estimated periods, channel duty cycle and distribution.)
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V
(
λ̂i

)
=

1
N

{
1
4

(
1 +

3[E(Ti) − µi]2

V(Ti)

)2 (
V(Ti) +

T2
s

6

)
−
M3(Ti)

2
[E(Ti) − µi]3

[V(Ti)]2

(
1 +

3[E(Ti) − µi]2

V(Ti)

)
+

+
1
4
[E(Ti) − µi]6

[V(Ti)]4

[
M4(Ti) + V(Ti)T2

s +
T4
s

15
−

N − 3
N − 1

(
V(Ti) +

T2
s

6

)2]}
(44a)

V
(
α̂i

)
=

1
N

{(
E(Ti) − µi
V(Ti)

)2 (
V(Ti) +

T2
s

6

)
−

(
E(Ti) − µi
V(Ti)

)3
M3(Ti) +

+
1
4

(
E(Ti) − µi
V(Ti)

)4
[
M4(Ti) + V(Ti)T2

s +
T4
s

15
−

N − 3
N − 1

(
V(Ti) +

T2
s

6

)2]}
(44b)

Ω(Ti) =
1
4

(
1 +

3[E(Ti) − µi]2

V(Ti)

)2 (
V(Ti) +

T2
s

6

)
−
M3(Ti)

2
[E(Ti) − µi]3

[V(Ti)]2

(
1 +

3[E(Ti) − µi]2

V(Ti)

)
+

+
1
4
[E(Ti) − µi]6

[V(Ti)]4

[
M4(Ti) + V(Ti)T2

s +
T4
s

15
−

(
V(Ti) +

T2
s

6

)2]
(45a)

Υ(Ti) =
(
E(Ti) − µi
V(Ti)

)2 (
V(Ti) +

T2
s

6

)
−

(
E(Ti) − µi
V(Ti)

)3
M3(Ti) +

+
1
4

(
E(Ti) − µi
V(Ti)

)4
[
M4(Ti) + V(Ti)T2

s +
T4
s

15
−

(
V(Ti) +

T2
s

6

)2]
(45b)

that the number of observed periods is sufficient to estimate
the PU activity statistic of interest with the desired level of
accuracy. The SU receiver can then use the set of observed
periods to produce an accurate estimation, after which the
value of N can be reset to zero in order to start capturing
a new set of samples for the next estimation (notice that
when the proposed algorithm is executed in real-time the value
of N at which it will stop may not necessarily be identical
in every execution, even though it will be similar). Notice
that all the required input information would be known in
a real implementation (desired estimation accuracy in terms
of the target error εm̂i

r,max and confidence interval ρ along
with the employed sensing period Ts). Therefore, this iterative
stopping algorithm enables the practical implementation of the
theoretical results obtained in this work in a practical context.

VIII. SIMULATION AND EXPERIMENTAL METHODOLOGY

The analytical results obtained in previous sections were
compared to results obtained from both software simulations
and hardware experiments. Simulations were performed in
MATLAB by generating several sequences with a sufficiently
large number of interleaved on/busy and off/idle periods from
a GP distribution with predefined location (µi), scale (λi) and
shape (αi) parameters. The generated periods Ti were sensed
with a specified sensing period Ts in order to calculate the
corresponding sequence of estimated periods T̂i that would
be observed by a DSA/CR receiver following the principle
shown in Fig. 1. The set of observed periods, {T̂i,n}Nn=1, was
used to estimate the primary activity statistics as described in

Algorithm 1 Iterative stopping algorithm (for the mean period)

Input: εm̂i
r,max, ρ, Ts

Output: N
1: continue = true, N = 1
2: while continue == true do
3: Sense PU channel until a set {T̂i,n}Nn=1 is available
4: Calculate m̂i =

1
N

∑N
n=1 T̂i,n from (10)

5: Calculate ṽi =

[
1

N−1
∑N

n=1

(
T̂i,n − m̂i

)2
]
−

T 2
s

6 from (14)

6: Calculate εm̂i
r,new =

√
2 erf−1(ρ)

m̂i

[
1
N

(̃
vi +

T 2
s

6

)] 1
2

from (19)

7: if εm̂i
r,new ≤ ε

m̂i
r,max then

8: continue = false
9: else

10: N = N + 1
11: end if
12: end while

previous sections and compared to the original true statistics
as a function of the observation sample size N .

