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ABSTRACT Cognitive Radio (CR) systems exploit the accurate knowledge of primary traffic statistics to
improve CR performance and reduce harmful interference on primary network. It is essential for cooperative
CRs to operate in an efficient secured manner while estimating the primary statistics. In this context, a new
reporting mechanism for cooperative estimation of primary traffic is proposed to increase the spectrum and
energy efficiency. This is achieved by the reduction of the reporting channel overhead from cooperative
users to the fusion centre. Simulation results show that the proposed scheme reduces significantly the
signalling overhead, thus making the system more spectrum and energy efficient. Moreover, the openness
of cooperative CR makes it susceptible to data falsification attacks, also known as Byzantine attacks. This
attack poses a series of damages on the reliability of the estimation of primary traffic. In this work, we define
the types of malicious coordinated attacks on CRs and analyse the possibility of estimating the primary
traffic statistics under these attacks. Moreover, we provide a simple yet effective counter-measure based on
the proposed reporting for cooperative estimation. Simulation evaluation shows that the proposed algorithm
provides an excellent counter-measure for spectrum sensing data falsification attacks.

INDEX TERMS Byzantine attacks, cognitive radio, cooperative primary activity estimation, differential
reporting.

I. INTRODUCTION

COGNITIVE Radio (CR) is a promising solution for the
spectrum scarcity problem by having secondary users

(SUs) to access primary users (PU) channel (spectrum holes)
in an opportunistic and non-interfering manner [1]. Spectrum
sensing is a key enabling technique for CR operation, as
it allows SUs to detect the presence/absence of PU traffic,
which is essential to reduce the interference [2], [3]. An
essential requirement for SU is to work in a fast and accurate
manner while identifying empty slots in the primary channel.
One way of improving the performance of SUs is having
knowledge of previous spectrum occupancy pattern (e.g.,
distribution of idle/busy periods) which can be exploited to
improve the system performance [4]. Primary traffic statisti-
cal information is essential to access the spectrum in a fast

and efficient manner by the selection of the most appropriate
channel for transmission [5], enhancing the forecasting of
PU occupancy patterns to minimize the interference [6], [7],
adjust the energy detection threshold [8] or fight against
attacks [9].

The PU traffic activity is initially unknown to SUs and is
estimated using spectrum sensing decisions. SUs sense the
PU channel periodically and in every sensing event a binary
decision (idle/busy) is made based (in case of hard decisions)
on an appropriate spectrum sensing (signal detection) algo-
rithm [10]. While the main purpose of spectrum sensing is the
detection of transmission opportunities [11], the sequence of
spectrum sensing decisions can also be used to estimate the
durations of idle/busy periods and their statistics [12].

Nevertheless, primary traffic statistics estimation is hin-
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dered by several practical limitations that determine the accu-
racy to which such statistics can be known by the CR system
[13]. This includes the use of a finite sensing period, which
imposes a fundamental limit on the temporal resolution in
which the idle and busy periods can be measured [14].
Moreover, channel statistics need to be inferred based on a
limited number of channel observations (samples) [15] and
spectrum sensing is mainly impaired by sensing errors (i.e.,
false alarms and missed detections) [16]. Cooperative sensing
is proposed to improve the operation of spectrum sensing,
taking advantage of spatial diversity at every receiving SU.
By cooperation, SUs share their local decisions to make a
more accurate global decision of the primary channel state
[17], [18]. In this work, cooperative sensing is utilised to
provide an accurate estimation of the primary traffic (in
particular, the distribution of idle/busy periods) under im-
perfect spectrum sensing (ISS). Notice that the problem of
cooperative spectrum sensing, where the target is to improve
the overall detection of PU signals, has received an enormous
deal of attention in the literature. By contrast, the focus of this
work is on cooperative primary traffic estimation, where the
target is to accurately estimate the primary traffic statistics
(based on spectrum sensing) by means of cooperation among
several SUs, which has received significantly less attention.

The improvement in performance achieved by cooperation
is hindered by the increase of cooperation overhead. Several
studies aimed at improving energy efficiency in cooperative
spectrum sensing by the reduction of consumed power at
each step of the cooperative sensing operation [19]. For
instance, reducing the power consumed during the sensing
stage [20], [21], or at the reporting stage [22]–[24] by select-
ing the most useful SUs for local states reporting to the fusion
centre (FC). In this context, we propose a new reporting
mechanism with the aim of reducing the number of required
transmissions at each reporting stage (from SUs to FC). This
is accomplished through differential reporting where the SUs
only report when there is a change in the local channel state
observed by each SU (i.e., channel state goes from busy to
idle or vice-versa).

