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ABSTRACT The cognitive radio (CR) network consists of primary users (PUs) and secondary users (SUs).
The SUs in the CR network senses the spectrum band to opportunistically access the white space. Exploiting
the white spaces helps to improve the spectrum efficiency. Owing to the excellent learning ability of machine
learning/deep learning framework, many works in the recent past have applied shallow/deep multi-layer
perceptron approach for spectrum sensing. However, the multi-layer perceptron networks are not well suited
for time-series data due to the absence of memory elements. On the other hand, long short-term memory
(LSTM) network, an improved version of Recurrent neural network is well suited for time-series data. In
this paper, we propose an LSTM based spectrum sensing (LSTM-SS), which learns the implicit features
from the spectrum data, for instance, the temporal correlation (i.e., the correlation between the present
and past timestamp).Moreover, the CR systems also exploits the PU activity statistics to improve the CR
performance. In this context, we compute the PU activity statistics like on and off period duration, duty cycle
and propose the PU activity statistics based spectrum sensing (PAS-SS) to enhance the sensing performance.
The proposed sensing schemes are validated on the spectrum data of various radio technologies acquired
using an experimental test-bed setup. The proposed LSTM-SS scheme is compared with the state of the
art spectrum sensing techniques. Experimental results indicate that the proposed schemes has improved
detection performance and classification accuracy at low signal to noise ratio regimes. We notice that the
improvement achieved is at the cost of longer training time and a nominal increase in execution time.

INDEX TERMS Cognitive radio, spectrum sensing, long short-term memory, primary user activity
statistics, deep learning.

I. INTRODUCTION

W ITH the rapid advancement of wireless communica-
tion technologies and the advent of the 5G paradigm,

spectrum resources have become highly scarce [1]. As per
the spectrum occupancy campaign in [2], the overall usage of
spectrum band varies from 7% to 34%, which demonstrates
significant under-utilization of spectrum resources. Cognitive
radio (CR) technology [3] has emerged as a potential solution
to trade-off between spectrum availability and its demand-
ing growth. It aims at reusing the temporarily unoccupied
frequency bands, known as spectrum holes or white spaces,
in an opportunistic manner ensuring that the licensed user
does not face any interference [4]. The licensed user in the

CR network is referred to as primary user (PU) while the
unlicensed user as a secondary user (SU). The underlying
principle of CR is to allow the SUs to access the temporarily
unoccupied licensed bands in an opportunistic and non-
interfering manner [5]. This calls for highly reliable and
efficient spectrum sensing schemes [4].

A. CURRENT STATE OF THE ART AND MOTIVATION

Spectrum sensing algorithms can be broadly classified as
parametric or non-parametric schemes. Parametric sensing
schemes take into account some prior information about
the PU activity. However, in practice no prior information
is available about the PU, and thus non-parametric sensing
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schemes are preferred over the parametric sensing schemes
[6]. Energy detection, a non-parametric spectrum sensing
technique, is widely used in literature due to its low com-
putational complexity and ease of implementation with an
experimental setup [7]. However, its performance mainly
depends on two key assumptions, the stationarity of noise
and the knowledge of its variance [8]. Imperfect knowledge
of the noise variance leads to a concept called signal to noise
ratio (SNR) wall [9]. Moreover, non-parametric goodness of
fit (GoF) tests based sensing schemes like Anderson Darling
test [10], Kolmogorov-Smirnov test [11], likelihood, and
improved likelihood ratio based sensing [12], [13] among
many others, are also proposed in the literature.

Although the main purpose of spectrum sensing is the
instantaneous detection of opportunistic white spaces, the
sequence of sensing decisions can be utilized to estimate
the PU activity statistics and occupancy patterns [14]. PU
activity statistics include idle/busy period duration, their min-
imum duration, mean, higher-order moments and distribu-
tion followed by the idle/busy periods [15]. This statistical
information can be useful in the CR network to predict
the future spectrum occupancy trends, schedule spectrum
sensing, selection of appropriate spectrum band and channel
of operation for CR system, optimize the system perfor-
mance and improve the spectral efficiency, see ([14] and
references therein). The estimation of PU activity statistics
and spectrum occupancy has received good attention from
the research community in the recent past. For instance, the
performance analysis of measurement of the duty cycle and
channel occupancy rate was carried out in [16]. Authors
in [17] proposed the deterministic and stochastic model for
spectrum occupancy using a mixture of the beta distribu-
tion. Furthermore, the analysis of the estimation of idle/busy
period considering exponential distribution was carried out
in [18], while considering realistic approximations namely
Pareto and generalized Pareto distribution was analysed in
[19]. Analysis in the above works have considered the perfect
spectrum sensing approach, an ideal scenario. Analysis of
occupancy pattern and improving the PU activity statistics
prediction based on imperfect spectrum sensing was investi-
gated in [20] and [21] respectively. Additionally, few works
also focused on studying the effect of PU activity statistics on
spectrum sensing to a certain extent. For instance, the authors
in [22] analysed the impact of PU traffic on the sensing
performance. PU traffic was modeled as an independent
and identically distributed (i.i.d.) two-state random process
with an exponential holding times. Spectrum sensing with
multiple status changes in PU traffic was analyzed in [23],
while the spectrum sensing strategy for dynamic PUs in CR
modeled using a two-state Markov chain was carried out in
[24], [25].

