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ABSTRACT As a general and rigid mathematical tool, wavelet theory has found many applications and is
constantly developing. This article reviews the development history of wavelet theory, from the construction
method to the discussion of wavelet properties. Then it focuses on the design and expansion of wavelet
transform. The main models and algorithms of wavelet transform are discussed. The construction of rational
wavelet transform (RWT) is provided by examples emphasizing the advantages of RWT over traditional
wavelet transform through a review of the literature. The combination of wavelet theory and neural networks
is one of the key points of the review. The review covers the evolution of Wavelet Neural Network (WNN),
the system architecture and algorithm implementation. The review of the literature indicates the advantages
and a clear trend of fast development in WNN that can be combined with existing neural network algorithms.
This article also introduces the categories of wavelet-based applications. The advantages of wavelet analysis
are summarized in terms of application scenarios with a comparison of results. Through the review, new
research challenges and gaps have been clarified, which will serve as a guide for potential wavelet-based
applications and new system designs.

INDEX TERMS Wavelets, Multiresolution analysis, Wavelet transform, Rational wavelets, Wavelet Neural
Network

ABBREVIATIONS
The acronym words in this paper and their full names are list
below.

Acronym Full name
BER Bit Error Ratio
BP Back Propagation
complex WT complex Wavelet Transform
CWT Continuous Wavelet Transform
CROW Complex Rational Orthogonal Wavelet
CO-OFDM Coherent Optical OFDM
CDF Cohen Daubechies Feauveau

Acronym Full name
DT-CWT Dual-Tree Complex Wavelet Transform
DWT Discrete Wavelet Transform
Dmey Discrete meyer wavelet
DWPT Discrete Wavelet Packet Transform
ECG ElectroCardioGrams
EEG ElectroEncephaloGraphy
EWT Empirical Wavelet Transform
FIR Finite Impulse Response
FrWF Fractional Wavelet Filter
FrWT Fractional Wavelet Transform
fBm fractional Brownian motion
MRA Multi-Resolution Analysis
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Acronym Full name
MS Multiple Sclerosis
NOMA Non-Orthogonal Multiple Access
OFDM Orthogonal Frequency Division Multiplex
ON Optic Neuritis
OWDM Orthogonal Wavelet Division Multiplex
PSD Power Spectral Density
PSNR Peak Signal to Noise Ratio
PNN Probabilistic Neural Network
PAPR Peak to Average Power Ratio
PSO Particle Swarm Optimization
QAM Quadrature Amplitude Modulation
QPSK Quadrature Phase Shift Keying
RWT Rational Wavelet Transform
RADWT Rational Dilation Wavelet Transform
RMS Root Mean Square
RNN Recurrent Neural Network
RWNN Recurrent Wavelet Neural Network
RMSE Root Mean Square Error
STFT Short-Time Fourier Transform
SWT Stationary Wavelet Transform
SAF Sigmoid Activation Function
SNR Signal to Noise Ratio
sEMG surface ElectroMyoGraphy
SVM Support Vector Machines
SSIM Structural Similarity
UWT Undecimated Wavelet Transform
WNN Wavelet Neural Network
WP Wavelet Packet
WAF Wavelet Activation Function
WK Wavelet Kernel
WFNN Wavelet Fuzzy Neural Network
WSS Weighted Spectral Slope

I. INTRODUCTION
In signal processing, much attention has been paid to multi-
resolution analysis and data feature extraction. As a powerful
mathematical tool for analyzing time-varying non-stationary
signals, the time-frequency analysis method offers informa-
tion of joint distribution in both the time and frequency
domains. This method clearly describes the relationship be-
tween time and signal frequency. Standard time-frequency
distribution functions include short-time Fourier transform
(STFT, including Gabor transformation), Cohen distribution
function (including Wegener distribution), improved Wegen-
er distribution, Gabor-Wigner distribution function and S
transform [1]. The advantage of STFT is that its physical
meaning, which represents the energy contained in each fre-
quency component of a signal over a specified time interval,
is clear. Many actual test signals provide a time-frequency
structure consistent with people’s intuitive perception, which
has become the most used time-frequency analysis. Never-
theless, the time or frequency resolution of the STFT is lim-
ited by the window’s width function and cannot be optimized
at the same time [2]. Such limitation can be overcome with
wavelets.

Similar to the Fourier transform, the wavelet transform
can be seen as the projection of a signal into a set of basis
functions that provide localization in the frequency domain.
However, in contrast to the Fourier transform, which pro-
vides constant, equally spaced time-frequency localization,
the wavelet transform provides high-frequency resolution
at low frequencies and high time resolution at high fre-
quencies. Thus, different from the Fourier transform, the
wavelet transform utilizes a series of orthogonal bases with
different resolutions to represent or approximate a signal
through the expansion and translation of the wavelet basis
function. Wavelet transform is considered to be a significant
breakthrough in mathematical analysis. It can be applied
to various fields. For example, signal processing, image
processing, pattern recognition, speech analysis and many
applications could introduce wavelet analysis. Continuous
wavelet transform (CWT) has linear properties, co-variability
of expansion, and invariance of translation. The wavelet
research developed rapidly in the 1980s. In 1981, Stromberg
proved the existence of wavelet functions. From 1984 to
1988, Meyer, Battle and Lemarie designed different wavelet
basis functions with fast decay characteristics [3]. Mallat pro-
posed a fast wavelet transform algorithm for signal analysis
and reconstruction, namely Mallat algorithm [4]. Based on a
concept of multi-resolution analysis, the Mallat algorithm is
expressed as a two-channel filter. Whether 2-dimension im-
ages or 1-dimension signals, signals could be approximated
by a set of sub-signals with different resolutions. It is widely
applied in signal decomposition and reconstruction. In 1992,
Soman and Vaidyanathan proposed wavelet packet theory
[5]. Compared with wavelet transform, wavelet packet can be
used to analyze the signal more finely because it can divide
the time-frequency plane more finely, and the resolution of
the high-frequency part of the signal is better than that of the
wavelet analysis.

In 1992, Zou et al. [6] proposed the M-band Wavelet the-
ory, which extended people’s research on wavelet transform
from "two-band" to "multi-band". In 1994, Goodman et al.
established a multi-wavelet theoretical framework based on
R-order multi-scaling functions and multi-resolution analysis
[7]. The multi-resolution space generated by multiple-scale
functions in a single wavelet is expanded to be generated by
multiple-scale functions to obtain greater degrees of freedom.
Geronimo and his team in 1994 [8] designed a multi-scale
wavelet transform. The construction of the wavelet function
is completed by multiple scaling functions. It can have the
characteristics of tight support, orthogonality, symmetry and
interpolation at the same time. In 1995, Sweldens et al. pro-
posed a new wavelet construction algorithm-Lifting Scheme.
First, the original discrete sample signal is divided into odd
and even, and then the odd and even sample points are fil-
tered. All first-generation wavelets can be constructed using
lifting schemes. It is characterized by fast computing speed,
small memory requirements, and the ability to implement
integer-to-integral conversion [9]. In recent years, with the
development of modern communication systems and image

2 VOLUME 4, 2016

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

processing, wavelet design has also evolved with the times to
adapt to new types of signals and image analysis.

The development of wavelet transform has not stopped.
Numerous new wavelet systems have been created and ap-
plied to improve the limitations of classic wavelets. Classi-
cal discrete wavelets are translation sensitive, which means
a slight shift of signals will cause an extensive range of
wavelet coefficients to fluctuate. Complex wavelet transform
(complex WT) can overcome the above problems, but it has
another problem [10]. Since the input form of the complex
WT with more than one level of decomposition is complex,
it is challenging to construct its complete reconstruction
filter. Kingsbury [11] in 1998 constructed Dual-Tree Com-
plex Wavelet Transform (DT-CWT). Compared with classi-
cal wavelet transform, DT-CWT could also provide phase
information. It not only satisfies the condition of complete
reconstruction but also retains other advantages of complex
wavelets. It has been applied to many image processing
fields.

Combining the advantages of wavelet transform and neural
network is another research hotspot. One method is to use
wavelet analysis to preprocess the signal. The feature ex-
traction of the signal is achieved through wavelet transform,
and then the extracted feature vector is sent to the neural
network for processing. The other is a compact combination
of wavelet transform and neural network, fully integrating
the advantages of the two. Pati and Krishnaprasad [12] first
studied the relationship between neural network and wavelet
transform and proposed a discrete affine wavelet network
model. The idea is to introduce the discrete wavelet trans-
form into the neural network model. In 1992, Zhang and
Benveniste [13] formally proposed the concept and algorithm
of wavelet networks. The idea is to replace neurons with
wavelet elements, that is, use wavelet functions instead of
Sigmod functions as activation functions. In wavelet neural
network (WNN), the hidden layer of the neural network is
replaced by a wavelet function. Meanwhile, the correspond-
ing weights from the input layer to the hidden layer and
the threshold of the hidden layer are replaced by the scaling
factor and the time shift factor of the wavelet function [14].
Then Szu et al. [15] proposed two adaptive WNN models
based on continuous wavelet transform. One is used for
signal representation, focusing on function approximation;
the other is focused on selecting appropriate wavelets for
feature extraction. Because it does not involve reconstruction
problems, the orthogonality requirements of wavelets are not
very strict. However, because the orthogonal wavelet base has
good time-frequency resolution performance when the signal
changes drastically, the network can increase the resolution
scale to ensure the accuracy of the approximation. In addi-
tion, due to the orthogonality of the function bases, adding or
deleting network nodes during the training process does not
affect the trained network weights, which can greatly shorten
the network learning time. Bakshi and Stephanopolous [16]
used the orthogonal wavelet function as the activation func-
tion of neurons and proposed an orthogonal multi-resolution

WNN. According to the theory of multi-resolution analysis,
the scale function and wavelet function are included in the
network together, and the network is trained by the step-by-
step learning method.

The contribution of this paper could be concluded as
follows:

1) Wavelet theory, including the wavelet construction
method and properties definition, is briefly summarized.
The development of the wavelet base is discussed, and
the research direction, which is rationalization, has been
pointed out.

2) Signal decomposition methods are discussed, including
widely used DWT (Discrete wavelet transform) and
its extensions: wavelet packet (WP), complex WT, and
primarily rational wavelet transform (RWT). RWT is
a more powerful signal processing tool with a more
satisfactory frequency resolution, which can be applied
to a wide range of fields by adjusting the factor.

3) The advantages of WNNs that use wavelet analysis as
preprocessing are further clarified. More satisfactory
scale domain resolution is more convenient for signal
processing, whether in denoising or feature extraction.
Applying the wavelet function to the neural network,
combined with some interdisciplinary algorithms, can
significantly increase the neural network’s performance.

4) The application of wavelets in signal processing in the
emerging fields, image processing, and optimization
algorithms is introduced to broaden the application s-
cenarios of wavelets.

5) Some current challenges and research gaps are dis-
cussed in the review, and some future research direc-
tions are suggested.

In this review, a clear track of the wavelet development in
history is sorted out and reviewed systematically. The paper
is organized as follows. Section II is the description of review
method. Wavelet theory is described in Section III . The prop-
erties of different wavelet bases are discussed. Wavelet trans-
form, especially RWT, which can provide finer resolution
analysis, is reviewed in Section IV. WNN is introduced in
Section V. It is divided into two research directions: wavelet
as signal preprocessing and wavelet as activation function.
The advantages of wavelet in signal processing (traditional
and emerging fields), image processing, and application of
optimization algorithms are also reviewed in Section VI .
Through the review, some research challenges and research
gaps are clarified in Section VII. In the end, the conclusion
and future work are presented in Section VIII.

II. REVIEW METHOD
A. THE ORGANIZATION OF REVIEW
The development of wavelets in four major categories is
reviewed, covering wavelet theory, applications of wavelet
theory in general signal processing problems and practical
application scenarios. WNN, one of the fast-developing hot
spots, is also covered to reflect its theoretical development
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FIGURE 1. The orgnization structure of this review paper.

and rich applications. The organization of the review is visu-
alized in Fig. 1 and the detailed organization of the wavelet
application is in Section VI. The historical background and
families of wavelet basis functions are first reviewed. Various
wavelet decomposition architectures and time-scale analysis
tools for general signal processing are summarized. The
review of WNN is divided into two major categories: one is
to preprocess the signal with wavelets and input them into the
neural network. The other is the deep fusion of the wavelet
function and the neural network. The most relevant, recent
and representative practical implementations using wavelets
are summarized to reflect the current status of wavelet ap-
plications. Through the comprehensive review, research gaps
and challenges are identified.

B. SELECT CRITERIA

We first used the filter provided by the database to screen
the publication date, publication platform, and fields of the
documents. For example, we choose the latest papers, which
are mostly from the past ten years and divide them into jour-
nal articles and conference papers. Furthermore, we browse
the abstracts and keywords of the literature to determine
whether it meets the requirements of the review paper. If
the abstract and keywords cannot be accurately identified,
we need to read the introduction part and find the objective
statement of the literature to determine its relevance. Through
the extensive and intensive reading of the literature, the main
contribution is extracted and presented in a concise way. The
main aspects for the evaluation of cited papers are novelty,
contribution, relevance to the field and timelines. The survey
includes papers that represent recent advances in the field,
as well as relevant contributions to the field, regardless of
their publication date. Through the literature, it is judged
whether the literature focuses on the theoretical proposal
or application design and divided into two categories. In
each category, the literature is subdivided according to the

collected keywords. We rank the articles by publication date
for each subcategory. We intensively read the literature and
extracted the novelty and achievements of the literature for
further comparison and analysis.

III. WAVELET THEORY
Current review papers related to wavelets focus on one nar-
row field in many cases. For example, Paul S. Addison’s arti-
cle focused on near-infrared spectroscopy and defined cross-
wavelet transform [17]. The author suggests that wavelets can
be used for real-time local transformation phase monitoring
to obtain valuable new high-resolution views. Moreover, low-
oscillation wavelets may be worth considering when the time
resolution needs to be increased in the transform domain.
Yuan Huang team’s work [18] pay particular attention to the
influence of different wavelets chosen (i.e., wavelet packet
and Gabor wavelet) and propose to use the recently intro-
duced empirical wavelets. In order to pay attention to the tex-
ture existing in the image, experiments are conducted based
on an extensive selection of wavelets. Use wavelet families
in different directions to represent texture more effectively.
Reference [19] introduced continuous wavelet transform and
discrete wavelet transform in ECG (ElectroCardioGrams)
signal denoising and data storage reduction. It is analyzed
that the most suitable denoising technology method is the
bionic wavelet transform method. It shows high selectivity
and sensitivity with high noise reduction. This paper contains
the scope of wavelets and various fields of wavelet applica-
tions.