Another problem that has not attracted enough attention
is the estimation of primary traffic statistics under spec-
trum sensing data falsification (SSDF) attacks [25]. CR sys-
tems are more susceptible to SSDF attacks (also known as
Byzantine attacks) and to the presence of greedy users who
send false reports to gain more access to primary channels.
Multiple studies have considered the effect of attacks on
the sensing process [26]–[28] with methods to detect the
SSDF attacks [29]. While their main aim is the estimation
of the probability of primary signal detection, in our work
the main aim is to study the effect of these attacks on the
estimation of primary traffic statistics, which to the best of the
authors’ knowledge has not been investigated in the existing
literature even though the topic of CR has been around for
over a decade. Other differences can be identified among
the proposed work and others. For instance, the algorithm
in [26] requires soft decision reports, while ours is based on
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FIGURE 1: System model for cooperative primary traffic estimation with mali-
cious users.

hard decisions. The algorithms in [27], [28] require multi-
stage trust algorithm to identify trusted SUs. In this work,
we aim to answer the possibility of estimating PU traffic
statistics given this scenario. A simple yet effective algorithm
is proposed to eliminate such attacks. In this work, not only
we focus on the cooperative estimation of primary traffic
under ISS, but also extend the estimation under malicious
users (MUs) performing Byzantine attacks. Moreover, we
introduce a new algorithm to reduce the amount of overhead
in the reporting channel and thereby increase the power
efficiency.

The main contributions of this work can be summarised as
follows:

1) Study the cooperative estimation of PU traffic statistics
under both sensing errors and finite sensing period with
experimental validation.

2) Propose a new reporting mechanism (differential report-
ing) to reduce the overhead in the reporting channel and
increase the spectrum and energy efficiency.

3) Study the estimation of primary distribution under both
sensing errors and SSDF attacks and propose a new
algorithm to counter the effect of such attacks on the es-
timation of PU traffic statistics. While both aspects have
received some attention in the literature separately, they
have not been considered simultaneously along with
their combined effects on the cooperative estimation of
primary traffic statistics.

The remainder of this paper is organised as follows. First,
Section II describes the structure of the cooperative system
considered in this work along with the estimation of primary
signal durations and cooperative algorithms utilised. Differ-
ent estimation methods for the primary governing distribu-
tion are described in Section III. The problem of increasing
overhead along with an efficient reporting mechanism are
described in Section IV. Section V discusses the problem
of SSDF attacks and how to protect against them. The
simulation and experimental methodology employed in this
work are described in Section VI. The performance of the
proposed methods is analysed thoroughly in Section VII.
Finally, Section VIII concludes the paper.
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II. SYSTEM MODEL AND PROBLEM FORMULATION
In this work, a single PU channel is considered for the
sake of simplicity. The PU state holding times (T0 for idle
periods and T1 for busy periods) are random variables as-
sumed to be independent and exponentially distributed. The
exponential distribution is the most common model used
to describe the periods of the on/off states in the literature
[30]–[34] even though it has been proven not to be the most
accurate since other distributions provide better fit for real
scenarios such as the generalized Pareto, Gamma or even
more complicated distributions [35]. We use the exponential
distribution because it is a special case of the generalized
Pareto distribution with a simpler mathematical form. As for
cooperative network side, K SUs with a specialised FC are
considered along with MUs. The FC is in charge of making
the final decision of PU channel state through one of the
decision rules (only hard decision rules are considered, soft
decision is out of the scope for this work) and then exploit
the sequence of reported idle/busy channel states to estimate
the durations of the channel holding times T0/T1 and the
statistics (i.e., distribution). The considered system model is
shown in in Fig. 1.

The cooperative estimation can be sub-characterised into
four indispensable stages. Starting with the sensing stage,
every SU performs spectrum sensing on a regular basis to
estimate the primary channel availability. Second stage is
the local hard decision, every SU utilises a detection algo-
rithm to generate the binary channel state decisions (0 for
idle/absence of PU and 1 for busy/presence of PU). The
decisions of all SUs are assumed to be independent. The
third stage is the reporting phase, where the local decisions of
every SU are reported to the central FC through a dedicated
reporting channel for the final global decision, where the FC
(CR base station) is in charge of the final global decisions
while the SUs function as cooperative sensing nodes. At
every sensing event (performed with a sensing period of Ts
time units), the FC makes the global decisions regarding
the presence/busy (H1) or absence/idle (H0) of a PU. The
decision rules considered in this work are the most popular
ones (AND, OR, MAJORITY) [36].