Although the analytical model based above mentioned
schemes performs well, they may be unsuitable for the real
environment [26]. Owing to the excellent learning ability
using data driven approach and with the rapid advancement
in the learning based signal processing techniques [27],

machine learning (ML) and deep learning (DL) algorithms
have gained wide attention from industry and academia in
the context of future wireless networks [28]–[31]. The key
advantage of CR network is its cognitive ability, i.e, learning
by itself from the radio environment. This is analogous to
the ML/DL framework. Thus, ML/DL framework has been
applied to CR networks as well [32]–[34].

The basic principle of spectrum sensing is to classify
whether the PU is present or absent. Due to the advantages
mentioned above, few works have leveraged ML/DL tech-
niques treating spectrum sensing as a classification prob-
lem. For instance, Artificial neural network (ANN) based
spectrum sensing was carried out in [35]. In [36], a novel
ANN-based hybrid sensing scheme was proposed which used
energy values and the Zhang statistic [37] as the training
features. Recently, the sensing of the OFDM signal at a low
SNR regime using a naive Bayes classifier was proposed
in [38]. Furthermore, few works have also applied the DL
approach for spectrum sensing. For instance, a convolutional
neural network (CNN) based spectrum sensing was proposed
in [39]–[41], CNN based cooperative sensing in [42] while
stacked auto-encoder based spectrum sensing of OFDM sig-
nal was proposed in [43]. The above mentioned ML/DL
frameworks have shallow/deep multilayer perceptron net-
work.

One of the limitations of the shallow/deep multilayer
perceptron network is its inability to store information due
to the absence of memory elements [44], [45]. Hence, mul-
tilayer perceptron networks are not well suited for temporal
modeling and time-series data [46]. Long short-term memory
(LSTM) architecture, an improved version of Recurrent neu-
ral network (RNN), is preferable for time series related prob-
lems [47]. This is because LSTM consists of several gates
in a single neuron to better coordinate the historical (past
timestamps) and the current information (present timestamp)
in a time series [46] and is thus extensively used for temporal
data.

The wireless spectrum data being a time-series data [48],
has an inherent temporal correlation (non-zero temporal au-
tocorrelation) present in it [49]. LSTM networks being a DL
model, are excellent in learning the temporal dependencies
in sequential data [50]. Thus, LSTM implicitly learns all
the important features in the spectrum series data resulting
in enhanced performance, as will be revealed in the later
sections.

There are few related studies in the literature that have
used LSTM networks on wireless spectrum data. For in-
stance, authors in [51] proposed a spectrum prediction algo-
rithm using LSTM network while, authors in [52] addressed
the modulation classification problem using LSTM network.
In [53], the authors have used the Taguchi method for hyper-
parameter optimization of the LSTM network for spectrum
prediction. Additionally, the authors in [54] carried out the
mobile traffic prediction using the LSTM network. However,
the above studies have addressed the spectrum prediction
problem and have shown the comparison in terms of accuracy
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with other machine learning models. In contrast, we propose
the LSTM based spectrum sensing (LSTM-SS) scheme for
CR networks. We have utilized the detection probability as
a key performance metric and have demonstrated the effect
of SNR for different values of false alarm probability. These
performance metrics are the key players while dealing with
the design and dimensioning of CR networks, which the
aforementioned works have not considered. Moreover, as
mentioned above, CR users can significantly benefit from
the knowledge of PU activity statistics obtained from the
spectrum sensing decisions. To this extent, we also compute
the PU activity statistics like on and off period duration,
duty cycle and propose a non-parametric DL aided PU ac-
tivity statistics based spectrum sensing (PAS-SS) scheme
to improve the sensing performance, which to the best of
the authors’ knowledge is yet to be reported in the existing
literature.

B. CONTRIBUTIONS
The main contributions of this paper can be summarized

as below:
• Firstly, we examine that the spectrum data is a time

series data. This is demonstrated by the non zero au-
tocorrelation in temporal domain. Moreover, LSTM
learns the implicit features from the spectrum data, for
instance, the temporal correlation (i.e., the correlation
between the present and past timestamp). In this context,
a novel LSTM-SS scheme is proposed in which the
previous sensing event is fed along with the present
sensing event. Results indicate remarkable performance
improvements, in terms of detection probability and
classification accuracy, even at a low SNR regime.

• Secondly, to make the proposed LSTM-SS model robust
and unbiased towards high SNRs, the training data set
is prepared to include data at very low SNRs in varying
proportions. This ensures that the detection performance
does not deteriorate at low SNRs.

• Thirdly, based on the spectrum sensing decisions, we
compute the PU activity statistics like on and off period
duration and duty cycle, utilize it as input feature and
propose the PAS-SS scheme to further enhance the
sensing performance.

• Lastly, the proposed LSTM-SS and PAS-SS schemes are
experimentally validated with spectrum data of various
radio technologies captured using empirical test-bed
measurement setup. The proposed schemes outperform
various ML/DL aided sensing schemes in terms of de-
tection probability.