A. WAVELET CONSTRUCTION METHOD
There are two methods to construct wavelets. The wavelet’s
concept was initially praised in 1981 [20], [21]. After
that, multi-resolution analysis (MRA) has been constructed,
which is a toolbox for constructing standard wavelet bases.
Meyer and some other researchers perfected the details of
the MRA. Mansouri Jam and Sadjedi proposed an orthogonal
MRA and designed a matched wavelet to satisfy orthogonal
MRA conditions [22]. Assume {Vj}j∈Z is a subspace of
L2(R) space, consider {Vj}j∈Z is an MRA of L2(R) space
when [23]:
• Vj−1 ⊂ Vj

The space expands with the increase of j and is strictly
contained (one is larger than one, and is contained layer
by layer), indicating that the information of Vj−1 is
completely contained in Vj and contains less informa-
tion than Vj .

•
⋂
j∈Z

Vj = {0},
⋃
j∈Z

Vj = L2(R)

The subspaces have and only have the intersection of 0.
All of them could form a L2(R) space.

• f(t) ∈ Vj ⇔ f(2t) ∈ Vj+1

The subspaces have dyadic scalability.
• f(t) ∈ Vj ⇒ f(t− k) ∈ Vj for all k ∈ Z

The function still belongs to this subspace after transla-
tion.
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The others are based on the lifting scheme, which was
raised by Sweldens in 1995 [9]. The method does not rely
on Fourier transform, has faster calculation speed, and takes
up less memory. It retains wavelet characteristics while over-
coming the original limitations. In [24], Ansari and Gupta
extended the lifting framework from dyadic wavelet to ra-
tional wavelet. It inherits all the advantages of the lifting
framework. These so-called second-generation wavelets are
easy to implement and can process signals of any size in the
spatial domain and show perfect reconstruction [25]. It has
two main applications. The first is the acceleration of the
fast wavelet transform algorithm. The boundary processing
has also been simplified. The second application is to design
wavelets suitable for multi-dimensional bounded domains
and curved surfaces, which cannot be achieved by Fourier
transform [26]. Haouam and his team [27] presented the
lifting scheme with a biorthogonal wavelet and applied it
in Magnetic Resonance Imaging (MRI) images compression.
Their method gives better compression results than tradition-
al methods. In [28], they also designed a rational wavelet
filter bank based on a lifting scheme and achieved better
sparsifying property than other wavelets. Chen, Li, Zeng and
He [29] proposed an undecimated lifting scheme to exact
shift-invariance and show superiority over other methods. A
biorthogonal wavelet with shape control is constructed under
the lifting scheme in [30], which gives better performance
in data compression and noise reduction. Guptha and his
team introduced a transistor technology based on a lifted
wavelet transform architecture. The complete boosting step
is processed as a continuous stream of samples. Compared
with the existing architecture, the architecture is optimized
by integrating forward and backward lifting schemes [31].

B. WAVELET PROPERTIES
The properties of the wavelet are an important reference for
constructing wavelets or choosing suitable wavelets to pro-
cess various signals. Farge [20] has discussed the factors that
need to be considered when choosing the mother wavelet,
such as orthogonal and non-orthogonal, negative and real
values, the width and shape of the mother wavelet. There are
several basic properties or standards for wavelets: vanishing
moment, support length, regularity, symmetry and orthog-
onality. Orthogonality wavelet has good time-frequency lo-
calization characteristics. Selesnick gave the necessary con-
ditions for an orthogonal wavelet system to form a Hilbert
transform pair [32], and proposed a construction algorithm
based on a delay filter in [33], [34]. Ozkaramanli et al. further
pointed out that the necessary conditions given by Selesnick
in [32] are still sufficient [35]. Vanishing moment is defined
as [36] if the wavelet has N vanishing moments, it should
satisfy that: ∫

tpψ(t)dt = 0 (1)

Where 0 ≤ p < N,ψ(t) is the wavelet function, and t is
the time variable of the wavelet function. Higher vanishing

moments of wavelets are required for signal compression,
denoising, fast calculation. The larger the vanishing moment
is, the more wavelet coefficients are zero. Fig. 2 shows
the wavelet coefficients with different vanishing moments.
We apply DWT with Daubechies wavelets on an example
sine function. The wavelets are db2, db5 and db10 with
vanishing moments are 2, 5 and 10, respectively. The larger
the vanishing moment of the wavelet, the smaller the high-
frequency coefficients after wavelet decomposition, the more
concentrated the signal energy, and the higher the signal
compression ratio.

The support interval of the wavelet function is the length
at which the function converges from a finite value to 0
when the time or frequency tends to infinity. The longer the
support length, the larger cost of computation is required,
and more high-amplitude wavelet coefficients are generated.
Wavelets often have a compact support requirement, which
means that the wavelet function is zero except for a small
value range near 0. The compact support and the vanishing
moment are contradictory. The support length represents the
length of the filter.If the vanishing moment increases, the
wavelet coefficients of the high-frequency sub-band decrease
and a larger amount of coefficients are close to zero, so that
the support length is shorter. Therefore, the support length
and the vanishing moment must be compromised. Compactly
support and vanishing moments can be better balanced under
the multi-wavelet construction [26]. In actual situations, they
can be weighed according to the singularity of the signal.
High vanishing moments are more suitable if the signal
singularities are few, and if singularities are trivial, shorter
supports interval are required.

Regularity is generally used to describe the smoothness
of a function. The higher the regularity, the better the s-
moothness of the function. The Lipschitz exponent k usually
characterizes the regularity of the function. Given a positive
integer n, if there is a positive integer A and a polynomi-
al of degree n ( Pn(t)), so that the functionf(t) has the
characteristics in Equation (2) at t ∈ (t0 − h, t0 + h),
then f(t) has Lipschitz exponent α at the point t0. h is
a sufficiently small amount.The Lipschitz exponent charac-
terizes the approximation degree of the function and the
local polynomial, which is related to the differentiability of
the function. The regularity of the wavelet base affects the
stability of the reconstruction of the wavelet coefficients.
Usually, a certain regularity (smoothness) is required for the
wavelet to obtain a better-reconstructed signal. The wavelet
function has the same regularity as the scale function because
the wavelet function is composed of the linear combination
of the corresponding scale function translation. When quan-
tizing the wavelet coefficients, to reduce the influence of the
reconstruction error on the human eye, the smoothness or
continuous differentiability of the wavelet must be increased
as much as possible. Wavelets with reasonable regularity can
achieve a better smoothing effect in signal or image recon-
struction. However, if the regularity is reasonable, the support
length will be longer, and the cost of computation will be
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FIGURE 2. The wavelet coefficients with different vanishing moment of an example signal: (a) Original example signal (b) Low fequency coefficients
with vanishing moment = 2; (c) High fequency coefficients with vanishing moment = 2; (d) Low fequency coefficients with vanishing moment = 5; (e)

High fequency coefficients with vanishing moment = 5; (f) Low fequency coefficients with vanishing moment = 10; (g) High fequency coefficients with
vanishing moment = 10.

larger. There is an excellent relationship between vanishing
moments and regularity. For many intrinsic wavelets (e.g.,
spline wavelets, Daubechies wavelets), the regularity of the
wavelet becomes larger as the vanishing moment increases
[26]. However, this does not mean that as the vanishing
moment of the wavelet increases, the regularity of the wavelet
also increases.

|f(t)− Pn(t− t0)| ≤ A|t− t0|α, n < α < n+ 1 (2)

Daubechies has rigorously proved that for compactly sup-
ported 2-band orthogonal wavelets, there is no symmet-
ric (antisymmetric) wavelet except Haar wavelet [37]. The
wavelet with symmetry can effectively avoid phase distor-
tion in image processing. Therefore, researchers general-
ized the 2-band wavelet and obtained several significant
branches such as the biorthogonal wavelet [38], the vector
wavelet [39], and the M-band wavelet [40]. The properties

of biorthogonal wavelets are similar to those of orthogonal
wavelets, but they can be completely symmetric. The prop-
erties discussed above are still applicable to biorthogonal
wavelets. Generally, a wavelet with a high vanishing moment
is used for decomposition, and then another wavelet is used
for reconstruction.

In the continuous wavelet transform (CWT), the wavelet
family is obtained from the base wavelet through expansion
and translation. At the same time, CWT has the characteris-
tics of being unchanged after translation and the characteris-
tic of changing together after expansion, so the CWT coeffi-
cients have a certain degree of correlation. In other words, the
wavelet transform coefficients corresponding to two adjacent
points in the time-scale plane are correlated. The closer the
two points are, the stronger the correlation is. As the distance
between the two points increases, their correlation weakens
rapidly. It means that there is data redundancy in the CWT
of the signal, which increases the difficulty of analyzing and
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interpreting the results of the wavelet transform [26].
Although the discrete wavelet transform (DWT) can effec-

tively capture the singularity of one-dimensional signals, it is
not the case in two-dimensional cases. The two-dimensional
orthogonal wavelet base is formed by the tensor product
of two one-dimensional orthogonal wavelet bases, and its
direction selectivity is very limited. Only the horizontal, ver-
tical, and diagonal two-dimensional DWT can not effectively
represent the contour and edge information of the image;
that is, DWT is not a sparse representation of the contour
and edge of the image. Its performance in image denoising,
texture classification, image retrieval is lower than that of
multi-directional wavelet [41].

C. WAVELET BASES
1) Common Basic Wavelet Bases
Haar wavelet is a step function, and also the earliest dis-
covered wavelet with the simplest form. Its expression is
shown in Equation (3). Numerous wavelet theory books also
start from the introduction of Haar wavelet [42]–[46] for the
reader to study. Due to its simple and convenient nature, a
large number of works have adopted the Haar wavelet to
achieve their goals.

Ψ(t) =


1, 0 ≤ t < 1

2

−1, 1
2 ≤ t < 1

0, Else

(3)

Daubechies wavelet was constructed in 1987. The most
significant advantage of Daubechies wavelet is that it can
be realized by finite impulse response conjugate mirror
filter. Both Haar and Daubechies wavelets are orthogonal
wavelets. Daubechies wavelets are generally abbreviated as
dbN , where N represents the order of the wavelet. dbN has
no closed-form expression. Daubechies wavelet has better
regularity. As the order N increases, the vanishing moment
of the wavelet is larger, and localization ability in the fre-
quency domain is stronger; but at the same time, the amount
of calculation is larger. In order to have better symmetry,
Daubechies improved the wavelet system and constructed
the Symlets wavelet and Coiflets wavelet [25]. Coiflet has
better symmetry than dbN. Symlet wavelet function is an
approximately symmetric wavelet function, which improves
the dbN function. Compared with dbN wavelet, they are
consistent with dbN wavelet in terms of continuity, support
length, and filter length, but Symlet and Coiflet have better
symmetry; they can reduce the phase of signal analysis and
reconstruction to a certain extent distortion.

Biorthogonal wavelet is conducive to signal reconstruction
and can accurately reconstruct the signal through a finite im-
pulse response filter (FIR). Biorthogonal wavelets are able to
have tight support, high vanishing moments and symmetry in
the meantime. Its construction methods are able to be roughly
separated into two categories: spectral decomposition and
lifting schemes. Many researchers have proposed different
methods of constructing biorthogonal wavelets. Bhatnagar

[47] explained the biorthogonal representation of functions.
Biorthogonal wavelets are a generalization of orthogonal
wavelets. Therefore, there are more degrees of freedom in
designing biorthogonal wavelets. Reference [30] introduced
Catmull-Clark subdivision surface and combined it with
biorthogonal wavelets. They applied this novel wavelet to
noise suppression, data compression, and other applications
and achieved better results. In [48], researchers used the
homotropy method instead of Newton’s method to construct
biorthogonal wavelet, which enlarged the selective range
of biorthogonal wavelet. Coffey and Etter introduced inter-
nalized MRA and constructed biorthogonal wavelet based
on the bounded domain efficiently [49]. Tay and Lin pro-
posed a technique for constructing biorthogonal wavelets
with rational coefficients. This wavelet has a linear phase
and also has very similar properties to quadrature filters [50].
In [51], an algorithm for estimating rotor displacement of
a magnetic bearing motor based on a multi-resolution filter
bank biorthogonal spline wavelet is proposed. The algorithm
utilizes biorthogonal spline wavelets with generalized linear
phase and tight support characteristics, which can accurately
demodulate the ripple current in the coil and extract the dis-
placement information. Nagare and his team [52] proposed
a new half-band polynomial with rational coefficients using
Bernoulli polynomials to design biorthogonal filter banks.
Singh and Pathak construct biorthogonal wavelet packets in
the Sobolev space Hs(K) on the local positive eigenfield
and derive their biorthogonality at each layer by Fourier
transform [53].

Meyer wavelet is different from the previous wavelets. It
is defined in the frequency domain [26]. Although it has
an analytical form, it does not have a compact support set,
so Meyer wavelet has no fast discrete wavelet transform
algorithm. An FIR filter can be used to construct a filter
matrix to approximate and simulate Meyer wavelet trans-
form.In [54], the potential problem of contaminated data is
handled by a regularization scheme based on Meyer wavelets.
The regularization solution is recovered by Meyer wavelet
projection of the Meyer MRA elements. Lee and Ryu also
suggested that OFDM system using Dmey is the most similar
to traditional OFDM but solves the disadvantages of the
traditional Discrete Fourier transform-OFDM system [55],
[56]. A novel fractional Meyer neuroevolution-based intel-
ligent computational solver is proposed in [57] for numer-
ical processing of bi-singular multi-fractional Lane-Emden
systems using a combination of Meyer WNNs. Regimanu
and his team [58] used a multi-resolution wavelet transform
technique to remove dithered signals. The five-level multi-
resolution analysis uses various wavelet types such as dis-
crete Meyer wavelets (Dmey) and Daubechies wavelets. The
dithered signal is attenuated by 107.0 dB, and the phase
characteristic is found to be linear in the passband, with lower
computational complexity. In [59], Sabir and his team pro-
pose a novel stochastic computational framework based on
fractional Meyer wavelet artificial neural networks, designed
for nonlinear singular fractional Lane-Emden differential e-
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FIGURE 3. Various Wavelet functions and their frequency responses: (a) Haar wavelet. (b) Daubechies wavelet family. (c) Biorthogonal wavelet family.
(d) Meyer wavelet. (e) Symlets wavelet family. (f) Coiflets wavelet family.

quations. The statistical results verify the model’s superiority
in solving singular nonlinear fractional-order systems. Fig. 3
shows some example wavelet functions about Haar wavelet,
Daubechies wavelet, Biorthogonal wavelet, Meyer wavelet,
Symlets wavelet and Coiflets wavelet.