1) AND-rule: The FC decides that a PU is present only if
all cooperative SUs report with PU present (i.e., all SUs
report with 1).

2) OR-rule: The FC decides that a PU is present when at
least one cooperative SU reports with PU present (i.e.,
at least one SU reports with 1).

3) MAJORITY-rule: The FC decides that a PU is present
when half or more of the cooperative SUs decide the
presence of a PU (i.e., K/2 or more SUs report with 1).

Based on one of these three hard decision rules the FC makes
a decision on the PU channel state and then exploits the
sequence of reported idle/busy channel states to estimate
the durations of the channel holding times T̃i (i = 0 for
idle periods, i = 1 for busy periods) of the original pri-
mary busy/idle periods Ti. Note that the estimated periods

are integer multiples of the employed sensing period (i.e.,
T̃i = mTs, m ∈ N+) and as a result the estimated periods
will differ from the true original periods, which can in general
be assumed to have a continuous domain (i.e., Ti ∈ R+).

In practice, SUs can work under both low and high SNR
conditions. Under low SNR, SUs suffer from sensing errors
(on local decisions, as every SU contributes in the final
decision). ISS occurs in two types of errors: false alarm
(H̃ = H1|H0) which is characterised by the probability of
false alarm (Pfa), where the PU signal is not present but
announced as present because of the high noise level present
at SU’s receiver, and missed detection (H̃ = H0|H1) which
is characterised by the probability of missed detection (Pmd),
where the PU signal is present but with power lower than the
receiver’s threshold because of fading and shadowing.

Sensing errors have a significant impact on the perfor-
mance of cognitive network systems (both PUs and SUs)
and on the estimation of PU traffic statistical information
as well. Inaccurate detection leads to inaccurate estimation
for PU traffic activity statistics as the estimated durations
can be longer or shorter than the original values. Another
source of error is MUs who report with fake channel states
to confuse the FC and lead it to announce wrong global
decisions, thus missing the opportunity of transmission and
leading to inaccurate PU traffic estimations.

The main objective of this research is to study the coopera-
tive estimation of the primary statistics (distribution of period
durations) under spectrum sensing errors and SSDF attacks,
and propose methods that can provide an accurate estimation
of the PU traffic statistics under such challenging conditions.

III. COOPERATIVE ESTIMATION OF THE DISTRIBUTION
OF PRIMARY CHANNEL HOLDING TIMES

Two methods are considered in this work for the estimation
of the distribution of primary idle/busy periods, the Direct
Estimation Method (DEM) and the Method of Moments
(MoM).

A. DIRECT ESTIMATION METHOD (DEM)

The direct estimation of the distribution is based on the em-
pirical cumulative distribution function (ecdf in MATLAB),
where the Kaplan-Meier estimation is obtained utilising the
ecdf function for the given samples. The main advantage
of this method is that it requires no prior knowledge about
the primary distribution. The main drawback of this method
is that the estimated distribution is a discrete version of
the original continuous distribution as the estimated periods
are discrete (integer) multiples of the sensing period Ts.
Moreover, this method can not achieve high accuracy for
all sensing periods, which can not be improved even by
increasing the number of SUs as it will be seen in the results
section. This motivates the consideration of the following
method.
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B. METHOD OF MOMENTS (MOM)

To overcome the limitations of the DEM, a solution based
on the MoM is considered. For the MoM, the distribution
of the primary periods has to be known or assumed to be
known. The distribution parameters are then estimated from
the sample moments. The probability density function (PDF)
and cumulative density function (CDF) for the exponential
distribution are given by [37]:

fTi
(t) =

{
0 t < µi

λie
−λi(t−µi) t ≥ µi

(1)

FTi(t) =

{
0 t < µi

1− e−λi(t−µi) t ≥ µi
(2)

where λi ≥ 0 is the scale parameter of the distribution and
µi > 0 is the location parameter (also the smallest value for
the PU activity period. i.e., Ti ≥ µi) .