C. PAPER ORGANIZATION
The remainder of this paper is organized as follows.

Section II describes the system model, LSTM preliminaries
and briefly describes the spectrum data. The LSTM-SS is
proposed in Section III. Section IV focuses on the proposed
PU activity statistics aided LSTM based spectrum sensing.
Section V describes the empirical measurement setup. Ex-

FIGURE 1: Internal structure of a LSTM cell.

perimental results are discussed in Section VI. Section VII
concludes this work.

II. SYSTEM MODEL AND LSTM PRELIMINARIES
A. CONSIDERED SYSTEM MODEL

The problem of spectrum sensing can be formulated as a
binary classification problem1:

H0 : y<t> = w<t> (1)
H1 : y<t> = h<t>x<t> + w<t>,

where y<t> is the received signal at tth time instant, x<t>

denotes the PU signal and w<t> is additive white Gaussian
noise with zero mean and variance σ2. H0, the null hypoth-
esis indicates only noise samples while H1, the alternate hy-
pothesis indicates the presence of PU signal along with noise
at tth instant. In order to exploit the temporal dependencies,
the previous sensing event of sample size / temporal length
N is fed along with the current sensing event and thus the
received signal, in general, can be expressed as:

y =
[
y<1>y<2> . . . y<N>︸ ︷︷ ︸

Previous sensing event

y<N+1>y<N+2> . . . y<2N>︸ ︷︷ ︸
Current sensing event

]T
,

where N isxthexsamplexsizexandx[·]T xdenotesxthe trans-
pose of a vector.

B. LSTM PRELIMINARIES
The internal structure of LSTM cell is shown in Fig.

1 [46], where y<t> is the input to the cell, a<t> is the
output of the LSTM cell, a<t−1> is the previous LSTM
output, and c<t> and c<t−1> are the current and previous
cell states, respectively. σu, σf , and σo are the values of
the update, forget and output gates, respectively, � is the
Hadamard product, tanh is the activation function and ⊕

1Notations in this paper are modified in order to have consistency with the
LSTM notations.
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indicates element-wise addition. The LSTM cell has three
prime elements as:

1) Update gate: Decides when to update the current cell
state, denoted as the output of σu.

2) Forget gate: Decides when to discard the current cell,
denoted as the output of σf .

3) Output gate: Controls the output, denoted as the output
of σo.

Using the tanh activation function:

tanh(m) =
em − e−m

em + e−m
, (2)

a vector of candidate values, c̃<t>, is created in order to
update the cell state:

c̃<t> = tanh(Wc[a
<t−1>, y<t>] + bc), (3)

where bc denotes the bias term. The values for the update,
forget and output gates are computed by applying a sigmoid
activation :

Γu = σ(Wu[a<t−1>, y<t>] + bu), (4)

Γf = σ(Wf [a<t−1>, y<t>] + bf ), (5)

Γo = σ(Wo[a<t−1>, y<t>] + bo), (6)

σ(m) =
1

1 + e−m
, (7)

where Wu, Wf , and Wo are the weight matrices and bu,
bf , and bo are the bias terms. An element-wise product is
taken between the forget gate (Γf ) and the previous cell state
c<t−1>, and between the update gate (Γu) and the candidate
vector for updation c̃<t>. Output a<t> is the element-wise
product between the output gate (Γo) and the hyperbolic
tangent of candidate vector c<t>:

c<t> = Γu � c̃<t> + Γf � c<t−1>, (8)
a<t> = Γo � tanh(c<t>). (9)

C. ABOUT THE SPECTRUM DATA
In this work, we have acquired the spectrum data using an

empirical test-bed setup, the details of which is described in
section V. The empirical test-bed consist of two measurement
setup. Data acquisition using setup-I is through universal
software radio peripheral (USRP) while setup-II contains
digital spectrum analyzer (DSA). The radio technologies
measured using setup-I includes FM broadcasting, UHF TV
band, GSM-900 DL, and DCS-1800 DL. For each channels,
a sequence of 8·106 samples were captured. This data is
utilized in the proposed LSTM-SS scheme. In the setup-II,
the DSA was tuned according to the parameters described
in Table 4. GSM-900 DL radio technology was selected and
the data was captured. The acquired data using DSA can
be represented as a two dimensional matrix with columns
representing the frequency bins, rows representing the time
instants, while the corresponding entry in the matrix repre-
sents the power spectral density (PSD). The sweep period of

one second was selected i.e., data was recorded every second.
Thus, the number of rows (data-points) per day is 86,400 (24
hours × 3600 seconds). However, as we tuned to a single
channel in the GSM band, the number of frequency bin was
one i.e, one column. In all our experiments, we used one day
data for the evaluation of the proposed model. For proposed
PAS-SS scheme, setup-II was a more convenient choice. This
is because the sampling rate of USRP (in setup-I) is very high
and thus the activity patterns of a PU channel are difficult and
tedious to capture [55].

III. PROPOSED LSTM BASED SPECTRUM SENSING
Traditional ANNs described in [35] have no memory ele-

ments and hence lack the ability to store data. Therefore, it is
necessary to modify the structure of neural networks to have
feedbacks between successive timestamps [44], [45]. Fig. 2
shows the proposed LSTM model comprising of LSTM cells
(as described in Section II) and an output cell which goes
through the sigmoid activation. Sigmoid activation facilitates
the conversion from continuous value output to binary output.
The physical meaning of the output of LSTM cell in simple
words is the identification of PU’s presence.

y<1> y<N>y<2> y<N+1> y<2N-1> y<2N>

Previous Sensing Event Current Sensing Event

LSTM Cell

Output Cell (Sigmoid Activation)

ŷ

FIGURE 2: Proposed LSTM-SS model.