The hardware experiments were conducted with a Prototype
for the Estimation of Channel Activity Statistics (PECAS)
[37]. This prototype is implemented with common low-cost
components with the aim to reproduce a realistic scenario with
inexpensive DSA/CR devices and introduce typical hardware
sources of error and inaccuracies. This prototype is based
on free open source code 2. The hardware experiments are

2Available at: www.lopezbenitez.es/misc/PECAS.zip



9

Transmitter  
Program 

Raspberry Pi Raspberry Pi 

U
SB

 

RTL-SDR 
signal receiver 

433 MHz OOK 
signal 

modulator G
P

IO
 p

in
s 

wiringPi 
Receiver 
Program 

time 

power 

Transmitter  
antenna 

Receiver 
antenna 

RTL-SDR 
support 
package 

Fig. 2. Block diagram of the PECAS prototype employed for hardware experiments [37].

based on the same principle as the simulations but using a real
transmitter and a real receiver. The block diagram is shown
in Fig. 2. The transmitter (primary user) sends a sequence
of GP-distributed idle/busy periods utilising a 433 MHz ON-
OFF Keying (OOK) modulator with an output power of 2
dBm (controlled from a C program based on the wiringPi
library). The receiver (secondary DSA/CR user), placed 1
metre apart, uses a Software-Defined Radio (SDR) with a gain
of 20 dB to monitor the transmitter activity (idle/busy) at 433
MHz every Ts seconds. At every sensing event, signal samples
are captured at a sample rate of 106 samples per second,
which are processed to decide the instantaneous channel state
(idle/busy) using energy detection. The outcomes of the energy
detection decisions are used to estimate the durations of the
observed idle/busy periods as shown in Fig. 1 and compute
the primary activity statistics. While transmitter and receiver
are controlled by C programs running on the same Raspberry
Pi microcomputer, both programs run independently without
synchronisation (as it would be the case of primary/secondary
users in a real scenario). Real-time operation is achieved by a
patched version of the Linux kernel and running the programs
with real-time priority.

IX. SIMULATION AND EXPERIMENTAL RESULTS

In this section, a comprehensive analysis of the obtained
analytical results as well as their validation with simulation
and experimental results are presented. The value considered
for each parameter is shown in the title of each figure in terms
of generic time units (t.u.). In the case of experimental results,
where a particular time unit needs to be selected according to
the real-time capabilities of the employed hardware platform,
the reference unit is the second (i.e., 1 t.u. = 1 second).

Fig. 3 shows the required observation sample size for the
estimation of the minimum period as a function of the sensing
period based on (9). As it can be observed, the required sample
size increases with the desired probability of observation Pµ̂iobs.
It is worth noting that local minima are observed for Ts values
that are integer submultiples of the true minimum (i.e., for Ts =

µi/k with k ∈ N+). This can be explained by the fact that for
such values of Ts it is possible to provide an exact estimation
of the true minimum (see [18]). However for slightly higher
values the required sample size tends to infinity, since in such
a case χ0 ≈ 0, P

(
T̂i = µ̂i

)
≈ 0, and the denominator of (9)

tends to zero as well. It is worth noting that the analytical
result in (9) provides a perfect match with both simulation
and experimental results.

0 0.02 0.04 0.06 0.08 0.1
101

102

103

104

105

Fig. 3. Required observation sample size for the estimation of the minimum
period as a function of the sensing period (duty cycle Ψ = 0.5).