The distribution parameters can be estimated following
three approaches:

1) Direct estimation of minimum

The minimum period µ̃demi can be estimated as:

µ̃demi = min
(
{T̃i}Nn=1

)
= Ts (3)

where {T̃i,n}Nn=1 is a set of N observed periods and its
minimum value under ISS is given by Ts as discussed in [16].
The value of λi can be inferred from:

Ṽ(Ti) =
1

λ2i

≈ 1

N − 1

N∑
n=1

[
T̃i,n − E(T̃i)

]2
(4)

where Ṽ(Ti) is the variance of the observed PU periods and
E(T̃i) is the mean which is given by (5).

2) Minimum based on MoM

In general, the higher the number of SUs for the cooperative
estimation of mean and variance, the higher the accuracy of
the estimation. This observation can be utilised to estimate µi
as follows:

E(T̃i) = µ̃i +
1

λi

≈ 1

N

N∑
n=1

T̃i,n (5)

µ̃i = E(T̃i)−
√
Ṽ(Ti) (6)

where E(T̃i) is the mean of the observed PU periods and
V(T̃i) is their variance.

3) Minimum based on modified MoM
A similar procedure as above is utilised, but with a correction
factor to reduce the effects of finite spectrum sensing period.
The estimation of Ṽ(Ti) is given by:

Ṽ(Ti) =
1

λ2i
− T 2

s

6

≈ 1

N − 1

N∑
n=1

[
T̃i,n − E(T̃i)

]2
− T 2

s

6
(7)

where T 2
s /6 is the correction factor introduced in [38] to

remove the effect of the finite sensing period Ts.
While the main difference among the methods described

above is the ability to remove the impact of using a finite
sensing period on the estimated distribution, another impor-
tant aspect of practical importance is how the presence of
sensing errors affects the accuracy of the estimated distri-
bution for each method. An adequate study of this aspect
from an analytical point of view would need to take into
account not only the probabilities of errors but also other
more complex aspects such as the (random) number of errors
and their (random) relative locations within each PU period,
since this determines how the original PU periods would be
split into shorter periods as explained in [16], and how the
errors are correlated. An adequate analytical treatment of
this specific problem requires a separate study that is out of
the scope of this work and is suggested as future work. The
impact of sensing errors will be illustrated in this work in
Section VII based on a simulation approach.

IV. LOCAL STATE REPORTING METHODS AND
OVERHEAD
Cooperation can improve the estimation of both the in-
stantaneous channel state and the primary traffic statistics,
however the cooperative process introduces signalling over-
head, which reduces the spectrum and energy efficiencies.
Reporting in every sensing event is in general necessary in
the case of cooperative spectrum sensing but is not essential
in the case of cooperative PU traffic estimation considered
in this work. A possible increase in spectrum and energy
efficiency can be achieved by reducing the amount of channel
reports required at each sensing stage. In this section, first
the original reporting mechanism is described followed by
the On/Off reporting method proposed in [39], then a new
method (differential reporting) is proposed.

A. PERIODIC REPORTING MECHANISM
In the default periodic reporting mechanism, every SU trans-
mits a report containing the local decision (at every sensing
event) during the reporting stage to the central FC. Each re-
port is sent through a dedicated report channel for every SU.
The periodic reporting is summarised in Algorithm 1. The
main drawback with periodic reporting is the high number
of reports as every SU sends reports to the FC with local
decisions via its own dedicated reporting channel in every
single sensing event.
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Algorithm 1: Periodic reporting
Input : λ ∈ R+ . Energy decision threshold

Ns ∈ N+ . Number of signal samples
Output: Rch,i ∈ {0, 1} . Channel state report

1 for each sensing event i do
2 Yi ← Energy of Ns samples . Energy detection
3 if Yi ≥ λ then
4 Rch,i ← 1 . Flag channel as busy
5 else
6 Rch,i ← 0 . Flag channel as idle
7 end
8 SU sends Rch,i to FC
9 end

Algorithm 2: On/Off reporting
Input : λ ∈ R+ . Energy decision threshold

Ns ∈ N+ . Number of signal samples
Output: Rch,i ∈ {0, 1} . Channel state report

1 for each sensing event i do
2 Yi ← Energy of Ns samples . Energy detection
3 if Yi ≥ λ then
4 Rch,i ← 1 . Flag channel as busy
5 SU sends Rch,i to FC
6 else
7 Rch,i ← 0 . Flag channel as idle
8 SU remains silent
9 end