A. DATASET CONSTRUCTION
In this subsection, the model for proposed LSTM-SS

scheme is trained and validated based on spectrum data.
The data is captured through an empirical setup, a detailed
discussion of which is provided in Section V. From the data
captured using measurement setup-I, the clean PU signal is
acquired and its power σ2

x is measured. In order to achieve
a given SNR γ, the required power of noise to be added
is calculated using the relation σ2

w = σ2
x/γ [7]. Additive

white Gaussian noise (AWGN) sequence of the power level is
generated and added to the signal. For sample of size N , the
signal will thus be a vector with 2N timestamps, as shown
below.

y =
[
y<1>y<2> . . . y<2N>

]T
.

Each signal vector with sample size N is considered as a
sensing event and hence is taken as a training sample for the
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LSTM model. For this study, 200,018 samples are maintained
for AWGN while the other 200,018 samples are maintained
for PU signal in the SNR range -20 dB to +4 dB. Thus, the
dataset contains an equal number of PU signal and AWGN
sequence examples.

In order to have the proposed LSTM-SS scheme robust
and unbiased towards high SNRs, the training data set in-
cludes data at very low SNRs. Algorithm 1 and Fig. 3 shows
the dataset construction process from the raw data acquired
using empirical measurement setup-I. The generated data are
divided into three classes, training (60%), validation (20%)
and test (20%) datasets.

Pure
PU

Signal

PU signal in SNR
range -20 dB to 4 dB

Signal vectors 
of size N Labeled H1

Training
Dataset

Validation
Dataset

Test
Dataset

 Clubbed
with 

labels

Labeled H0  

Signal
vectors 
of size N

AWGN

AWGN

60%

20%

20%

FIGURE 3: Dataset construction from raw data acquired
using the empirical measurement setup-I.

Algorithm 1 Dataset construction for proposed LSTM-SS
1: Procedure Create Dataset (Data, N , Label)

2: size←
length(Data)

N
3: PU_dataset← zero matrix of dimensions size ×N
4:
4: for SNR← -20 to 4 dB do
5: noisy_signal← Data + AWGN {SNR is achieved}
6:
6: for i← 1 to size do
7: signal← (i)thN samples from noisy_signal
8: PU_signal[i]← signal {Row-wise assignment}
9: end for

10: end for
11: return PU_signal {The PU signal is returned}

B. LSTM TRAINING AND MODEL SELECTION
As shown in Fig. 4, the training dataset which comprise

of 60% of the total samples are fed in batches to different
LSTM models, the error is backpropagated during the train-
ing procedure, the gradients are calculated and the parameters
are updated, as indicated in Algorithm 2. Accuracies of these
models on the training and validation sets are evaluated as
indicated in Table 1. The training set performance of a given
model does not always generalize to other datasets as big
models may tend to overfit the training data. Thus, validation
set accuracies are considered for choosing the best model.
We can notice from Table 1 that as the number of hidden

TABLE 1: Analysis of varying hidden units for different
epochs on training and validation set accuracies.

Number of
hidden units

Epochs
Training
accuracy

Validation
accuracy

1
5 88.89% 88.11%

10 88.39% 88.75%
15 88.66% 88.50%

16
5 89.21% 87.08%

10 90.14% 87.37%
15 91.2% 87.42%

32
5 90.27% 87.09%

10 91.23% 86.03%
15 94.14% 86.20%

64
5 91.46% 86.72%

10 92.02% 86.08%
15 96.07% 85.27%

128
5 92.59% 87.80%

10 95.63% 86.03%
15 97.06% 85.20%

256
5 95.60% 86.81%

10 98.56% 84.81%
15 99.31% 84.66%

units are increased, training accuracy improves but validation
accuracy declines. This happens when the model overfits the
training dataset and only remembers the training data well but
does not learn well from it. To avoid overfitting and to select
the correct LSTM model, we have evaluated training and
validation accuracies for models with hidden units varying
from 1 to 256. We can notice that the validation accuracy is
maximum for the LSTM network with one hidden unit.

C. EVALUATION OF PERFORMANCE METRICS
In this subsection, we evaluate the proposed LSTM-SS

scheme. The detection probability (Pd) and false alarm prob-
ability (Pf ) for evaluating the proposed LSTM-SS scheme is
computed using the procedure adapted in Algorithm 3. Signal
data from the test dataset are fed one by one to the LSTM
network and Pd, Pf are calculated. First, the PU signal
vectors at each SNR are forwarded to the LSTM network.
The number of times it correctly classifies the signal, i.e.
(H1), divided by the total number of PU signal examples fed
to the network determines Pd. Similarly, AWGN sequence
examples are forwarded to the LSTM network and Pf is
calculated as the number of times it does not predict H0

divided by the total number of AWGN sequence examples.