2) The Development of Wavelet Base

Classical wavelet has the advantages of multi-resolution anal-
ysis structure and time-frequency localization. However, this
advantage is only applied in signal processing and cannot be
generalized to two-dimensional or even higher dimensions.
In order to make up for this shortcoming while retaining the
advantages of wavelet analysis, Daubechies and Mallat have
constructed numerous new wavelet systems based on classic
wavelets, each with its own characteristics.

In order to analyze high-quality audio and speech, a non-
uniform frequency domain representation is required [28].
Rational wavelets can provide non-uniform frequency parti-

tions of the signal spectrum and further improve flexibility.
They can also provide greater flexibility and higher time-
frequency analysis accuracy for WNN design. Chertov and
Malchykov verified that the perfect reconstruction condition
is satisfied for the reducible fraction as the dilation factor
by an example [60]. Ansari and Gupta used lifting scheme
to design a rational learning wavelet, which also extends
dyadic to rational wavelet [24]. It owns all the lifting frame-
work’s advantages and has better results when applied in
Compressed Sensing based reconstruction of signals.

Another novel wavelet is the fractional wavelet. Fractional
wavelets extend classical wavelets and are suitable for higher
dimensions due to their low memory. Tausif, Jain, Khan
and Hasan designed two-type architectures of Fractional
wavelet filter (FrWF) with 5/3 filter bank: with multiplier
and without a multiplier, and it required less memory than
existing architecture [61], [62]. They and Reisslein [63]
proposed a segmented modified FrWF to reduce the high time
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complexities of DWT and FrWF, about 16.8% and 53.6%,
respectively, and has about 65% lower energy consumption
than traditional FrWF for high-resolution images. In [64],
Liu, Wu, Li, Senhadji and Shu combined fractional wavelets
and scattering network and constructed fractional scattering
network to obtain improved signal and image classification
performance. Shi and his team studied the sampling the-
orem for fractional wavelet transform and discussed sam-
pling and aliasing errors estimating [65]. A hybrid fractal
wavelet coder is proposed in [66]. It has the advantages
of wavelet transform and achieves significantly improved
image quality without obviously blur. In [67], the authors
comnined fractional wavelet and biorthogonal wavelet and
defined fractional MRA. They constructed the necessary and
sufficient conditions for translates of the wavelet to form a
fractional Riesz basis. Reference [68] discussed fractional
spine wavelets and verified that it is more effective than
traditional wavelet in the texture recognition of the surface
texture of machine parts.

When the selected wavelet function has a complex do-
main instead of a real one, the wavelet is defined as a
complex wavelet. Complex wavelet has the form ψc(t) =
ψreal(t) + jψimage(t). The real part ψreal(t) and imaginary
part ψimage(t) of most complex wavelets is a Hilbert trans-
form pair. Fernandes, van Spaendonck and Burrus (2003)
[69] combined a mapping filter and an inverse mapping
filter with a complex wavelet and constructed mapping-based
complex wavelet transform. This wavelet transform has both
directivity and is non-redundant. Toda, Zhang and some
other researchers [70], [71] proposed a series of complex
wavelet transform having perfect translation invariance based
on different methods: Hilbert transform pair [70], and 3-
dilation orthogonal basis with perfect translation invariance
[71]. They also constructed a tight wavelet frame based on
a designed complex wavelet [72] in the frequency domain.
In [73], the complex wavelet packet energy moment entropy
is defined as a new monitoring index to characterize bearing
performance degradation.

There are some special wavelets. The widely applied non-
orthogonal wavelets are Gaussian Wavelet, Morlet Wavelet,
and Mexican Hat Wavelet [74]. Orthogonal wavelet func-
tion is generally used for discrete wavelet transform; non-
orthogonal wavelet function can be used for discrete wavelet
transform or continuous wavelet transform [75]. Gaussian
wavelet is the first derivative of Gaussian function; its ex-
pression is ψ(t) = −te−0.5t2 . Mexican hat wavelet is the
second derivative of Gaussian function; express as ψ(t) =
(1 − t2)e−0.5t

2

detector for finding a Gaussian noise is the
Mexican Hat wavelet [76]. Mexican hat is real-valued and
captures both the positive and negative oscillations of the
time series as separate peaks in wavelet power [20]. In
addition, to obtain information on both the amplitude and
phase of the time series, it is necessary to choose a complex
wavelet because the complex wavelet has an imaginary part,
which can express the phase well. Morlet wavelet (express
as ψ(t) = cos(5t)e−0.5t

2

) is simply a complex wave with-

in a Gaussian envelope. Reference [25] considered several
different test signals, such as noise, phase shift, bump and
a slight spike, to test the performance of Morlet wavelet
with different parameters. Morlet wavelet has a good balance
between the localization of time and frequency. Fig. 4 is
the waveform of the three non-orthogonal wavelets. Table
1 shows the properties of several standard wavelet bases
introduced above.

Novel wavelets could also be constructed by combining
different properties of different wavelets. Wen and his team
[77] studied the decomposition and reconstruction orthogo-
nal rational wavelet filter bank with dilation factor M = 3

2 .
They constructed high-pass filter banks from low-pass filter
banks and gave a perfect reconstruction method. In [78], Li
also proved the condition of the perfect reconstruction for the
orthonormal wavelet bases with rational dilation factor M =
p
q and gave two examples of orthogonal wavelet bases to
verify the perfect reconstruction. Yu and her team constructed
a wavelet that combined complex wavelet, rational wavelet
and orthogonal wavelet [79]. It achieves better robustness
in broadband sonar pulse than linear frequency modulated
pulse-based system [80], [81], and has well system perfor-
mance against Doppler effect and inter-symbol interference
caused by multipath while reducing channel noise [82].

3) Expansion of Wavelet Base in Dimensions and Scales
One of the wavelet extension directions is higher-
dimensional wavelets. At present, two-dimensional wavelet
analysis has made significant progress both in theory and
application (mostly in image processing). In [83], Rinoshika
designed a three-dimensional orthogonal wavelet based on
Daubechies wavelet and analyzed instantaneous 3-D velocity
fields of a high-resolution tomographic particle image ve-
locimetry. At different wavelet decomposition levels, differ-
ent vortexes could be extracted. Reference [84] proposed a
three-dimensional discrete wavelet transform for hyperspec-
tral faces feature extraction compared with three existing
hyperspectral face recognition methods and achieved higher
accuracy.

The wavelets discussed previously are all single-scaling
wavelets. Whether it is a classic wavelet or a newly designed
wavelet, the wavelet function is constructed by a single scal-
ing function. In signal processing, whether the wavelet has
properties such as compact support, symmetry, orthogonality,
and the vanishing moment is essential. However, it is not
easy for a single-scaling wavelet to have these properties at
the same time. Multi-wavelet means that multiple scaling
functions complete the construction of wavelet functions.
The construction of multi-wavelets can usually be trans-
formed into the solution of vector filter matrix coefficients.
Compared to single-scaling wavelets, multi-wavelets have
superior properties such as symmetry, regularity, and vanish-
ing moments in the compactly supported range, so they have
received extensive attention in the field of signal processing.
Reference [85] uses the Optimized multi-wavelet transform
of electroencephalography (EEG) signals for the classifica-
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TABLE 1. The properties, advantages, disadvantages and applications of common wavelet bases.

Representation
and Example

Orthogonal Biorthogonal Compactly
support

Vanishing
moment

order

Regularity Symmetry Advantages and
disadvantages

Applications

Haar haar yes yes yes 1 Not
continuous

yes It is the simplest
orthogonal
wavelet and the
calculation is
simple.

Mostly used as a
principle or
illustration.

Daubechies dbN yes yes yes N About
0.2N

No It has better
regularity and is
more efficient
than Haar
analysis.

Mostly used in
signal
reconstruction.

Coiflets coifN yes yes yes 2N Good Nearly Longer support
length and
greater vanishing
moment. Better
symmetry.

Similar to
Daubechies
wavelet.

Symlets symN yes yes yes N Good Nearly Approximately
Symmetric.

Similar to
Daubechies
wavelet.

Biorthogonal biorNr.Nd no yes yes Nr yes yes Biorthogonal
wavelets solve
the contradiction
between linear
phase and
orthogonality
requirements.

Mainly used in
signal and image
reconstruction.

Meyer myer yes yes no - Indefinitely
derivable

[37]

yes It is not
compactly
supported, but it
converges
quickly.

Used for signal
decomposition
and
reconstruction.

Dmeyer Dmey yes yes yes - - yes It is an
FIR-based
approximation of
the Meyer
wavelet.

For the
computation of
fast discrete
wavelet
transforms.

Gaussian gaus no no np - yes yes It directly uses
the Gaussian
function as the
wavelet function.

It is applied to
the activation
function of the
WNN.

Mexican
Hat

mexh no no no - yes yes It has good
localization in
time domain and
frequency, but
there is no scale
function.

It is widely used
in visual
information
processing and
edge detection.
There are also
applications in
WNN.

Morlet morl no no no - yes yes It can extract the
amplitude and
phase
information of
the signal, but
there is no scale
function.

Often used in the
analysis of fluid
turbulence and
WNN.
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FIGURE 4. Non-orthogonal wavelet functions and their spectrums: (a) Gaussian wavelet; (b) Mexican Hat wavelet; (c) Morlet wavelet.

tion of eye movements of humans and achieve higher accura-
cy when there are different movements and blinking. In [86],
multi-wavelet transform is applied on mechanical features
extraction of on-load tap-changer and achieve a better result
in fault detection. Both the authors in [87] and [88] combined
multi-wavelet and neural networks and then achieved better
results in their research fields. In [88], its approximate per-
formance is far better than that of some classical algorithms,
even in algorithms that use mother wavelets. In [87], this
method can effectively expand the data set and build a CNN
model through experiments and has good robustness to noise,
misalignment, and different numbers of training samples of
the same type.

IV. CLASSIFICATION OF WAVELET-BASED SIGNAL
SPACE DECOMPOSITION
A. DISCRETE WAVELET TRANSFORM
Wavelet transform has the characteristics of multi-resolution
analysis and can characterize the local characteristics of the
signal in both the time and frequency domains. This method
performs multiscale analysis on the signals through calcula-
tion functions such as expansion and translation. Compared
with the Fourier transform, it is able to provide a "time-
frequency" window that changes with frequency. It can also
fully highlight certain aspects of the signals. DWT is the
most basic and most widely used wavelet transform, which
is implemented by a two-channel filter bank with different
levels. DWT is obtained by discretizing the scale and dis-
placement of continuous wavelet transform according to the
power of 2, so it is also called dyadic wavelet transform.

For many signals, the low-frequency component is essential,
it contains the characteristics of the signal in many cases,
and the high-frequency component gives the details or differ-
ences of the signal. In DWT decomposition, low-frequency
information represents the high-scale of the signal, which is
an approximation of the signal; high-frequency information
represents the high-scale of the signal, which is the detail
of the signal. Therefore, the original signal passes through
two mutual filters to produce two signals. The approximate
signal is continuously decomposed through the continuous
decomposition process, and the signal can be decomposed
into many low-resolution components. Theoretically, the de-
composition can proceed without limit. In practical appli-
cations, the appropriate number of decomposition layers is
generally selected according to the characteristics of the
signal or appropriate standards.

The DWT of the signal is not directly realized by the inner
product between signals and ψ(t) (the wavelet function) and
φ(t) (the scaling function), but by using high-pass filter h[n]
and low-pass filter g[n]. It regards the wavelet coefficients
cj [k] and dj [k] of the signal as discrete signals, and h[n]
and g[n] as digital filters, thereby establishing the wavelet
transform and filter bank. The filter bank theory realizes
the relationship between the signal wavelet analysis. Most
research involving wavelets will introduce wavelet analysis
into the design of filter banks. A particular wavelet filter
bank can be designed according to the processing object. The
structure of DWT is shown in Fig. 5(a). Fig. 5 introduces
wavelet decomposition structure of different wavelet trans-
form, which are DWT, discrete wavelet packet transform (D-
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FIGURE 5. Different structure of wavelet transform: (a) DWT; (b) SWT; (c) DWPT; (d) DT-CWT.

WPT), dual-tree complex WT (DT-CWT), stationary wavelet
transform (SWT). DWT also use a downsampling filter after
the high-pass filter and low-pass filter. Assume the original
signal x[n], the ith level coefficients could be calculated as:

xi,h[n] =
K−1∑
k=0

xi−1,h[2n− k]h[k] (4)

xi,g[n] =
K−1∑
k=0

xi−1,g[2n− k]g[k] (5)

WhereK is the length of the filters, h[n] and g[n] are high-
pass filter and low-pass filter, respectively.

SWT (stationary wavelet transform) is a DWT with no
down-sampling. The structure of SWT is shown in Fig. 5(b)
Zheng and his team [89] chose the basic wavelet as Haar
wavelet and applied SWT on heart-rate monitoring. They
achieved very high accuracy when estimating heart rate in
the driving scenario. The results of different wavelets and
different decomposition levels are compared from the three

aspects of accuracy, sensitivity, and specificity of EEG signal
classification and found that deeper level may have better
accuracy in EEG data classification using SWT in [90]. In
[91], undecimated wavelet transform (UWT) is used in order
to ensure shift insensitivity property of the coefficients for
time series prediction. The core idea of UWT is to remove
the down-sampling in the sampling wavelet transform and
replace it with the up-sampling of the filter.