Fig. 4 shows the maximum relative error of the estimated
mean, εm̂i

r,max, observed at the 95% percentile (ρ = 0.95) as
a function of the sample size when the channel duty cycle
is Ψ = 0.5 (i.e., idle and busy periods have the same average
duration). As it can be appreciated, when κ is determined based
on concentration inequalities as the ones shown in Table II
the result in (19) represents a loose upper bound to the true
relative error. On the other hand, if κ is calculated assuming
that the sample mean estimates are normally distributed as
shown in (21), then the result in (19) represents a very accurate
expression for the relative error of the estimated mean (as
corroborated by both simulation and experimental results),
which can then be used to precisely determine the observation
sample size required for an accurate estimation as indicated
in (22). The counterpart results for the estimated variance are
shown in Fig. 5. In this case, the analytical result in (20) does
not follow the simulation and experimental results when the
observation sample is low, even if the normal approximation
is considered for the calculation of κ. This can be explained
by the fact that the assumption of normally distributed values
of the sample variance (based on the central limit theorem)
considered in (21) is valid only for a sufficiently large number
of samples. As a result, if the sample size is not sufficiently
large (for the particular evaluation conditions considered in
the example of Fig. 5 this corresponds approximately to
N < 2000) then the expression in (20) differs slightly from the
true relative error. However, for a sufficiently large observation
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Fig. 4. Maximum relative error of the estimated mean observed at the 95%
percentile (ρ = 0.95) as a function of the sample size (duty cycle Ψ = 0.5).
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Fig. 5. Maximum relative error of the estimated variance observed at the 95%
percentile (ρ = 0.95) as a function of the sample size (duty cycle Ψ = 0.5).

sample size (approximately N > 2000 in the example of Fig.
5) the result in (20) provides a very tight approximation for
the true relative error, as shown by the perfect agreement with
simulation and experimental results in this region of the figure.
Since an accurate estimation of primary activity statistics will
in general require a large sample size, the result in (20) is
in practice accurate where it needs to be, and the observation
sample size required for an accurate estimation of the variance
can therefore be determined precisely based on (23).

Fig. 6 shows the maximum relative error of the estimated
duty cycle observed at the 95% percentile (ρ = 0.95) as a
function of the sample size when the channel duty cycle is Ψ =
0.5. Since the duty cycle is calculated based on the estimated
mean value of idle and busy periods as shown in (25), the
observed results and the accuracy of (27) and (28) can be
explained based on the same arguments as those for Fig. 4.

Fig. 7 shows the maximum KS distance of the estimated
distribution at the 95% percentile (ρ = 0.95) as a function of
the sample size when the channel duty cycle is Ψ = 0.5. The
normal approximation for the calculation of κ is depicted when
the value of T that maximises (35) is calculated by numerical
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Fig. 6. Maximum relative error of the estimated duty cycle at the 95%
percentile (ρ = 0.95) as a function of the sample size (duty cycle Ψ = 0.5).
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Fig. 7. KS distance of the estimated distribution at the 95% percentile (ρ =
0.95) as a function of the sample size (duty cycle Ψ = 0.5).

evaluation of (36) (numeric optimum) and analytically based
on the approximation considered in (37) (analytic optimum).
As it can be appreciated, the approximation considered in
(37) leads to very accurate results. The results observed in
Fig. 7 show that the analytical result in (38) provides a very
accurate evaluation of the KS distance for sufficiently large
sample sizes (approximately N > 2000), similar to the trend
observed in Fig. 5. Following the same argument, it can be
stated that the analytical result in (43) provides in practice a
close prediction of the observation sample size required for an
accurate estimation of the distribution.

Fig. 8 compares the analytical predictions of the required
sample size as a function of the desired estimation error for the
mean (22), variance (23), duty cycle (28) and distribution (43)
with the estimations provided by the algorithm of Section VII
(based on simulations and experiments). As appreciated, the
execution of the algorithm terminates at values of N very close
to the analytical predictions. Therefore the proposed algorithm
can be used by real SU devices to determine in real-time how
many samples (observed periods) are required to accurately
estimate the activity statistics of an unknown PU channel.
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Fig. 8. Required sample size as a function of the desired estimation error for:
(a) mean, (b) variance, (c) channel duty cycle, and (d) distribution (µi = 0.1
t.u., λi = 0.3 t.u., αi = 0.05, Ts = 0.01 t.u., Ψ = 0.5, ρ = 0.95).