Algorithm 2 Training of proposed LSTM-SS scheme
1: Procedure Train(Epochs, Batch_size, X, y, α)
1: for i← 1 to Epochs do
2: s_event, label← extract(Dataset, Batch_size)

{Random training examples are extracted according to the batch size}
3: Output← Forward Propagate(LSTM_model, s_event)
4: Error← Backward Propagate(LSTM_model, label, output)
5: Parameters ← Update(error,LSTM_model,α) {Parameters are updated

according to the learning rate α}
6: end for
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Training
Dataset

Sensing events

Previous sensing
event

Current sensing
event
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y<1>

.

.

.

.

.

.

y<2>

y<N>

y<N+1>

y<N+2>

y<2N>

FIGURE 4: Training model considered in proposed LSTM-SS scheme.

Algorithm 3 Evaluation of the proposed LSTM-SS scheme
1: Procedure Evaluate(LSTM_model , Dataset)
2: for i← 1 to length(PU_signal)
3: s_event, label← extract(Dataset, 1)

{Test examples are extracted one by one}
4: H0_examples← 0
5: H0_misclassified← 0
6: H1_examples← 0
7: H1_correct← 0
8: Output← Forward_Propagate(LSTM_model, s_event)
9: if Label isH1 then

10: H1_examples←H1_examples + 1
11: if Output isH1

12: H1_correct←H1_correct + 1
13: end if
14: end if
15: if Label isH0

16: H0_examples←H0_examples + 1
17: if Output isH1

18: H0_misclassified←H0_misclassified + 1
19: end if
20: end if
21: Pd ←

H1_correct
H1_examples

22: Pf ←
H0_misclassified
H0_examples

23: end for =0

D. EFFECT OF VARYING TEMPORAL LENGTH N

In this subsection, we analyse of effect of varying the
temporal length (N ) for the proposed LSTM-SS scheme. As
depicted in Fig. 2, the length of previous and current sensing
events are kept the same. To determine the optimal value
of N , we varied N and observed the performance of the
proposed LSTM-SS scheme. We observe that there is a trade-
off between the temporal length, sensing performance and
execution time. For the optimum value of performance and
execution time, we have considered N=100 to be a conve-

nient choice in all our simulations, the detailed discussion of
which is provided in Section VI.

IV. PROPOSED PRIMARY ACTIVITY STATISTICS AIDED
LSTM BASED SPECTRUM SENSING

In this section, we compute the PU activity statistics like
on period duration, off period duration, and duty cycle and
propose a PAS-SS scheme to improve the sensing perfor-
mance.

A. HYPERPARAMETER SELECTION AND MODEL
TRAINING

The schematic diagram of proposed PU activity statistics
aided sensing scheme is as shown in Fig. 5 It comprises
of two models. Model 1 consists of LSTM used for the
prediction while model 2 consists of ANN used for classi-
fication. LSTM in model 1 takes the power levels (in dBm)
as input. The input power level is compared to a decision
threshold (as discussed in Section VI) and a ground truth
is assigned. As shown in Fig. 5, model 1 performs a single
step prediction while model 2 performs classification. The
model 1 is build with iterative experiments and the final
hyperparameters chosen are listed in Table 2. The plot of loss
v/s epoch in results section confirms that the designed model
is a neither underfit nor overfit. Model 2 is trained iteratively
and consist of one hidden layer. Model 2 takes predicted
output from model 1 along with the PU activity statistics as
an input features and provides PU presence or absence as an
output. The proposed PAS-SS can be summarised as below:

1) Provide the raw empirical data to the LSTM model for
single step prediction

2) Read the data and convert it to binary format (indicating
the presence or absence of PU) by comparing it with the
decision threshold as described in the results section
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Raw
empirical
data

Extract PU
activity statistics

On Period duration (TON)

On & Off Period duration (TON+ Toff)

Duty Cycle

Predicted Output

Model 1 : Prediction Using LSTM

Model 2 : Classification Using ANN

PU Present

PU Absent

FIGURE 5: Schematic diagram of proposed primary activity statistics based spectrum sensing (PAS-SS) scheme.

3) Compute the features like Ton, Toff and Duty cycle
(DC) from the above step-2

4) Thus following the step-3, we would have four column
vectors representing four features as predicted LSTM
output, Ton, Toff and DC respectively.

5) Iterate the above steps for different values of look back
values and for different feature combinations (as de-
picted in the Fig. 17)

Notice that the empirical data in our work are not a
streaming data. Thus, step-1 and step-2 need not be executed
in parallel. However, it is important that we have the four
features i.e, predicted output, on period duration, on and off
period duration, and duty cycle before feeding to the ANN
(model-2) for classification as indicated in step-4 above. The
computation of PU activity statistics is discussed in the next
subsection.

TABLE 2: Hyperparameters of model 1 for proposed PAS-SS
scheme

Hyperparameter Value
Initial learning rate (α) 0.001

Batch size 32
Number of epochs 200

Number of hidden layers 3
Optimization algorithm Adam

Activation function ReLU
Loss function MSE

B. COMPUTATION OF PRIMARY USER ACTIVITY
STATISTICS

For the computation of PU activity statistics like on pe-
riod duration, off period duration and duty cycle, we consider
only one frequency bin for one day data. 60% is utilized as
training data-set while remaining 40% as testing data-set.
Once the data is acquired, we set the noise threshold by
the method comprehensively described in section VI. By
comparing with the threshold, we set the ground truth. If the
measured power level is greater than the threshold, we label
it one otherwise zero. After labelling the data and depending

on the the value of lookback window time used in LSTM,
the number of label one counts in the window provides the
on period duration (Ton). In similar way, the number of
zero label counts indicate the off period duration (Toff ). In
addition, duty cycle is defined as the fraction of time that the
spectrum band is occupied. It can be given as:

Duty cycle =
Ton

Ton + Toff
(10)

Once on and off period durations are obtained, duty cycle can
be computed as per (10).