B. EXTENSION OF DISCRETE WAVELET TRANSFORM
1) Wavelet Packet
In the process of decomposition, wavelet analysis only re-
decomposes low-frequency signals and does not decompose
high-frequency signals. Therefore, its frequency resolution
decreases as the frequency increases. Wickerhauser and other
researchers proposed the concept of wavelet packet [92]. The
wavelet packet (WP) decomposes the low-pass and high-
pass components of the signal frequency band simultane-
ously to locate any frequency band. Fig. 6 is the wavelet
decomposition tree of DWT and WP. It presents the concept
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(a) (b)

FIGURE 6. Wavelet decomposition tree: (a) DWT. (b) WP.

.

of optimal basis selection based on wavelet analysis theory.
Many researchers designed different wavelet packets bases.
[73] combined complex wavelet and wavelet packet energy
moment entropy and defined it as a new monitoring index
to characterize bearing performance degradation. In [93], the
combination of wavelet packets and genetic programming
significantly improves prediction accuracy.

Islam and his team [94] introduced a particular wavelet
packet called perceptual wavelet packet to enhance speech
signals. This method resulted in better spectrogram output
and higher scores in subjective listening tests. In [95], defects
are characterized by the power of low-frequency components
and wavelet packet energy after wavelet decomposition, com-
plex signals are analyzed, and defect features are extracted.
[96] combining wavelet packets and CNNs to classify sound
signals from excitation-induced extraction of wavelet packet
decomposition (WPD) features. Liu and his team proposed
an improved wavelet packet denoising algorithm, which de-
termines the optimal decomposition layer according to the
difference in the correlation function values of the wavelet
packet coefficients [97]. In addition, the wavelet packet co-
efficients are divided into the approximate part, blur part and
detail part. Singular spectrum analysis, fuzzy threshold and
correlation analysis are carried out on the selection of these
three different types of coefficients to preserve the dynamic
performance of chaotic signals to the greatest extent. An
energy analysis method based on wavelet packet is proposed
in [98]. This method is used to calculate the wavelet packet
energy index of the ground-penetrating radar signal of clay
samples with water content. The results show that there is a
highly correlated linear relationship between WPEI and soil
water content, and the relationship between the two fits a

linear fitting function.
Wavelet packet could construct discrete wavelet packet

transform (DWPT). Fig. 5(c) is the structure of DWPT. 2D-
DWT has three priority directions: horizontal, vertical and
diagonal. Due to the supplementary decomposition of the
output of the high-pass filter, 2D-DWPT has higher direc-
tional selectivity [99]. The decorrelation property is closely
related to the shape of the Fourier transform that supports the
width and wavelet packet function [100] addressed the DW-
PT for continuous-time fBm and considered stationarization
and asymptotic decorrelation. They also studied the influence
of fBm with or without independent white Gaussian noise on
selecting the best wavelet packet basis. Khaleel and his team
proposed an adaptive neuro-fuzzy method based on discrete
packet wavelet transform-Kalman filter for PowerQuality
identification and classification [101]. [102] proposed a flex-
ible architecture that computes generalized wavelet packet
trees with the help of boost-based bypass wavelet filters and
bit-swapping circuits. An enhanced fault detection method
combining maximum overlap discrete wavelet packet trans-
form and Teager energy adaptive spectral kurtosis denoising
algorithm to identify weak periodic pulses is proposed in
[103].

2) Complex Wavelet Transform

Complex Wavelet Transform (complex WT) is a complex ex-
tension of DWT. Remenyi’s team [104] defined the complex
maximal overlap scale mixing 2D complex WT and applied
it to image denoising. Their method achieved excellent visual
performance. Fernandes and his team constructed a new
framework of complex WT and provided a mapping-based
and non-redundant complex WT [69]. The new framework
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based on the mapping of complex WT overcomes the serious
shortcomings of DWT and has the benefits of controllable
redundancy and flexibility. In [105], Xu’s team applied com-
plex WT to mitigate noise in gas-insulated switchgear signal-
s. They achieved better noise filtering results by extracting
two kinds of the information-the real part of the wavelet
analysis and the imaginary part of the wavelet analysis. One
important design of complex WT is dual-tree complex WT
(DT-CWT). Its implementation uses two real-valued DWTs,
one giving the real part of the transform coefficient and one
giving the imaginary part. Its advantage is that it has better
directionality in two dimensions or even higher dimensions,
low redundancy, and is an effective, fast calculation algorith-
m. Kingsbury [11] first proposed the DT-CWT structure in
1998. Fig. 5(d) is the filter bank structure of DT-CWT.

As introduced before, DT-CWT has advantages in two
dimensions or even higher dimensions signals, so it is widely
used in image processing. Fahmy and his team [106] used
DT-CWT on the video magnification techniques and intro-
duced a new and accurate method of orthogonal filter design
for constructing the DT-CWT system. They modify the phase
differences between the wavelet coefficients and achieve
better video quality with less calculation cost. Farhadiani’s
team [107] proposed a new method to reduce the speckles
on synthetic aperture radar images based on an undecimated
DT-CWT and achieve better performance. However, this
method consumes more computational cost. [108] obtained a
neural network dataset using chest X-ray images and subband
images obtained by applying a DT-CWT to the above images.
Prashar and his team [109] evaluated in detail the impact
of threshold, threshold algorithm and distribution function
choice on the performance of ECG denoising with DT-CWT.
[110] proposed a method using global-based DT-CWT for
kinship recognition on similar full-face images. Then, the
researchers proposed novel patch-based kinship recognition
methods for DT-CWT: local patch-based DT-CWT and s-
elective patch-based DT-CWT. The former extracts the co-
efficients of smaller face patches for kinship identification.
The latter extends the former, only extracting the coefficients
of representative blocks with similarity scores above the
normalized accumulation threshold. All the references above
focus on image processing, which is 2-D DT-CWT. In [111],
the authors extended DT-CWT to higher dimensional (e.g.,
3-D) and studied the power spectral density of the real and
imaginary parts of the complex coefficients of the DT-CWT.
They achieve more accurate results in the wavelet noise
filtering area.

C. RATIONAL WAVELET TRANSFORM
The traditional wavelet transform is dyadic wavelet transfor-
m. Its iterative decomposition process repeatedly divides the
frequency domain space at the input into two parts with equal
bandwidth. The concept of rational multi-resolution analysis
was first proposed by Auscher [112], and then systematically
introduced by Mallat. Auscher [112] proved in 1992 that real
rational orthogonal wavelets were derived under the frame-

q H(w) p

FIGURE 7. Rational branch.

work of a rational MRA. Assume M = p
q (p, q ∈ ZandM >

1), {Vj}j∈Z is a subspace of L2(R) space, consider {Vj}j∈Z
is a rational MRA of L2(R) space when:
• Vj ⊂ Vj−1
•
⋂
j∈Z

Vj = {0},
⋃
j∈Z

Vj = L2(R)

• f(t) ∈ Vj ⇔ f(M−1t) ∈ Vj+1

• f(t) ∈ Vj ⇒ f(t− k) ∈ Vj for all k ∈ Z
The explanation for the expression is similar to MRA

above, but the expansion factor is different. Original MRA
is dyadic, and rational MRA contains rational factor M .
The orthogonal basis of Vj is constructed by extending and
translating the mother wavelet function ψ(t) ∈ L2(R). It is
called the scaling function. The basis function of Vj is given
by [113]:

ψj,n(t) = M−j/2(M−jt− n), t, n ∈ Z (6)

In [114], Kovacevic constructed perfect reconstruction
filter banks with rational sampling factors. The perfect re-
construction filter bank theory is generalized to a rational
situation, thereby allowing non-uniform division of the fre-
quency spectrum. This feature may be helpful in speech
and music analysis. Reference [113] reviewed the theory of
rational MRA, proposed a pyramid algorithm for calculating
fast orthogonal wavelet transform, and explained the analysis
process and synthesis part in detail. It proposes the applica-
tion of signal denoising through rational wavelet to show that
the scale factor matches the signal information better. Fig. 7
is the rational part of the filter bank.

The Q factor (Q factor is the Quality Factor, defined as
the filter centre frequency to bandwidth ratio) of wavelet
transform should be selected reasonably according to the
oscillation behaviour of the signal [115]. For example, the
wavelet transform should have a relatively high Q factor
when using wavelets to process and analyze oscillating sig-
nals (such as speech, EEG signals). However, in addition
to continuous wavelet transforms, most wavelet transforms
have poor tuning capabilities for wavelet Q-factors. The Q
factor is constant and low in the dyadic wavelet [37], [115].
In this transformation model, the bandwidth of the band-
pass filter in the higher frequency domain space is wider,
resulting in a sparse partition of the higher frequency domain
space. Therefore, this conversion mode is suitable for signals
with fewer oscillation characteristics but not for signals with
significant oscillation characteristics [115]. Compared with
the traditional dyadic and integer wavelet transform, the Q
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FIGURE 9. The structure of DT-RADWT.

factor of the rational wavelet transform (RWT) is adjustable,
which can realize more free and fine frequency domain
segmentation [37], [115]. However, the local performance in
the time domain is relatively weak.

In [116], Bayram and Selesnick introduced a filter bank
with a rational q/p sampling factor based on [117]. Reference
[117] designed an orthogonal rational filter bank, and it is
close to wavelet transform. Fig. 8 is a two-band rational
filter bank example, which is defined as rational-dilation dis-
crete wavelet transform (RADWT) [118]. In [118], Bayram
and Selesnick also designed overcomplete RWT, which is
composed of a self-reverse HIR filter based on the ratio-
nal sampling factor, so it realizes the reconstruction of the
decomposed signal and has translation invariance. The Q-
factor can be controlled by changing p and q in Fig. 8. Han
and his team [119] design rational coefficients biorthogonal
wavelet filters by the thought of complete reconstruction
filter idea and adding vanishing moment characteristics. By
reducing the vanishing moment of the wavelet filter, more
high-frequency information can be retained in the wavelet
transform domain, which is suitable for edge detection. The
simulation results show that image edge detection under a
noisy environment has achieved some significant effects. Fig.
9 is the structure of DT-RADWT. The structure is based on
Fig. 5(d) and Fig. 8. In [120], Canditiis and his team use a
complete filter bank (i.e. RADWT) to guarantee a perfect
reconstruction property and a tunable Q-factor.

To illustrate the difference between DWT filter bank and
RWT filter bank, the example complex rational orthogonal
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FIGURE 10. Wavelet function ψ(t) with dilation factor of a = 3/2, q = 2.

wavelet (CROW) constructed in [79] is shown below. Dila-
tion factor a = 1 + 1

q . The wavelet basis function is defined
in the frequency domain by (7):

Ψ(ω) =



(2π)−
1
2 ej

ω
2

× sin(π2β( q
ω1
| ω | −q)), ω1 ≤| ω |≤ ω2

(2π)−
1
2 ej

ω
2

× cos(π2β( q
ω2
| ω | −q)), ω2 ≤| ω |≤ ω3

0, | ω |/∈ [ω1, ω3]

(7)

And the rational scaling function is given also in the
frequency domain by

Φ(ω) =


(2π)−

1
2 , | ω |< ω1

(2π)−
1
2

× cos(π2β( q
ω1
| ω | −q)), ω1 ≤| ω |≤ ω2

0, | ω |< ω2

(8)

Where

ω1 = (q − q

2q + 1
)π, ω2 = aω1, ω3 = aω2 = a2ω1 (9)

β(t) is the construction function and has the form in (10).
It is not unique.

β(t) = t4(35− 84t+ 70t2 − 20t3) (10)

Based on these definitions above, the CROW function is

ψ+(t) = ψ(t) + jψ̂(t) (11)

Where ψ̂(t) is the Hilbert transform pair of ψ(t) and
defined in the frequency domain.

Φ̂(ω) = −jsign(ω)Φ(ω) (12)

Fig. 10 shows the time and frequency response of the
wavelet ψ(t) with an example dilation factor a = 3/2, q = 2.
Fig. 11 shows the frequency response of DWT filter bank and
RWT filter bank. RWT has better frequency resolution than
DWT. As q increases, the dilation factor gradually decreases
and is close to 1, and the frequency resolution of the filter
bank is better.
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FIGURE 11. Frequency response of DWT filter bank with: (a) Dyadic DWT. (b) RWT with dilation factor q = 2. (c) RWT with dilation factor q = 5.(c) RWT
with dilation factor q = 50.

Reference [121] proposed a high-accuracy general rational
approximation model of Gaussian wavelet series in the time
domain. The wavelet basis approximation model they pro-
posed can be extended to any order and any wavelet function
without explicit formulation. In 2009, Selesnick and his team
[115], [118] constructed an over-complete fractional wavelet
transform method, which is different from the early critical
sampling mode. It allows a small amount of redundancy to
improve local performance in both the time and frequency
domains. If the signal and noise have strong time-frequency
coupling, that is, the distribution of signal and noise overlaps
on the time axis or frequency axis, it is challenging to design
a reasonable filter. Fractional Wavelet Transform (FrWT
for short) has flourished with the further development of
wavelet technology. As introduced above, fractional wavelet
is a novel wavelet system. Fractional wavelet transform
(FrWT) extends the wavelet transform to the time domain-
generalized frequency domain (fractional Fourier domain),
which has greater signal analysis and processing flexibility.
Mendlovic et al. [122] first introduced FrWT and suggested
that the FrWT may be used for image compression since
it improved the reconstruction performance of the wavelet
transformation. Reference [61] proposed a fractional wavelet
filter and compared it to state-of-the-art low memory DWT,
which showed that it has better performance. The architecture
proposed by FrWF, which uses filter banks to calculate the
two-dimensional DWT coefficients of images, requires less
memory and fewer hardware components.

In [64], Liu’s team introduced FrWT and designed a scat-
tering network based on FrWT. They extended the traditional
scattering network with fractional coefficients and achieved
higher image classification accuracy. The authors in [123]
also considered combine FrWT and neural network. FrWT is

treated as a set of linear translation variable multiscale filters.
They defined fractional wavelet scattering transform based
on it and validated it with computer simulations. In [124],
Fan’team detailed the construction of FrWT and applied
it on signal denoising. They proposed a two-dimensional
search method to determine the optimal order of the frac-
tional wavelet transform and verified the effectiveness and
superiority of the method. For an example of denoising in
sine signal, SNR can be increased by about 40%, and RMSE
can be reduced by about 50% when applying FrWT. Shi
and his team [65] extended the sampling theorem based on
FrWT subspace and discussed some applications of exporting
results. Kumar and Naik combined compressive sensing and
FrWT and ensured the security of picture transmission [125].
In [126], the authors proposed the definitions and properties
of a novel designed FrWT to overcome the limitations of
some existing wavelet transform and FrWT.