X. DISCUSSION OF PRACTICAL ASPECTS

This section discusses several important aspects related with
the practical application of the analytical results obtained in
this work in a real context.

An important practical aspect is the degree to which the
accuracy of the estimated primary activity statistics can affect
the performance of DSA/CR systems. To illustrate this, let
us consider as a practical example the problem of channel
selection, which is one of the cases where primary activity
statistics can be useful as discussed in Section I. A simple
channel selection approach is to select the channel that pro-
vides the highest expected opportunistic bit-rate (R̂b) which
can be expressed as a function of the estimated duty cycle (Ψ̂)
as R̂b = (1−Ψ̂)Wη, where W is the primary channel bandwidth
and η is the spectrum efficiency associated to the modulation
and coding schemes used by the DSA/CR system. Fig. 9
shows the estimated available bit-rate (with W = 20 MHz
and η = 2 bit/s/Hz) as a function of the estimated channel
duty cycle for three cases: N = 100 (insufficient sample size),
N = 2000 (sufficiently large sample size) and N →∞ (infinite
sample size and therefore perfect duty cycle estimation). The
lines shown represent the worst-case upper and lower bounds
corresponding to Ψ̂ = Ψ (1 ± εΨ̂r,max), with εΨ̂r,max given by
(27). As it can be appreciated in this example, an insufficient
sample size (N = 100) can lead to estimation errors of up to
±5 Mbit/s in the expected data rate, which for Ψ = 0.5 (where
the true available data rate is 20 Mbit/s) represents an error of
25%. On the other hand, with a sufficiently large sample size
(N = 2000), the estimation error is less than 1 Mbit/s (5% error
for Ψ = 0.5), which can be made arbitrarily low by further
increasing the sample size. This simple numerical example
illustrates the potential impact that inaccurate primary activity
statistics can have in the performance of DSA/CR systems
and highlights the practical importance of the analytical results
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Fig. 9. Estimated available data rate as a function of the estimated duty cycle.

obtained in this work to determine the sample size required
for an accurate estimation of the primary activity statistics.

Another aspect of practical interest is for how long (in
absolute time units) the DSA/CR system needs to observe a
PU channel before an accurate estimation of the PU statistics
is available, and how this compares to the operation time
scale of the DSA/CR system. All mathematical results for
the considered PU activity statistics are provided in terms of
the number of periods that need to be observed (N), which
can be easily tracked by the DSA/CR system in a practical
implementation (increasing a counter every time a new PU
period is observed until the required sample size is reached).
The total observation time in absolute time units, if it needs to
be known, can be readily obtained as N ·E(Ti), where E(Ti) is
the average PU period duration (which would also need to be
estimated as described in Section IV). Notice that the required
observation time for a particular PU channel depends on the
PU channel itself and its specific PU occupancy, quantified
through E(Ti). This is illustrated in Fig. 10, which shows the
required observation time for different PU activity statistics as
a function of the average PU period duration. In most practical
cases, the required observation time can be expected to be
greater than the typical operation time scale of the DSA/CR
network as a result of the need to observe hundreds/thousands
of periods for an accurate estimation (as illustrated in the
results obtained in Section IX). This is compatible with the
notion that the estimated PU activity statistics will normally
be exploited in the long term and once they are estimated for
the first time they only need to be updated sporadically, which
can be done while the DSA/CR system is in normal operation.

It is also worth mentioning that an accurate estimation of
the PU activity statistics requires a careful consideration not
only of the sample size N , which is the aspect of interest
investigated in this work, but also the sensing period Ts . In
the estimation of the moments and related metrics (mean,
variance, duty cycle) the impact of the sensing period can
be removed by introducing appropriate correction factors as
discussed in Section IV. In the estimation of the distribution
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Fig. 10. Required observation time for different PU activity statistics as a
function of the average PU period duration (target estimation error of 0.05).

the problem is more challenging since the accuracy of the
estimated distribution depends directly on the accuracy of the
estimated minimum period (as shown in detail in [22]), which
in turn can only be estimated accurately if the sensing period
is an integer submultiple of the true (and often unknown)
minimum period. To enable a fair evaluation of the individual
impact of the sample size, which is the aspect of interest in this
work, on the accuracy of the estimated statistics (in particular,
the distribution), the sensing period has been selected as an
integer submultiple of the true minimum period. In a practical
implementation it may be necessary to use more sophisticated
methods for an accurate estimation of the minimum period
such as those proposed in [38].