V. EMPIRICAL MEASUREMENT TEST-BED SETUP
We deployed an empirical test-bed setup on the roof-top

of the School of Engineering and Applied Science, Ahmed-
abad University for spectrum data acquisition. The empirical
measurement setup is shown in Fig. 6. The spectrum data
acquired from setup-I is used in the experimental validation
of proposed LSTM-SS scheme while the data acquired from
setup-II is utilized in the validation of proposed PAS-SS
scheme.

A. SPECTRUM DATA ACQUISITION USING USRP-N210
The measurement setup-I is as shown in Fig. 6(a). The

hardware consists of a USRP-N210 with a WBX daughter-
board, discone antenna (DiamondD-3000N) and a computer
system to interface the hardware and software. The software
includes GNU Radio and MATLAB. Table 3 shows the dif-
ferent radio technologies (measured channels) and the USRP
configuration. With the help of spectrum analyzer, channels
with high SNR were identified for various radio technologies
(refer Table 4), which were later used to capture PU signal
data using the USRP. To ensure that the extreme points of
the selected frequency bins are not missed, the frequency
bins selected in the spectrum analyzer were kepts lightly
wider than those selected in USRP. The data captured using
GNURadio are further processed offline in MATLAB and
then the validation of the proposed LSTM-SS scheme is
carried out.
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FIGURE 6: Empirical measurement test-bed setup used.

TABLE 3: Channels measured in empirical setup-I and USRP configuration.

Radio Channel fstart fcenter fstop Signal bandwidth Gain Decimation Sampled
Technology Number (MHz) (MHz) (MHz) (MHz) (dB) Rate Bandwidth (MHz)

FM broadcasting – 96.500 96.700 96.900 0.2 45 64 1
E-GSM 900 DL 77 950.2 950.4 950.6 0.2 45 64 1
DCS 1800 DL 690 1839.6 1840.8 1841 0.2 45 64 1

UHF television (Band IV) U-33 566 570 574 8 45 8 8

B. SPECTRUM DATA ACQUISITION USING SPECTRUM
ANALYZER

The measurement setup-II is as shown in Fig. 6(b). The
hardware consists of a digital spectrum analyzer Rigol DSA-
875, discone antenna and a computer system to interface the
hardware and software. Table 4 shows the tuning parameters
of the spectrum analyzer. The spectrum analyzer in setup-II
was tuned to the GSM band.

TABLE 4: Tuning parameters of Rigol’s DSA-875.

Parameter Value
Frequency range 75-2000 MHz
Frequency span 45-600 MHz

Sweep time 1 second
Frequency bin Depends on band selected

Resolution Bandwidth-RBW 10 kHz
Scale 10 dB/division

Video Bandwidth-VBW 10 kHz
Detection type RMS detector

Input attenuation 0 dB

VI. EXPERIMENTAL RESULTS AND DISCUSSION
In this section, the experimental results for the proposed

scheme are presented. In our implementations, we have uti-
lized the Keras library with TensorFlow backend to create
and train models. Fig. 7 shows the autocorrelation plot of the
GSM signal captured using USRP from the empirical setup-I
for different values of SNR. The number of lag samples is 10
in each case. Non zero autocorrelation demonstrates that the
data samples are temporally correlated. This is because the
autocorrelation value does not reduce to zero instantly. This
temporal correlation is exploited in this work using LSTM
based sensing framework.

The training data (from setup-I) was divided into two
classes: high SNR class and low SNR class. -4 dB to +4 dB
were categorized in the high SNR class, while -20 dB to -4

dB were categorized in the low SNR class. To perform the
training analysis, the proportion of training examples in each
of the two classes was varied, and consequent variations in
Pd values at different SNRs and Pf values were observed.

TABLE 5: False alarm rates for different combinations of the
training data (UHF Television, N = 100).

Model
% of examples

in low SNR range
% of examples

in high SNR range
Pf

90-10 90% 10% 0.1051
80-20 80% 20% 0.0871
70-30 70% 30% 0.0718
60-40 60% 40% 0.0698
50-50 50% 50% 0.0528
40-60 40% 60% 0.0527
30-70 30% 70% 0.0432
20-80 20% 80% 0.0252
10-90 10% 90% 0.0100

Different compositions of the training dataset were cre-
ated by varying the ratio of the number of examples in low
SNR class to the number of examples in high SNR class. The
dataset is constructed using Algorithm 1, while Algorithm
2 is used to train the LSTM network on these datasets. The
compositions of the data sets and performance of proposed
LSTM-SS are evaluated using Algorithm 3 and Pd, Pf are
determined.

It is evident from Table 5 and Fig. 8 that the composition
of training set has a significant impact on Pd and Pf . As the
percentage of examples in low SNR range is increased, Pf

and Pd also increase. At low SNRs, the magnitudes of the
PU signal are similar to that of noise. The LSTM network,
therefore, finds it difficult to differentiate between the PU
signal and noise.