In recent years, attention to wavelet analysis has increased
day by day, and many researchers have published literature
on wavelet analysis. Searching for literature on wavelet-
related topics on the ‘Web of Science’ website (the statistics
are as of the end of 2021), a total of 5972 samples were
obtained. Related keywords in these documents include frac-
tional wavelet (1734 articles), dyadic wavelet (702 articles),
orthogonal wavelet (3239 articles) and rational wavelet (297
articles). The time periods include the period from 1990
to 2021. For the convenience of statistics, the periods are
divided into five parts: 1990-1996, 1997-2003, 2004-2009,
2010-2015, and 2016 to the present. Statistics may contain
duplicate documents because designing wavelets with mul-
tiple characteristics is more in line with research needs to
apply wavelet analysis better. Fig. 12 shows the statistics
about publications in recent years. It can be seen from the
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FIGURE 12. Research statistics of different wavelets.

figure that orthogonal wavelets are always published with the
largest number. The reason is that orthogonal wavelets reduce
the correlation of sub-band data and reduce redundancy.
When wavelet theory first developed, there were more dyadic
wavelets; however, the proportion of research on rational
wavelets and fractional wavelets has increased with the de-
velopment of wavelet analysis. In recent years, the number
of publications has far exceeded dyadic wavelets.

V. WAVELET NEURAL NETWORK
Wavelet Neural Network (WNN) integrates the advantages of
artificial neural network and wavelet analysis, which makes
the network converge fast and has the characteristics of
time-frequency local analysis. Searching for literature on
WNN-related topics on the ‘Web of Science’ website (the
statistics are as of the end of 2021), and a total of 10990
samples were obtained. The statistic is shown in Fig. 13.
In recent years, the research on WNN has shown a blowout
development. There are two primary forms of WNN. In the
first one, wavelet analysis performs preliminary processing
on the input of the neural network, making the information
input to the neural network more effortless for the neural
network to process. The decomposed signal obtained by
the original signal through different wavelet decomposition
levels will be used as the input of the neural network.
Furthermore, the features of the decomposed signal could
also be extracted as input. These obtained features could be
maximum, minimum, average, and deviation value of the
decomposed signals and the amplitude, slope (or gradient)
of amplitude, time of occurrence, mean, standard deviation,
and energy of the signals. The second approach is the deep
fusion of wavelets and neural networks. There are two ways
to integrate, one is replace neurons with wavelet elements,
replace the activation function with the positioned wavelet
function, and establish the connection between the wavelet
function and the neural network coefficients through affine
transformation. The corresponding weights from the input
layer to the hidden layer and the threshold of the hidden layer
are replaced by the scaling factor and the time shift factor of
the wavelet function [14]. The other is recently proposed to

FIGURE 13. Research statistics of WNN.

replace the convolution kernel with wavelet in CNN because
the kernel of CNNs seems like a filter. It provides a very
efficient way to obtain custom filter banks [127].

A. SIGNALS PREPROCESSED BY WAVELET ANALYSIS
The signals are preprocessed by wavelet analysis, which
means the wavelet space is used as the feature space for
pattern recognition. The inner product of the wavelet base
and the signal is weighted to realize the feature extraction
of the signal, and then the extracted feature vector is sent
to the neural network for processing. Reference [128] uses
Coiflet wavelet as an envelope extraction and then choose
the mean value, standard deviation, peak value, and RMS
(root mean square) value as the features which are the input
of PNN (Probabilistic neural network). They also compared
it with a traditional back-propagation neural network and
achieved better classification accuracy. In [129], wavelet de-
composition is first applied on the signal and then obtain the
energy and the PSD value of the detailed divided signal as the
extracted features for the input of the neural network. Wavelet
decomposition architecture is shown in Fig. 14, which uses
DWT as an example. X[n] is the input signal, G[n] and H[n]
are the lowpass filter and highpass filter. When the wavelet
decomposition level is different, the number of signals after
decomposition is also different. These decomposed signals
have different energy and other characteristics.

Appropriate level numbers need to be selected according
to the specific situation in actual applications. Reference [90]
compared several decomposition levels and found that deeper
levels may have better accuracy in EEG data classification
using SWT. Sun and his team [130] use wavelet packet to
decompose the signal into seven layers and extract the energy
of wavelet coefficients in the seventh layer as the input of
the PNN classifier. They test several different wavelets and,
finally, the most effective wavelet is db3. The energy of
the 128 nodes of the seventh layer wavelet coefficients is
normalized into less dimensional eigenvectors to speed up
the classification process. [131] uses wavelet transform to
remove noise effects on images and perform feature extrac-
tion for recognition. On a limited dataset, the algorithm was
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FIGURE 14. The structure of wavelet decomposition. (a) DWT. (b) WP.

still able to identify COVID-19 cases. In [132], the authors
introduce synchronous compression wavelet transform to
more clearly represent the intrinsic properties of AE waves
in the time-frequency domain, and find that AE waves caused
by different mechanisms exhibit different energy distribution
patterns. Then, a multi-branch convolutional neural network
model with two branches is developed to automatically clas-
sify three types of acoustic emission waves by considering
their simultaneous compressed wavelet transform maps at
different time-frequency scales.

The authors in [133] and [134] calculated wavelet energy
spectrum of the signal treated with wavelet decomposition
and separately reconstruction algorithm. Shao and his team
[133] applied DWT for wavelet decomposition and calcu-
lated wavelet energy of each wavelet coefficient as wavelet
energy spectrum E as the feature vector, which includes all
Ej . Use Fig. 14(a) as an example:

E = [EA3 , ED1 , ED2 , ED3 ] (13)

Where E could be calculated as:

E =

N∑
i=1

|f(i)|2 (14)

In [134], Zhang et al. use WP for wavelet decomposition
and strike the energy distribution of the wavelet packet as the
feature vector. Fig. 14(b) is a three-level WP decomposition,
as an example. The total energy of the third level is:

E3 =
7∑

n=0

E3,n (15)

The energy distribution vector is:

E = [
E3,0

E3
,
E3,1

E3
,
E3,2

E3
,
E3,3

E3
,
E3,4

E3
,
E3,5

E3
,
E3,6

E3
,
E3,7

E3
]

(16)
Another possible feature vector x, which represents the

WNN inputs, is shown in Equation (17). These features

are from the original signals and the decomposed signals
at different decomposition levels. The most widely used
features are the energy of decomposed signals at different
decomposition levels.

x = [M(f), Std(f), RMS(f), Pk(f), E(f)]T (17)

Where

Mean value M(f) = f, (18)

Standard deviation Std(f) =

√∑N
i=1(f(i)− f)2

N
, (19)

RMS value RMS(f) =

√∑N
i=1(f(i))2

N
, (20)

Peak value Pk(f) = max(f(i)), (21)

The wavelet as the preprocessing method of the input
signal of the neural network is similar to most current wavelet
analysis methods for feature extraction. Wavelet transform is
a local transform of time and frequency. It has the character-
istics of multi-resolution analysis, and it can characterize the
local characteristics of the signal in the time and frequency
domains. Since the wavelet transform can concentrate the
energy of the original signal on a small part of the wavelet
coefficients, and the decomposed wavelet coefficients have a
high degree of local correlation in the detail components, this
provides a decisive condition for feature extraction. The use
of wavelet transform for feature extraction has been widely
used in texture analysis, image compression, and defect
detection. The neural network has the characteristics of self-
learning, self-adaptation and fault tolerance. Then use the
neural network to classify or predict the extracted features,
and better results can be obtained.
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B. COMBINATION OF WAVELET FUNCTION AND
NEURAL NETWORK
1) Wavelet Kernel-based Neural Network
Wavelet kernels (WK) are a strong contender for initializing
convolutional neural network kernels because the use of these
kernels produces useful approximations of the signal after
convolution operations [135]. The initialization of kernels
in a CNN plays a crucial role in network performance.
Better initialization provides better performance with fewer
training iterations/epochs. The kernel of CNNs seems like a
filter. Therefore, wavelet kernels may be good candidates for
initializing CNN kernels, which are hardly reported in the
existing literature [136]. Wavelet kernels are usually used in
convolutional layers, similar to filters. The kth kernel of the
lth layer before the nonlinear activation has the feature value
hlk can be denoted as [127]:

hlk = wlk ∗ x+ blk (22)

where wlk is the weight of kth convolutional kernel of the lth
layer and blkdenotes the bias. x is the input signal, ∗ is the
convolutional operator. The proposed WK performs the con-
volution operation with a predefined wavelet functionψu,v(t)
that depends on tranfer parameters u and scale parameter s
only, the feature value h can be denoted as:

h = ψu,v(t) ∗ x (23)

In [137], researchers combined CNN, genetic algorith-
m and Extreme Learning Machine with WK to increase
the performance of classification. They investigated several
state-of-art CNN architectures like AlexNet and VGG-19
and achieved more than 95% accuracy even in 10 classes.
[127] proposed a novel wavelet deep neural network called
WKNet, where a continuous wavelet convolutional layer was
designed to replace the first convolutional layer of standard
CNN. This enables the layer to discover more meaningful
filters. Furthermore, the raw data are directly learned from the
scale and translation parameters. It provides a very efficient
way to obtain custom filter banks. Mo and his team [138]
refer to [127] and designed their variational kernel. They
compared their designed kernel with WK, which uses three
different wavelets: the Laplace wavelet, Morlet wavelet, and
Mexican hat wavelet and concluded that a wrong type of
wavelet kernel (Mexican hat wavelet kernel in this reference)
is selected, it may even reduce the network performance.
In [136], a WK-based CNN is designed for acoustic sensor
data analysis. The proposed network has less training time
than other designed CNN and achieves higher accuracy than
standard CNN. [135] also used the WK-based CNN in [136]
for fault identification and classification and achieved better
performance than some other designed CNN.

2) Wavelet Function as Activation Function
The basic idea was formally put forward by Zhang et al. in
1992 [13], that is, the wavelet function is used to replace
the hidden layer function of the conventional neural network,

and the corresponding input layer to the hidden layer weight
and hidden layer threshold are respectively determined by
the wavelet basis function. The scale parameter and trans-
lation parameter are used instead [14]. Its basic structure is
shown in Fig. 15, where Xi, (i = 1, 2, ..., L) is the input
sample, Ψj , (j = 1, 2, ...,M) is the wavelet basis function,
Fk, (k = 1, 2, ..., N) is the output of the network, and Ui,j
represents the connection weight between the ith neuron in
the input layer and the jth neuron in the hidden layer, and
ωj,k represents the jth neuron in the hidden layer and the
kth neuron in the output layer. According to the continuity
of the selected wavelet basis function, the connection weight
between the neurons can be divided into two types: WNN
with continuous parameters and WNN based on wavelet
framework [139]. For WNN with continuous parameters,
wavelet function is ψ(t) and bj , aj are the scale parameter
and translation parameter. It comes from the definition of
the continuous wavelet transform. Its characteristic is that
the positioning of the basis function is not limited to the
finite discrete value, the redundancy is high, the expansion
is not unique, and the correspondence between the wavelet
parameters and the function is not fixed. It has a nonlinear
optimization problem similar to the BP network. However,
wavelet analysis theory helps the initialization of the network
and guides the learning process to have a faster convergence
speed. The wavelet function of the hidden layer is:

ψj(t) = ψ

(
t− bj

aj

)
(24)

The output of the simple three-layer WNN in Fig. 15 could
be written as:

Fk =

M∑
j=1

ωj,kψj =

M∑
j=1

ωj,kψ

(∑L
i=1 Ui,jXi − bj

aj

)
,

k = 1, 2, ..., N
(25)

For WNN based on wavelet framework, the theoretical
basis is the wavelet frame (detailed information is in [140]).
However, the wavelet basis under the tight frame is not
necessarily orthogonal and may not have tightly supported
characteristics, representing a certain degree of redundancy
in the estimation. Since the wavelet frame can represent
smooth signals and signals with singular characteristics, the
wavelet frame method has been widely used in signal, image
processing, and other fields. The wavelet function in the
hidden layer could be written as:

ψj(t) = ψ(a
−mj

0 t− njb0) (26)

Where a0, b0 are the basic units of scaling and translation.
So the output of WNN in Fig. 15 is:
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X1

X2

X3

XL

...

...

Input layer Wavelet (hidden) layer Output layer

F1

F2

F3

FN

...

X1

FIGURE 15. A three-layer structure of WNN.

Fk =
M∑
j=1

ωj,kψj

=

M∑
j=1

ωj,kψ(

L∑
i=1

Ui,ja
−mj

0 Xi − njb0),

k = 1, 2, ..., N

(27)

The construction of WNN is a critical issue. Zhang [141]
used regression analysis to give a method for constructing
wavelet networks. He constructed a feed-forward neural net-
work based on WNN structure and discussed that it is suit-
able for neural network construction methods development.
Pati and Krishnaprasad [142] gave two methods of wavelet
network synthesis, which systematically defined the structure
of the network and determined some weight values in the
network in advance, thus simplifying the network training
problem. Reference [143] also proposed a "decomposition-
synthesis" method of wavelet basis function network struc-
ture design, which effectively reduces the wavelet primitives
required to construct wavelet networks.

For the feed-forward network, Stepanov in [74] detailed
the construction of activation functions of WNN and pro-
vided the procedure of choosing proper wavelet models.
He concluded that polynomials, neural networks and spline
wavelet models could be used when constructing the activa-
tion function of WNNs. The spline wavelet model provides
the guaranteed accuracy of the wavelet approximation to the
sample, but the model has a high degree of complexity. In
[144], researchers uses a single hidden layer feedforward
WNN, the results demonstrate the effectiveness and feasibil-
ity of the proposed observer in detecting nonlinear system
faults. An example is shown in Fig. 16. ωi,j are the weights
from input to the wavelet neurons in the hidden layer and
ωψj

are the weights from wavelet hidden layer to the ouput
layer. ωxi

are the weights of the input connected to the output
directly and θ is used for nonzero mean functions on finite
domains [145]. The output of the feed-forward could be

X1

X2

X3

XM

∑

...