Finally, a useful extension of this work would be the
investigation of how the obtained analytical results could be
extended by including the relative locations of the PU and
DSA/CR users and how they would be affected by specific
fading scenarios. While this was investigated in [39] for the
particular case of the observed duty cycle, the equivalent study
for the rest of PU activity statistics considered in this work
and the implications on the required observation sample size
has not been investigated yet (to the best of the authors’
knowledge), which is suggested as future work. Moreover,
while the sample size analysis carried out in this work is based
on intuitive and simple estimation methods for the consid-
ered activity statistics, the investigation of other estimation
approaches based on more complex techniques that might
potentially lead to accurate estimations with lower sample
sizes would be a plausible extension to this work as well. In
this context, machine learning techniques [40, 41] have already
demonstrated their potential benefits in other areas of wireless
networks and their application to the problem here considered
is also suggested as further future work.

XI. CONCLUSIONS

DSA/CR systems can benefit from the knowledge of the
primary traffic statistics, which can be exploited by DSA/CR

users to achieve a more efficient utilisation of the free primary
spectrum. This information can be obtained from spectrum
sensing by estimating the duration of individual idle/busy
periods (from the sequence of spectrum sensing decisions)
and then processing a sufficiently large number of observed
periods (referred to in this work as the observation sample
size) to calculate relevant statistics on the primary activity such
as the minimum period duration, the mean and variance of the
observed periods, the channel duty cycle or the underlying
distribution. An important practical question is how many
periods need to be observed in order to guarantee that the
estimated statistics will meet a predefined level of accuracy.
In this context, this work has performed a detailed mathemat-
ical analysis on the observation sample size required for an
accurate estimation of each of the above mentioned primary
activity statistics, and provided closed-form expressions for the
estimation error as a function of the sample size as well as the
required sample size as a function of the desired estimation
error. The obtained analytical results have been compared to
both simulation and experimental results, showing an excellent
agreement in all cases. The expressions provided in this work
can be used in practical DSA/CR systems to guarantee that PU
activity statistics are estimated to the desired level of accuracy.
Moreover, an iterative stopping algorithm has been proposed
to enable SU perform a real-time calculation of the required
sample size, which has been shown to be very accurate.

APPENDIX
CORRECTION OF SAMPLE MOMENTS

As discussed in Section IV, the sample mean needs no
correction and the sample variance needs to be corrected as
shown in (14). A similar analysis can be carried out for the
third and fourth central moments.

For the third central moment of the estimated periods:

M3(T̂i) = E([T̂i − E(T̂i)]3) = E([Ti − E(Ti) + Te − E(Te)]
3)

= E([Ti − E(Ti)]3) + E([Te − E(Te)]
3)

= M3(Ti) +M3(Te) (46)

Thus the third sample central moment needs no correction
since M3(Te) = 0 for a symmetric triangular distribution.

For the fourth central moment of the estimated periods:

M4(T̂i) = E([T̂i − E(T̂i)]4) = E([Ti − E(Ti) + Te − E(Te)]
4)

= E([Ti − E(Ti)]4) + 6E([Ti − E(Ti)]2) ·
· E([Te − E(Te)]

2) + E([Te − E(Te)]
4)

= M4(Ti) + 6V(Ti)V(Te) +M4(Te) (47)

where V(Te) = T2
s /6 and M4(Te) = T4

s /15 for a symmetric
triangular distribution. Solving (47) forM4(Ti) it can be shown
that a sample estimate ĉ4,i of the fourth central moment needs
to be corrected as c̃4,i = ĉ4,i − ṽiT2

s − T4
s /15.
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