The proposed LSTM-SS scheme was validated on various
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(a) Autocorrelation at SNR = -4 dB

(b) Autocorrelation at SNR= +4 dB

FIGURE 7: Autocorrelation of the data samples from empirical setup-I (GSM band).
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FIGURE 8: Comparison of detection probability for various
composition of training models (UHF Television, N = 100).

radio technologies like FM Broadcasting, UHF Television, E-
GSM 900 DL, and DCS 1800 DL, as mentioned in Table 3.

Fig. 9 analyses the effect of N on the detection proba-
bility of the proposed LSTM-SS scheme for a DCS band
data. Fig. 9 (a) depicts the plot of Pd v/s SNR for different
values ofN . The value ofN for previous and current sensing
events is considered to be the same. We can notice that as
N increases, the detection probability increases. A similar
trend is observed in Fig. 9 (b). However, as N increases,
the execution time increases substantially, and thus we have

selected N=100 for all the simulations. Fig. 10 shows a
comparison of N for the detection probability of LSTM-SS,
CNN, and ANN. Fig. 10 (a) shows the plot of Pd v/s SNR
for the three schemes. We can observe that the detection
performance is highest for the LSTM-SS scheme, followed
by CNN and ANN. This is because LSTM exploits the
temporal dependency while CNN and ANN fail to do so. Fig.
10 (b) shows the bar graph comparison at SNR = -12dB. As
depicted, LSTM-SS outperforms the other schemes for all
values of N .

The plot of Pd versus SNR for N = 100 comparing the
detection performance of different sensing schemes across
different radio technologies is as shown in Fig. 11. To have
a fair comparison with the results of [36], the Pf close to
three decimal places was chosen from Table 5. The results
show that although the performance of the proposed LSTM-
SS scheme at high SNRs is almost the same, it significantly
outperforms the ANN-based sensing [36], improved energy
detection based sensing [56] and classical energy detection
at low SNRs.

Fig. 12 provides the comparison of receiver operating
characteristics for different spectrum sensing methods. The
figure is plotted for N=100 and SNR = -14 dB. The datasets
used are FM broadcasting and UHF television. To have a
fair comparison of the proposed LSTM based sensing with
other schemes like CNN [40], ANN [36] and CED, the data
was kept same for all sensing schemes, and the model was
designed and trained accordingly. Due to the single column
data structure, we adopted the 1D-CNN model while keeping
the CNN architecture similar as proposed in [40]. The model
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FIGURE 9: Effect of N on detection probability of LSTM-SS scheme
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FIGURE 10: Comparison of N for the detection probability of LSTM-SS, CNN and ANN sensing schemes

was built, trained and tested in Keras library. The first layer
was the convolutional layer with ReLu activation function.
It was followed by the pooling layer of order 2. The above
sequence was repeated as mentioned in the paper followed
by the fully connected layer. The dataset was prepared at
SNR = -14 dB. Once the model was trained, it was tested
on the test dataset. Similarly, for ANN-based sensing, we
constructed and utilized the model as mentioned in [36]. We
can infer from the plot that the proposed LSTM-SS scheme
outperforms other sensing schemes at a very low SNR of−14
dB. The improvement in the sensing performance is because
LSTM cells exploit the temporal dependencies present in the
signal, which the other models do not consider.

The fundamental reason that why the proposed LSTM-
SS scheme outperforms the other sensing schemes like ANN
and CNN is the architecture of LSTM. ANN has a simple
shallow neural network structure, while CNN has a deep
neural network structure. However, LSTM’s are designed in
a way such that the information persists due to the looping
structure or (chain-like structure when repeating elements are
unrolled), as opposed to ANN and CNN architectures where
the looping is absent. In addition, the information flow in
LSTM is regulated by the Gate structure (i.e., Update, Forget,
and Output gates) such that it performs well on the temporal
data. Since the spectrum data in our case are temporal, the
LSTM learned all the hidden features well from the data,
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FIGURE 11: Comparison of detection probability for the considered spectrum sensing schemes: proposed LSTM-SS, ANN-
based sensing [36], Improved Energy Detection (IED) [56], and Classical Energy Detection (CED) for N=100.
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FIGURE 12: Comparison of receiver operating characteristics for considered spectrum sensing methods

which inevitably ANN, and CNN failed to do so. Thus,
proposed LSTM-SS and PAS-SS schemes perform better
than ANN and CNN.

Fig. 13 shows the 3D visualization of the spectrum data
captured using the empirical setup-II. It can be noticed that
rows contain the time instants, columns indicate the fre-
quency bin while the numeric value at some time instant
and frequency bin consists of power level in dBm. Once the
data is acquired, it is labeled to the ground truth based on
the selection of the noise threshold. There are many methods
in the literature for selecting noise threshold like computing
the mean or choosing minimum/maximum value of noise
level and so on. However, these methods are inappropriate,
causing the erroneous labeling of data and thus the derived
inferences [57]. Therefore, we adopted the probability of
false alarm criterion method of noise threshold selection as
comprehensively described in [57].