...

Input layer Wavelet (hidden) layer Output layer

X1

FIGURE 16. The structure of feed-forward WNN.

X1

X2

XL

Input layer Wavelet (hidden) layer
Output layer

...
...

...

FIGURE 17. The structure of WNN in [146]: ψk is the kth wavelet
function and Sk is the sigmoid function.

written in (28), where wavelet function is ψ(x) and aj , bj
are the scale parameter and translation parameter.

F = θ +

M∑
i=1

ωxixi +

N∑
j=1

ωψjψj

= θ +
M∑
i=1

ωxi
xi +

N∑
j=1

ωψj
ψ(

∑M
i=1 ωi,jxi − bj

aj
)

(28)

Banakar and Azeem [146] combined the feed-forward net-
work with wavelet functions, where sigmoid activation func-
tion (SAF) and the Morlet wavelet activation function (WAF)
are paralleled in each neuron model. After the introduction
of the wavelet function, the performance of the performance
calculation method adopted by [146] has increased by about
20% on different examples. An example structure of the
Sigmoid and Wavelet network is shown in Fig. 17. Different
from previous WNN structure, Wωi

and WSi
on Fig. 17

represent the weight values. In order to represent two sets
of parallel activation functions, there should be two sets from
the input layer to the hidden layer. After being summed sepa-
rately, they will go through the sigmoid function and wavelet
function of the hidden layer. Fig.18 is the sigmoid function
and Morlet wavelet function. Equation (29) is the sigmoid
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FIGURE 18. Activation functions: (a) Sigmoid function; (b) Morlet
wavelet function.

function. Different from traditional WNN, each neuron has
two parallel sets of weights. Then the values calculated by
the two sets of weights are respectively passed through the
wavelet function and the sigmoid function. Finally, they are
multiplied to obtain the output of the neuron of the neural
network. The output of kth neuron is shown in (30).

S(t) =
1

1 + e−t
(29)

Fk = Fψk
Fsk = ψk(

L∑
i=1

Wωi
Xi)× S(

L∑
i=1

WsiXi) (30)

Some researchers also combined recurrent neural network
(RNN) with WNN. Simple recurrent WNN (RWNN) is sim-
ilar to traditional RNN. The value of the hidden layer of
the RNN depends not only on the current input but also on
the last value of the hidden layer. A novel Type-2 Fuzzy
RWNN is proposed to estimate nonlinear systems [147].
This novel structure has been shown to outperform other
conventional techniques in nonlinear system modeling, with
better convergence, lower error, and faster response. Fig.
19 is the input and hidden layer of the designed RWNN.
Reference [146] also considered the idea of recurrent neural
network. Since there are two parallel lines in one neuron,
the feedbacks, which are the outputs of wavelet function and
sigmoid function, could be fed back to themselves and the
parallel part. Fig. 20 are the designed RWNN with different
feedback positions. The output from the sigmoid function
could be sent to both the wavelet part and sigmoid part, and
the output from the wavelet function could also be feedback
to the wavelet part and sigmoid part. In addition, based on the
design of RNN, the neural network’s final output could also
be sent back to the input layer.

In [148], it designed a four-layer WNN. Wavelet function
is used in the second hidden layer. It is similar to the struc-
ture in Fig. 15 but still adds sigmoid function as the first
hidden layer between the wavelet hidden layer. Reference
[149] not only used WP as a signal preprocessed tool but
also used a three-layer WNN for prediction and achieved
high accuracy. In [150]–[152], they all used a four-layer
WNN; the two layers between the input and output layer
are the mother wavelet layer and wavelet layer. Fig. 21

...

...
...

...

...

FIGURE 19. Wavelet layer with self-feedback loop.

is an example of this four-layer WNN. Another important
network structure is the BP network, which is currently one
of the most widely used and most successful neural network
models. In [153], a variable translation WNN is proposed
and compared with other neural networks, which shows a
better learning probability. The translation parameter of the
mother wavelet in the hidden layer are setting depends on
the input variable and is controlled by a non-linear function.
The combination of wavelet network and fuzzy logic uses the
membership function to express the weight value. The fuzzy
wavelet network model with fuzzy weights and output is
constructed. The authors in [154] and [155] combined fuzzy
Neural Network and WNN and designed a wavelet fuzzy
neural network (WFNN). In [155], each node in the fifth layer
is with a wavelet function. WFNN proved to be a convergent
network. The effectiveness of the proposed control system
has been verified by computer simulation and experimental
results. Huang and his team [154] extended WFNN to Hybrid
WFNN, which is based on PNN. Compared with the results
produced by some well-known and commonly used fuzzy
neural network models, experimental studies involving three
commonly used data sets show some better results. The
RMSE of the best-performing method among their proposed
methods is about 65% higher than the previously proposed
method.

Similar to the artificial neural network, not only the struc-
ture design of the neural network is a problem, but the
choice of the activation function (mother wavelet) is also a
hot research topic. As introduced above, the hidden layer of
the WNN structure is a scaled and shaped mother wavelet.
Both orthogonal and non-orthogonal wavelet functions could
be applied to the hidden layer. The widely applied non-
orthogonal wavelets are Gaussian Wavelet, Morlet Wavelet
and Mexican Hat Wavelet [74], which are introduced above.
[150], [152], [155]–[158] all choose the first derivative of
Gaussian function as the mother wavelet, which is usually
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Output layer
Hidden layer neuron

(a)

Output layer
Hidden layer neuron

(b)

Output layer
Hidden layer neuron

(c)

Output layer
Hidden layer neuron

(d)

FIGURE 20. The structure of RWNN designed in [146]: (a) Wavelet output to wavelet part; (b) Sigmoid output to sigmoid part; (c) Sigmoid output to
wavelet part; (d) Wavelet output to sigmoid part.

X1
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XL

...
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Input layer Mother wavelet layer Output layer

...

Wavelet layer

X1X1

X2

X3

XL

FIGURE 21. A four-layer WNN structure example.

called Gaussian wavelet. [146], [149], [151], [156], [159],
[160] applied Morlet Wavelet function in the hidden layer.
In [144], [147], [153], [156], Mexican Hat Wavelet is chosen
as the mother wavelet. Reference [156] compared differen-
t mother wavelet activation functions, including Gaussian

wavelet, Mexican Hat wavelet and Morlet wavelet. The
experiment results showed that the Gaussian and Morlet
wavelets have better classification accuracy. Fig. 22 is the
waveform in the time domain of the three wavelet activation
functions. Orthogonal wavelet network is more effective for
function approximation due to the orthogonality of its basic
function, but the orthogonal basis structure and network
learning algorithm are more complicated, and the network’s
anti-interference ability is poor.

In [148], Rajankar and Talbar compared several
Daubechies orthogonal wavelets such as Coiflet Wavelet
and Symlet Wavelet as the mother wavelet function and
found that db6 has the best MSE (Mean square error)
performance. In [161], Lemarie Meyer wavelet is chosen,
which is an orthonormal function. Their model converges
quickly and obtains low RMS errors, which is a simple three-
layer WNN. Chun and his team [162] used Meyer scaling
function as the activation function. The orthogonal wavelet
network training method is used to determine the number
of hidden layer neurons and the weight of the hidden layer
and the output layer, and the Gray system can compensate
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FIGURE 22. Three widely used wavelet activation function: (a) Gaussian
wavelet; (b) Mexican Hat wavelet; (c) Morlet wavelet.

for the characteristics of the ambiguity problem of the
orthogonal wavelet network model. An orthogonal WNN is
proposed in [163]. Both orthogonal scaling functions and
the corresponding mother wavelets are used and extended
WNN to the multi-dimensional cases. They designed WNN
based on wavelet framework theory and verified the better
function approximation performance. Table 2 shows a brief
conclusion of signal preprocessed by wavelet analysis and
different WNN structures with various WAF (i.e., different
mother wavelets) of reviewed references.

WNN was initially used in function approximation and
speech recognition and then gradually extended to prediction,
classification, image compression and other aspects. WNN is
a neural network constructed based on wavelet transform the-
ory, which makes full use of the localized nature of wavelet
transform and the large-scale data-parallel processing and
self-learning capabilities of neural networks. Therefore, it
can accurately identify signals with local singularities, has
strong approximation ability, faster convergence speed, and
fault tolerance, and its realization process is relatively simple.
Usually, in signal approximation and estimation, the choice
of wavelet function should match the characteristics of the
signal, and the wavelet waveform, supporting length, and the
number of vanishing moments should be considered. The
system established by WNN identification can approximate
the system’s dynamic characteristics well on the linear mod-
el. WNN has a strong non-linear mapping ability. Because the
wavelet function has limited support in the time-frequency
domain, its low-pass filtering effect is good. Therefore, in
terms of function approximation and signal processing, WN-
N has received more and more attention from experts. Gen-
erally speaking, the theoretical research of wavelet networks
is still in the initial stage, and there are still many problems
to be solved so far. For example, the research combines
existing models like emerging neural network models or opti-

mization algorithms, theoretical research on the convergence,
robustness, generalization ability, computational complexity
of wavelet networks and the selection and design criteria of
wavelet base.

VI. REVIEW OF PRACTICAL APPLICATION OF
WAVELET
Wavelets can be used in communication, image processing,
signal processing and many other areas. BER and PAPR
(Peak to Average Power Ratio) are two important criteria
to judge the performance of wavelet applications like [164]–
[167]. How to reduce or avoid the effect of BER during the
application of wavelets has been discussed and analyzed in
many research. Methods reducing PAPR during wavelet’s
application are also designed and discussed in many ways.
Lower PAPR is an important index to ensure higher efficiency
of wavelet application. Joint methods, pilot symbols, wavelet
transform and approaches based on Wavelet Networks are
valuable ways to achieve the reduction of PAPR, and recent
studies have focused on these ways [166], [167]. Krishna et
al. [166] introduced DWT in channel estimation of OFDM
system and achieved better PAPR performance than DFT.
In [167], Anoh and his team investigated several mother
wavelets in a wavelet-based OFDM system for PAPR reduc-
tion and found that the performance of it is often better than
traditional wavelets, especially when adding pilot symbols.
Fig. 23 shows the structure of wavelet applications reviewed
in this section.

A. COMMUNICATION SYSTEM
1) Traditional Signal Processing
There are many typical applications for signal processing.
Classification is a significant branch of signal processing.
Applying wavelet analysis to signal processing can achieve
a better classification effect, which focused on feature ex-
traction. The characteristics of the signal can be in the time
domain, such as zero-crossing rate, short-term energy. The
characteristics of the signal can also be in the frequency
domain, such as the characteristics that contain energy, mean
square frequency and frequency variance.

Reference [168] designed fractional wavelet packet de-
composition for energy entropy calculation to obtain more
information. They investigated several fractional orders to
increase the identification accuracy and compared the pro-
posed method with other existing classifiers, showing their
method’s superiority. The authors in [169], [170] use orthog-
onal wavelets to achieve feature extraction of fault signals
in the power system. In [169], frequency response analysis
signals use orthogonal wavelet filter banks to detect winding
faults. They extracted log energy features after Daubechies
wavelet decomposition and increased classification accuracy.
In [170], Aggarwal and Saini used the criterion of energy-
to-Shannon-entropy ratio to choose the best mother wavelet
to decompose the voltage sag signals. They compared it
with the classic classifier and showed superiority. Wang and
Zhang [171] analyzed wavelet entropy characteristics by
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TABLE 2. Brief conclusion of recent WNN researches.

Directions Relevant References Key results

Signal
preprocessed
by wavelet

analysis

2021 Nneji et al. [131]
Use wavelet transform to remove noise effects on images and perform feature
extraction for recognition.

2020 Li et al. [132]
Introduce synchronous compression wavelet transform to more clearly represent the
intrinsic properties.

2016 Rachman et al. [90] Apply stationary wavelet transform on wavelet decomposition.

2015 Sun et al. [130]
Use wavelet packet to decompose the signal and extract the energy of wavelet
coefficients.

2014 Wahyudi et al. [129]
Obtain the energy and the PSD value of signals preprocessed by wavelet
decomposition as input of WNN.

2014 Shao et al. [133] Calculate wavelet energy spectrum of the signal as the input of PNN.

2012 Zhang et al. [134] The wavelet packet energy algorithm is featured as inputs.

2011 Zhang et al. [128] Use Coiflet wavelet as an envelope extraction.

WNN with
(non-

orthogonal
wavelet)

Gaussian Wavelet

2020 Zhou and Bao [158]
Fixed-time synchronization of competitive neural networks with Gaussian
wavelet-type activation functions and discrete delays is investigated.

2019 Ji et al. [157]
The Monte Carlo method combined with Gaussian wavelet type activation function is
used to design the neural network and apply it to image classification.

2016 Duan et al. [156]
Compare the classification accuracy of WNN and conventional neural network in
surface electromyogram signals and compare the different mother wavelet chosen.

2011 Lu [155]
Combine Gaussian wavelet and wavelet fuzzy neural network for identification in
dynamic systems.

2008 Khan and Rahman [152]
Design a new structure of WNN for interior permanent magnet (IPM) motor drive
control.

2004 Wai and Chang [150]
Combine Backstepping neural network and Gausssian wavelet for position control in
motor drive.

Morlet Wavelet

2021 Nisar et al. [159]
Using Morlet wavelet activation function to design a layer structure of feedforward
artificial neural network for solving a class of singular functional differential models.

2021 Sabir et al. [160]
An advanced heuristic algorithm based on Morlet WNN is proposed for solving
mosquito release ecosystems in heterogeneous atmospheres.

2016 Duan et al. [156]
Compare the classification accuracy of WNN and conventional neural network in
surface electromyogram signals and compare the different mother wavelet chosen.

2013 Khan et al. [151] Design a novel WNN for IPM Motor Drive speed control.

2012 Banakar and Azeem [146] Combine RNN structure and SAF and WAF paralleled layer for dynamic systems.

2007 Yin et al. [149] Using Morlet wavelet as mother wavelet to design WNN for pattern recognition.

Mexican Hat Wavelet

2020 Samal et al. [147] A novel Type-2 Fuzzy RWNN is proposed to estimate nonlinear systems.

2018 Xin et al. [144] Use a single hidden layer feed-forward WNN in detecting nonlinear system faults.

2016 Duan et al. [156]
Compare the classification accuracy of WNN and conventional neural network in
surface electromyogram signals and compare the different mother wavelet.

2008 Ling et al. [153]
Using Mexican Hat wavelet as mother wavelet to design WNN and improve the
learning ability.
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FIGURE 23. The structure of practical applications of wavelets.

extracting the Shannon entropy of wavelet coefficients and
the correlation dimension of signals as the feature vector
of signal and designed a new method for feature extraction.
The classification results showed that the combining features
have better performance. The authors in [172] focuses on
the spectrum characteristics of healthy and faulty part of
signals and is then reconstructed with RADWT to analyze.
The energy possessed by the RADWT processed signal is
used to estimate the torque.

For identification, in [173], system identification of linear
time-invariant systems are studied and have better perfor-
mance with wavelets. They focused on Basis Pursuit iden-
tification using rational wavelet basis and compared with
existing method adaptive Fourier decomposition; the perfor-
mance is comparable. In [174], Ma and his team studied
the spectral identification of Fusarium head blight by ap-
plying continuous wavelet analysis to the reflectance spectra
of wheat ears. This model performance suggests that spec-
tral signatures obtained using CWA can potentially reflect
Fusarium head blight infestation in winter wheat ears. The
researchers in [175] proposed a DTCWT-based method to ex-
tract sensor pattern noise from a given image, which achieved
better performance in regions around strong edges. Authors
in [151], [155] tested the identification ability of different
designed WNNs. Reference [155] designed wavelet fuzzy
neural network for identifying and controlling non-linear
dynamic systems. The effectiveness of the proposed control
system has been verified by computer simulations. Khan’s

team attempted to use a new kind of wavelet-based self-tuned
wavelet controller for IPM motor drives which has already
been implemented using the MATLAB/Simulink software
and the dSPACE digital signal processor hardware and show
better performance than traditional controllers [151].

Wavelet transform is an efficient way for noise suppres-
sion/mitigation [176]. Huang and his team designed a Gaus-
sian wavelet basis expansion [177], and a pseudo pilot-aided
complex Gaussian wavelet basis expansion base [178] and
compared the BER performance of it with some other phase
noise compensation methods. The proposed method is more
efficient than other existing methods. In [124], Fan et al.
compared FrWT and DWT denoising performance based on
SNR (Signal-Noise ratio) and RMSE (Root Mean Squared
Error). Reference [30] compared the noise-filtering effects
of different wavelet construction and found that biorthogonal
wavelet transforms with shape control has the best perfor-
mance. Chien and his team [179] focused on impulse noise
mitigation in the wavelet-OFDM system for power-line com-
munication. The BER performance shows that the proposed
method mitigates the impulse noise much more effectively
especially adding ideal channel estimation. Denoising ECG
signals can also be realized by using suitable wavelets meth-
ods [148], [180]. Arvinti and Costache [180] propose a robust
and easy-to-implement algorithm and achieve high SNR, low
RMSE and MSE for ECG signals. They also investigated
different choices of mother wavelets and found that reverse
biorthogonal wavelet 2.4 is the best mother wavelet for ECG
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signal. Reference [148] applies WNN as ECG signal denois-
ing method and investigate the BER and RMSE performance
of different wavelet functions as activation function. They
concluded that WNN is a better alternative to the traditional
DWT based noise mitigation method and db6 is more suit-
able for ECG signal denoising. In [94], the authors applied
perceptual wavelet packet transform on speech enhancement.
Segmental SNR, Perceptual Evaluation of Speech Quality
and Weighted Spectral Slope (WSS) are used to evaluate the
efficiency of their method compared with some of the state-
of-the-art speech enhancement methods. The simulation re-
sults show higher segmental SNR, higher output perceptual
evaluation of speech quality, and lower WSS values than
existing methods.

2) Signal Processing in Emerging Fields
Wavelet transform is not only widely used in traditional sig-
nal processing, but also expands many emerging applications.
For example, electrical signal processing in power systems,
biomedical signal processing, IoT (Internet of Things) mobil-
ity prediction and even quantum image processing. Reference
[181] replaces the sampling in the DWT with compressed
sensing and reconstructs the high-frequency characteristics
of the voltage and current to estimate the equivalent series
resistance (ESR) of the aluminium electrolytic capacitor. The
cost of data sampling, transmission, and storage is reduced,
and suitable for various environments. In [182], Gao and
his team introduced the empirical wavelet transform (EWT),
which has superior time-frequency resolution ability and
compared it with other feature extraction methods like WP,
which verified the EWT is more suitable for the extraction of
High-impedance faults signals. They considered permutation
entropy, which denotes the similarity, the cross-correlation
coefficient, the tracking original signal ability and energy
ratio, and the energy loss for feature extraction measure-
ments. The three criteria improved about 2%, 260% and
44%, respectively, compared to traditional empirical mode
decomposition method. Reference [183] uses complex WT
to detect the phase and duration of voltage sags accurately.
Compared with the db4 real wavelet detection voltage sag,
it verifies the effectiveness of combining the DQ transform
method and the complex WT for voltage sag detection.
Wavelet transform can also be applied to the texture feature
analysis of microscope images [184]. They extracted detailed
information from the wavelet decomposition coefficients and
analyzed these features to evaluate the changes in artificially
aged power transformer winding insulation paper samples.

Biological signals can also be used to extract features
through wavelet transform. Reference [185] tracks the user
gait phase and identify relevant biomechanical gait events.
DWT method can robustly adapt to different walking speeds
and reduce the RMS of the phase reset error by 64% and
21% in assistive mode and transparent mode, respective-
ly. In [186], WP has been used for feature extraction in
electroencephalography (EEG) signals, and the recognition
accuracy achieved 68%. Zhang et al. [187] applied DWT to

analyze retinal ganglion cell inner plexiform layer (GCIPL)
topographic thickness map to extract useful features and
uses three machine learning methods for further analysis.
The performance of traditional thickness analysis in dis-
crimination ability in patients with multiple sclerosis (MS)
and a history of optic neuritis (ON) is improved. Machine
learning methods may be expected to facilitate the diag-
nosis of MS patients and ON patients. Wang’s team used
an improved wavelet threshold method to denoise measured
surface electromyography (sEMG) signals [188]. Compared
with the traditional wavelet threshold denoising algorithm, it
has better SNR and RMS error performance for sEMG signal
denoising, improved about 5%. The features are extracted
from the denoised sEMG signal and used as the input of
the neural network algorithm to achieve accurate fatigue
state recognition. In [189], researchers used ECG signals to
predict sudden cardiac death with high accuracy. Use DWT
for signal preprocessing, extract features as the classifier’s
input, and achieve the highest accuracy compared with other
research.

Reference [190] applied DWT decomposition to construct
an adaptive mobility sampling algorithm, which can reduce
wasting computational resources in IoT network mobility
prediction. In [191], quantum wavelet transform is used in
embedding watermark information in the quantum image.
The simulation results show that the watermarked image
is not significantly different from the original image for
different images. After watermarking, the image distortion
is smaller than the quantum image watermarking algorithm
using a quantum Fourier transform. The authors in [192]
focused on the vibration signal of rolling bearing, and
Daubechies wavelet is selected for 3-level wavelet packet
decomposition. The proposed method achieved higher classi-
fication accuracy than existing classifiers like SVM (support
vector machines). Bărbulescu et al. modelled the signals
that ultrasonic waves propagate in diesel [193]. Through
statistical verification, the method combined with wavelet
better describes the experimental data, which can be used to
predict or control the evolution of the cavitation process

Reference [194] introduced orthogonal wavelet division
multiplex (OWDM) as a more flexible alternative for OFDM.
It replaces the fast Fourier transform and Inverse Fast Fourier
Transform parts in the OFDM structure with DWT and
IDWT. Fig. 24 shows the block diagram of DWT-OFDM.
In [195], the BER performance shows the superiority of
DWT-OFDM over traditional FFT-OFDM in hybrid power-
line communication (PLC)-visible light communication-
based system. Lokesh and his team [196] compared several
wavelets in DWT-OFDM and showed that the biorthogonal
wavelet transform provides a lower BER in all wavelets by
virtue of its characteristics. Sarowa’s team [197] compared
in more detail. They designed a mitigation technique and
compared the wavelet-OFDM system based on this technique
with the traditional OFDM system based on self-cancellation
and maximum likelihood. In [198], a new wavelet-based
multi-carrier modulation technique, namely filtered orthogo-
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nal wavelet division multiplexing, is proposed as an effective
alternative to traditional OFDM to reduce PAPR. In this mod-
el, the system does not require a cyclic prefix, which exhibits
higher bandwidth efficiency. AvcÄś and his team proposed
a new asymmetrically clipped optical-OFDM method based
on lifting wavelet transform to restore spectral efficiency and
improve the performance of the system [199]. In order to
improve the spectral efficiency of multi-carrier modulation
in sonar image transmission, reference [200] proposes a
sparse non-OWDM scheme based on sparse representation.
The results show that compared with OFDM, the proposed
scheme requires fewer frequency resources and has higher
PSNR and lower PAPR.

Coherent optical OFDM (CO-OFDM) system has unique
advantages in optical fibre transmission and utilization,
which can effectively solve the dispersion and interference
problems generated in the system. Reference [201] combined
DWT and CO-OFDM and reduced the disadvantages of
CO-OFDM. The BER performance of DWT-CO-OFDM is
better than CO-OFDM in QPSK (Quadrature Phase Shift
Keying) and 16-QAM (Quadrature Amplitude Modulation)
modulation. Non-orthogonal multiple access (NOMA) is a
currently emerging technology adopted by 5G as a new mul-
tiple access technology. Bringing wavelet analysis to NOMA
could achieve better results. The authors in [164], [202] both
studied wavelet transform-based with pulse-shaped data for
downlink NOMA. Baig’s team [202] compared the noise
variance and BER performance between FFT-NOMA and
wavelet-NOMA; wavelet-NOMA outperforms FFT-NOMA
in all simulation scenarios. In [164], Haar, Daubechies and
coiflet wavelet are applied in NOMA system and compared
with conventional FFT-NOMA. Both BER and PAPR per-
formance showed that wavelet-NOMA is usually superior to
traditional FFT-NOMA, and Haar wavelet has the best PAPR
performance. In [165], wavelet-OFDM system is also applied
on precoded NOMA, and the BER and PAPR performance

are better than OFDM-based precoded NOMA.

B. IMAGE PROCESSING
Wavelets can be used in image processing areas. While real-
izing pattern matching and recognition applications, DWT is
used in a wide variety of areas [203]. By creating a rational
biorthogonal wavelet filter bank, it is possible to optimally
extract features in different sizes [204]. They compared the
proposed RWT with a biorthogonal wavelet with a standard
wavelet filter bank and achieved higher image classification
accuracy. Wavelet’s applications involve feature extraction
and texture. Approaches used to solve challenges of feature
extraction in image processing contain optimally extracting
features in different sizes.In [64], Liu et al. designed a scat-
tering network based on FrWT. They extended the traditional
scattering network with fractional coefficients and improved
image classification accuracy. Reference [205] focused on
2-D palm-print images. The investigation of palmprint im-
ages after two-level wavelet decomposition shows that the
extracted feature values can maintain the uniqueness of each
palmprint image and can be used for palmprint image classi-
fication.

Furthermore, wavelets are helpful in denoise, enhance-
ment and compression in image processing area [107]. Ref-
erence [107] combines complex wavelet shrinkage and non-
local filtering. Experimental results show that the proposed
method provides effective speckle reduction in Synthetic
Aperture Radar images and detail preservation in uniform
areas. However, the proposed method is relatively time-
consuming. Norbert Remenyi’s team presents an image de-
noising procedure [104]. They compared the existing image
denoising methods and achieved a better denoising effect
through the performance of PSNR. The PSNR value is im-
proved by about 5% compared to Hidden Markov Model.
Inspired by the powerful learning ability of GAN and the
structural information extraction ability of wavelet transform,
Su and his team [206] propose a combination of extracting
structure and noise information through wavelet transform
and generating high-quality images through GAN. Experi-
mental results show that excellent performance is achieved,
and noise can be effectively extracted while preserving tex-
ture details.

Image enhancement technology is a method that recon-
structs a higher-resolution image. It is widely used in satel-
lite image resolution. Many researchers used wavelets to
obtain higher resolution images, such as using fractional
discrete wavelet transform and fractional fast Fourier trans-
form, using level set method and biorthogonal CDF (Cohen
Daubechies Feauveau) wavelet-based on lifting scheme, and
using complex WT [27], [207]. In [207], Choudhury and
Dahake compared traditional DWT and FrWT decomposi-
tion, and interpolation is performed in these high-frequency
bands using interpolation methods in order to obtain super-
resolution images. In terms of PSNR, MSE and structural
similarity (SSIM) performance, FrWT achieves better results.
A medical image compression algorithm combining geomet-
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ric active contour model and biorthogonal wavelet transform
is proposed in [27]. This algorithm is superior to traditional
MRI image methods and provides better PSNR and Mean-
SSIM values.

Image compression is also an essential part of image
processing, reducing data storage and bandwidth limitations.
Researches related to using wavelets in image compression
is also a hot spot. One trend is focused on using different
kinds of designed wavelets such as using Daubechies and
biorthogonal wavelet with the fusion of Spatial-orientation
tree wavelet and Set Partitioning in hierarchical trees, using
the level set method and biorthogonal CDF wavelet based
on lifting scheme [30], [208], [209]. In [30], the theoret-
ical analysis and numerical experiments of the proposed
biorthogonal wavelet transform with shape control param-
eters based on the unified Catmull-Clark subdivision show
that the proposed wavelet transform achieves a higher com-
pression ratio, more stable noise filtering effect compared
with the most advanced lifting-based solutions. It improves
the PSNR of the reconstruction model and reduces the time
cost of encoding and decoding. Reference [208] proposed a
multimedia image compression method based on biorthogo-
nal wavelet packets. The methods include the establishment
of linear phase biorthogonal wavelet basis, the selection
of 3 or 4 level wavelet decomposition and reconstruction
stages, and the combination of improved frequency band
division. PSNR was used as the reconstructed image quality
evaluation index and achieved a better compression effect,
improving about 3%. Bharati and his team compared several
Daubechies wavelet and Biorthogonal wavelets at different
decomposition levels, and the PSNR, MSE and compression
ratio are used to indicate the efficiency of wavelet-based
image compression method [209].