Fig. 14 depicts the method for selecting the noise thresh-
old based on the probability of a false alarm criterion. We
plot empirical cumulative distribution function (CDF) of the
noise only samples collected after removing the antenna from
the spectrum analyzer. This ensures that we are receiving

noise only samples. To mimic the inconsistencies of the
real world, we allow the false alarm of 1% and project the
corresponding value on the x-axis. For our experiments, the
noise threshold obtained is -95 dBm. After finding the noise
threshold, the proposed model is trained for different values
of hyperparameters, as indicated in Table 2. Fig. 15 shows the
plot of train and test loss versus the number of epochs. We can
notice that the train loss and test loss vary closely with each
other and stabilize after certain epochs. This indicates that
the model 1 in PAS-SS scheme is neither overfit nor underfit.
Moreover, since the model 1 in the proposed scheme (in Fig.
5) is used for prediction, the loss function used is MSE.

Fig. 16 indicates the overall accuracy of the proposed
PAS-SS scheme. The experiments were performed for dif-
ferent values of lookback times. Moreover, the values of on
and off period duration will vary with the lookback time.
Different combinations of PU statistics were fed to the model
2 of the proposed scheme in Fig. 5.

The PU activity statistics are computed by the method de-
scribed in Section IV-B. Training the ANN with this features
primarily means that instead of only learning the predicted
output of LSTM (power in dBm), ANN also learns well from
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FIGURE 13: 3D visualisation of empirical data captured in
setup-II.
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FIGURE 14: Noise threshold setting in model 1 of the
proposed PAS-SS scheme based on Pfa criterion.

the past behavior of PU (i.e., on and off period duration, duty
cycle) thus, ANN has improved ability to classify the PU
well. We can notice that the overall accuracy was highest for
inputs with the predicted output of model 1 and DC. This is
because DC inherits the values of on and off period duration
as per (10). Notice that training the model 2 only with on
period duration also provided a reasonably good accuracy.
Moreover, it is interesting to note that when DC, along with
on and off period duration was given as an input to model 2, it
was reported to not perform well as compared to the previous
cases. This may be because ANN may get confused due to
feeding the on and off period duration along with DC. We can
notice another important observation that as we increase the
lookback time, the classification accuracy decreases. This is
due to the fact that data may not be much correlated after the
timestep of 10 seconds. In addition, we can also observe that
the overall classification accuracy remains constant when no
PU activity statistics are utilized. From the LSTM network
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FIGURE 15: Train and test loss versus number of epochs for
model 1 of PAS-SS scheme
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FIGURE 16: Effect of PU activity statistics on PU Classifi-
cation accuracy for different values of lookback time.

architecture’s view, it means that the learned weights and
biases are more accurate as compared to training without
the PU activity features. This indicates that the classification
accuracy increases when the PU activity statistics are utilized
for improving the sensing performance.

The proposed LSTM-SS scheme is also compared with
other machine learning algorithms like ANN, Random forest,
and Gaussian Naive Bayes in terms of training and execution
time. The ANN-based sensing scheme [36] was trained on 50
epochs. For the random forest classifier, the minimum num-
ber of samples required to split an internal node was two, and
the tree was split until either the leaves had one sample each
or all the samples in the leaves were pure. The Naive Bayes
classifier was trained with variance smoothing of 10−9. It can
be observed from Table 6 that the Naive Bayes algorithm
has the lowest training and execution time. Fig. 17 shows
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posed LSTM-SS scheme with other machine learning algo-
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the comparison of classification accuracies of the proposed
LSTM-SS scheme with other machine learning models. We
can notice that at lower SNR, the proposed LSTM-SS scheme
provides a significantly improved classification accuracy as
compared to different algorithms; however, at the expense
of longer training and execution times. We can notice that
execution time for the proposed LSTM-SS scheme is 0.788
ms and that for the proposed PAS-SS scheme is 0.802 ms.
Although the offline training time is high, it is required only
once. The delay is reasonably small such that it can be
operated in a real-time manner.

TABLE 6: Comparison of LSTM-SS with other algorithms.

Algorithm Training
time (s)

Execution
time (ms)

Proposed LSTM-SS scheme (15 epochs) 345.82 0.788
Proposed PAS-SS scheme 632.71 0.802

ANN based hybrid sensing (50 epochs) 101.48 0.624
Random Forest 93.44 0.7158

Gaussian Naive Bayes 25.89 0.0391

VII. CONCLUSION
In this work, a deep learning aided LSTM-SS scheme

was proposed that hat implicitly learns all the important
features in the time series spectrum data i.e., it exploits the
temporal dependency in the spectrum data. Furthermore, we
also compute the PU activity statistics like on and off period
duration, duty cycle, and propose a PAS-SS scheme to en-
hance the sensing performance. The proposed LSTM-SS and
PAS-SS schemes are evaluated and validated on empirical
data of different wireless technologies captured using two
test-bed setups. Results indicate that the proposed LSTM-
SS has an improved detection performance and classification
accuracy as compared to the ANN-based hybrid sensing

scheme, IED, and CED, even under the low SNR regime. In
addition, it is also observed from experimental results that
significant performance improvement is obtained when PU
activity statistics are used for sensing. However, the improved
performance is at the expense of longer training time and
a nominal increase in execution time. Notice that this work
considered only a single PU and a single SU. However, the
study of multiple PU and multiple SU, which is a generic
scenario is an interesting topic of further research.
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