C. OPTIMIZATION PROBLEM
There are many ways to solve optimization problems, but
they all have some shortcomings. On the one hand, the tradi-
tional mathematical optimization method takes the gradient
descent direction as the forward direction of the optimiza-
tion, which can easily fall into the local minimum solution
and cannot get optimal global solution of the problem with
a high degree of nonlinearity [210]. On the other hand,
the optimal global solution of some optimization problems
is often near the pole of the feasible region, and these
places correspond to the discontinuity of the derivative of
the function mathematically, which makes the traditional
mathematical optimization method invalid here. Some non-
traditional optimization methods developed since the 1970s
are designed based on the inspiration of certain physical
or biological phenomena. These methods include Genetic
Algorithms, Simulated Annealing, Ant Colony Optimization
Algorithm, Tabu Search and Particle Swarm Optimization
(PSO). Although they can theoretically obtain the optimal
global solution, the calculation time is theoretically infinite,
which is not conducive to practical applications. Because
many engineering optimization problems can approximate

linear objective functions, wavelet theory has a special func-
tion in describing the singularities of functions, transforming
the optimization of functions into a finite number of singular
points in the feasible region, regardless of the optimization
content, and constraints [211]. As long as the singularity is
determined, the optimal global solution is also obtained.

In [212]–[216], researchers combined PSO and wavelet
analysis and achieved more exemplary optimization methods.
The idea of particle swarm algorithm originates from the
study of predation behaviour of birds/fish schools [217].
It simulates the behaviour of bird swarms flying for food.
The cooperation between birds makes the group achieve the
optimal goal. It is an optimization method based on Swarm
Intelligence. It finds the global optimum by following the op-
timal value currently searched. Compared with other modern
optimization methods, the obvious feature of particle swarm
optimization is that few parameters need to be adjusted, it is
simple and easy to implement, and the convergence speed is
fast. Like WNN, combining wavelet analysis and optimiza-
tion methods is also divided into two directions. On the one
hand, References [212], [216] are new methods proposed
after mixing particle swarm and wavelet analysis. Zhang
and Min [212] designed an improved particle swarm with
wavelet threshold and also used a WNN using Morlet wavelet
as the activation function for classification. The improved
PSO algorithm achieved higher classification accuracy, and
different wavelet functions were applied for better noise fil-
tering. The subjective visual effects, mean square error, peak
signal-to-noise ratio, and structural similarity of the images
after noise reduction are better than traditional noise filtering
algorithms. The proposed method to classify the data set
reduces the number of features and reduces the classification
error rate. The maximum classification error rate is reduced
by 21.543%, and the number of feature is reduced by 12;
29.243% reduces the minimum classification error rate, and
the number of features is reduced by 9. In [216], an improved
particle swarm optimization scheme using lifting wavelet
transform proposes dynamic range enhancement for optical
time-domain reflectometry. This scheme enables the design
of custom lifting wavelet filters to increase the signal-to-noise
ratio and thus improve the dynamic range.

On the other hand, the authors in [213]–[215] first pro-
cess signals with wavelet analysis and then apply PSO or
Enhanced-PSO for optimization. Reference [213] proposed a
hybrid prediction model combining wavelet transform, parti-
cle swarm optimization and support vector machine for short-
term power generation prediction of practical microgrid pho-
tovoltaic systems. The prediction accuracy of the proposed
model has been compared with seven other prediction strate-
gies and shows excellent performance in terms of prediction
accuracy improvement. In [214], Djaghloul and his team
performed segmentation and tracking of deformable struc-
tures during intervention through an improved PSO scheme.
The reconstructed 3D models are analyzed using wavelet-
based methods to perform registration tasks. The system is
thus able to track surgical instruments through updates of
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the colour model guided by prior anatomical knowledge.
The researchers in [215] extracted seven wavelet features for
Fusarium head blight detection based on continuous wavelet
analysis of wheat spike hyperspectral reflectance. They con-
structed a Fusarium wilt detection model, taking wavelet
features and traditional spectral features as input features and
combining them with the PSO-SVM algorithm. The accura-
cy of random forest (RF), backpropagation neural network,
and PSO-SVM detection models with wavelet features are
improved by 3.7%, 2.9%, and 8.3%, respectively.

For other optimization algorithms, in [218], Yin et al.
proposed wavelet transform subspace-based optimization
methods and investigated various wavelet functions for the
minor part of induced current in the inverse problem. The
proposed method increased the resolution of a specific area
and significantly accelerated the convergence speed of the
algorithm. Temel and his team modified Cat Swarm Opti-
mization algorithm with wavelet transform for seeking the
best positioning sensor to cover the specified area in the
3D environment as effectively as possible [219]. Compared
with the random deployment and the Delaunay Triangulation
based deployment approaches, when covering 90% of the
specified area, their method needs the least number of sensors
and has the best QoC (Quality Of Conformance) performance
with 96 sensors.

VII. CHALLENGES AND RESEARCH GAP
Although wavelet analysis has achieved certain results in
many application fields; it still faces many problems.

1) Except for the more mature one-dimensional wavelet
theory, the theory of high-dimensional wavelet is not
well developed. Multiwavelet theory is not extensively
developed either. There is no general construction for-
mula for high-dimensional wavelet and multi-wavelet.
In practical applications, the two-dimensional and high-
dimensional wavelet bases currently used are separable;
the low-dimensional wavelet base is constructed as a
tensor product. However, using separable wavelet bases
constructed from tensor products to analyze signals may
lose their anisotropic properties. Designing the scaling
factor value of multi-wavelet also needs to be further
studied according to actual applications.

2) Selecting the most suitable wavelet basis for a specif-
ic application or data source has been a challenge in
wavelet analysis all the time, both in wavelet trans-
form and WNN. Although there have been researches
on optimal basis selection methods in the literature as
presented in the review, a systematic way of optimal
wavelet basis selection and performance evaluation is
still a significant research gap. The current selection of
wavelet basis has the following problems:

-- Considering that some desirable properties of
wavelets, such as symmetry and orthogonality, are
not easy to obtain at the same time, it is a huge
challenge to select or design suitable wavelets to

deal with various problems in reality. At present,
there are not many qualitative studies in this area.

-- The RWT is more suitable for oscillating signals
because of its more satisfactory frequency reso-
lution. However, the choice of factors is worth
studying. The rational wavelet preferably includes
the characteristics of the analyzed signal in the
construction process. In order to make the rational
wavelet transform better match the signal charac-
teristics, it is necessary to adjust the parameters
to obtain the rational wavelet basis with different
time-frequency distribution characteristics. Among
them, adjusting the parameters can change the
frequency division method and change the time-
domain oscillation properties of the wavelet func-
tion. For a given signal, achieving the adaptability
of the wavelet base to the signal needs to be stud-
ied.

-- Most of the literature uses simple non-orthogonal
wavelets, such as Mexican hat wavelets and Morlet
wavelets, as activation functions because they are
simple and easy to implement. Similar to multi-
wavelets, the new wavelet network can use mul-
tiple mother wavelets to select the best wavelet to
the greatest extent. However, if a complex wavelet
function is used, the calculation time of WNN will
be significantly increased. Moreover, if the initial
settings of the wavelet function’s scale parameter
and translation parameter are unreasonable, the
entire network will be difficult to converge. In the
aspect of high-dimensional data processing, there
are little researches on WNN, which is determined
by the complicated structure of multi-dimensional
wavelet theory. Therefore, the development of
wavelet networks also depends on further research
of wavelet theory.

3) Traditional signal processing has applied a variety of
RWT, and most of them have achieved better results than
DWT. However, in emerging fields, DWT still occupies
the majority of studies. In the review of wavelet signal
processing in the power system voltage and current
signals, biological signals and quantum fields, few ap-
plications use RWT. The application direction of RWT
could be expanded. It can also be seen that rational
wavelet is used less for applying wavelets in the opti-
mization algorithm. The type of optimization algorithm
combined with wavelet is also relatively less, most of
them considering PSO algorithm.

4) For WNN, the neural network structure is still under
extensive research. Numerous studies in the literature
use WNN based on the Radial Basis Function neural
network, which is only a three-layer neural network.
Choosing the proper WNN structure to deal with dif-
ferent problems is a great challenge in this field. The
wavelet network only uses the expanded and translated
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version of a mother wavelet to construct the network.
It is unrealistic to rely solely on a particular theory
and technology. Therefore, attention should be paid to
combining interdisciplinary research on fuzzy, fractal
and genetic algorithms. Wavelet Kernel in convolution
layer is a developing research fields. Similar to using
the wavelet function as the activation function, selecting
a suitable wavelet kernel is also a direction worthy of
further study.

VIII. CONCLUSION
The key highlights and concluding points of this paper are
summarized as follows:

1) Wavelet theory is briefly summarised, including the
construction method and properties of different wavelet
bases. There are currently two main wavelet design
methods: MRA-based and lifting schemes. The second-
generation wavelet constructed using the lifting scheme
contains the multi-resolution characteristics of the first-
generation wavelet. They have fast calculation speed
and low memory consumption. For various practical
problems, rational wavelets, high-dimensional wavelets
and multi-wavelets are worthy of further study.

2) Related algorithms using wavelet analysis were also dis-
cussed. For example, wavelet packet theory and wavelet
transform are constructed by filter banks. DWT is the
most basic and most widely used wavelet transform.
RWT can achieve finer frequency domain segmentation.
It enhances the signal frequency domain localization
and is a very powerful signal processing tool. RWT is
more suitable for oscillating signals, and its application
in Doppler analysis and radar or sonar detection is very
promising. In terms of denoising, FrWT achieves better
results than DWT. SNR can be increased by about 40%,
and RMSE can be reduced by about 50% [124]. In the
case of in-depth analysis of the signal, many particular
wavelet transforms, such as DT-CWT and RADWT, are
also designed to achieve better or more adaptable effects
to special situations.

3) With the development of neural networks, combining
neural networks and wavelet analysis has also flour-
ished. The WNN, whose signal is preprocessed by
wavelet analysis, combines the advantages of artificial
neural networks and wavelet analysis. After wavelet
analysis preprocesses the signal, the performance of
WNN can reduce the prediction error by about 50% in
[220]. Some commonly used WNN structures are sum-
marised for WNN, where wavelet cells replace neurons,
and examples of WNN structures combined with RNN
are given. Applying WNN to more complex structures
or combining it with some interdisciplinary algorithm-
s can improve the performance of neural networks,
such as in [154], which increases the performance by
about 65%. Wavelet Kernel in convolution layer is a

developing research field. Selecting a suitable wavelet
kernel is also a direction worthy of further study. In
summary, WNN can avoid the blindness of traditional
neural network design. It has more vital learning ability,
higher accuracy, simple structure and fast convergence
speed. It is also the focus of future research.

4) Wavelet analysis has a wide range of applications in
signal processing, and it has more advantages than
traditional methods in signal analysis in terms of en-
hancement, denoising, compression and classification.
In emerging fields like power systems and biological
signals, wavelet signal processing has also achieved
better results than traditional FFT. The performance of
RMSE after noise reduction and feature extraction has
been improved to varying degrees. The application of
wavelet analysis in image processing includes image
compression, classification and denoising. It deals with
the low-frequency and high-frequency parts of wavelet
images. In most cases, wavelet transform can achieve
better performance in image processing, such as com-
pression rate and denoising effect. The PSNR after
noise filtering could be improved by about 5% in [104].
Wavelet analysis is superior to traditional methods in
image quality reconstruction under the same compres-
sion ratio. PSNR is about 3% higher than existing meth-
ods in [208]. Combining wavelets with optimization
algorithms can often get better optimization results. The
combination of the optimization algorithm and wavelets
method reduces the number of features and reduces the
classification error rate.

5) The main challenges and research gaps in wavelet
research have been discussed. When applied to sig-
nal processing, it is necessary to study the selection
or design of the optimal wavelet basis. Multiwavelet
and high-dimensional wavelet theories are still under
development. Although RWT can flexibly adjust the
time-frequency distribution characteristics, the amount
of calculation and memory consumption has increased.
The application areas of RWT also need to be further
expanded, not only in traditional signal processing. The
wavelet basis function required by the hidden layer of
WNN is inconsistent with the wavelet basis selection
criteria of signal processing, and it is necessary to in-
troduce advanced wavelet theory further. WNN can be
combined with multi-interdisciplinary algorithms such
as fuzzy, fractal and genetic algorithms to obtain broad
application prospects.
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[193] A. Bărbulescu and C. S. Dumitriu, “ARIMA and wavelet-ARIMA models
for the signal produced by ultrasound in diesel,” in 2021 25th Interna-
tional Conference on System Theory, Control and Computing (ICSTCC),
2021, pp. 671–676.

[194] S. L. Linfoot, M. K. Ibrahim, and M. M. Al-akaidi, “Orthogonal wavelet
division multiplex: An alternative to OFDM,” IEEE Transactions on
Consumer Electronics, vol. 53, no. 2, pp. 278–284, 2007.

[195] S. Baig, H. Muhammad Asif, T. Umer, S. Mumtaz, M. Shafiq, and
J. Choi, “High data rate discrete wavelet transform-based PLC-VLC
design for 5G communication systems,” IEEE Access, vol. 6, pp. 52 490–
52 499, 2018.

[196] C. Lokesh, K. R. Nataraj, K. R. Rekha, and C. G. Mamatha, “Wavelet
OFDM for power line communication,” in 2017 International Confer-

ence on Recent Advances in Electronics and Communication Technology
(ICRAECT), 2017, pp. 223–229.

[197] S. Sarowa, H. Singh, S. Agrawal, and B. Sohi, “Design of a novel hybrid
intercarrier interference mitigation technique through wavelet implica-
tion in an OFDM system,” Digital Communications and Networks, vol. 4,
no. 4, pp. 258 – 263, 2018.

[198] A. F. Almutairi and A. Krishna, “Filtered-orthogonal wavelet division
multiplexing (f-owdm) technique for 5G and beyond communication
systems,” Scientific Reports, vol. 12, 2022.
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