10 end

B. ON/OFF REPORTING MECHANISM

In this method, which is proposed in [39], all SUs report
the local states back to the FC only during busy periods
and remain silent during idle periods. This way the reporting
overhead would be reduced from the periodic reporting,
especially at low channel usage (i.e., low duty cycle). An
alternative approach is to report the local states back to the
FC only during idle periods and remain silent otherwise.
This way the reporting overhead would be reduced from
the periodic reporting under high channel usage (i.e., high
duty cycle). The reporting option that provides the lowest
number of reports depends on whether the duty cycle is lower
than 0.5 (reporting during busy periods) or greater (reporting
during idle periods). If the primary channel duty cycle is
around 0.5, then both options are equivalent. In practice, SUs
target primary channels with limited primary usage. As a
result, only the first case for the On/Off reporting mechanism
(i.e., reporting during busy periods) will be considered for
comparison purposes in this work. The considered On/Off
reporting is summarised in Algorithm 2.

Algorithm 3: Differential reporting
Input : λ ∈ R+ . Energy decision threshold

Ns ∈ N+ . Number of signal samples
Output: Rch,i ∈ {0, 1} . Channel state report

1 for each sensing event i do
2 Yi ← Energy of Ns samples . Energy detection
3 if Yi ≥ λ then
4 Rch,i ← 1 . Flag channel as busy
5 else
6 Rch,i ← 0 . Flag channel as idle
7 end
8 if Rch,i = Rch,i−1 (i.e., same as previous state) then
9 SU remains silent

10 else
11 SU sends Rch,i to FC
12 end
13 end

C. PROPOSED DIFFERENTIAL REPORTING
MECHANISM
A differential reporting method is proposed where, in con-
trast to periodic reporting, SUs report their local decisions
only when there is a change in the locally detected PU state
(i.e., bit 1 is sent when the local decision goes from idle to
busy and bit 0 is sent when the local decision goes from busy
to idle). When SUs remain silent, the FC assumes that the
new detected state is the same as the last reported state. The
differential reporting mechanism is summarised in Algorithm
3. For differential reporting, the FC needs to keep a copy of
every SU last state (for comparison with new sensed states)
to estimate the PU period durations.

The differential reporting mechanism is expected to have a
significant impact on the reporting overhead by reducing the
amount of required reports and therefore increase the total
system efficiency. This will be discussed in detail in Section
VII.

D. ANALYSIS OF THE REQUIRED NUMBER OF
REPORTS
Closed form expressions for the expected number of reports
for the periodic, On/Off and differential reporting mech-
anisms are derived for two scenarios: first under perfect
spectrum sensing (Pfa = Pmd = 0), then under imperfect
spectrum sensing (Pfa, Pmd > 0).

First, the expected number of reports np for the periodic
reporting mechanism, at both high SNRs (Perfect Spectrum
Sensing, PSS) and low SNRs (Imperfect Spectrum Sensing,
ISS) scenarios, is given by:

E{np} =
E{T1}
Ts

N

2
+
E{T0}
Ts

N

2
(8)

where N ∈ N+ is the total number of idle and busy periods
in the observed set {T̃i,n}Nn=1, E{T0} and E{T1} are the
expected durations of idle and busy periods, respectively,
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and Ts is the sensing period. Notice that Pfa and Pmd do
not affect the total amount of reports since in the periodic
reporting case a report is always sent in every sensing event.

Second, for the On/Off reporting mechanism (which only
reports during busy periods), the expected number of reports
nof under PSS is given by:

E{nof} =
E{T1}
Ts

N

2
(9)

while it can be easily seen that for ISS the expected number
of reports is given by:

E{nof} =
E{T1}
Ts

N

2
(1− Pmd) +

E{T0}
Ts

N

2
Pfa (10)

Lastly, for the differential reporting mechanism, the ex-
pected number of reports nd under PSS is given by:

E{nd} = N (11)

since under high SNR, the total number of reports sent to
the FC is the same as the total number of periods, as one
report is sent for every new observed period. On the other
hand, an upper bound for the expected number of reports for
differential reporting under ISS is found as follows:

E{nd} = N +N

[
E{T1}
Ts

Pmd +
E{T0}
Ts

Pfa

]
(12)

notice that one error (either false alarm or missed detection)
will result in two reports. The upper bound in (12) is loose
and can be approximated by taking into consideration the
effect of the sensing error position within the period. For
instance, consecutive sensing errors within the same period
or sensing errors occurring at beginning or ending of the
period result in a single report, then the following expression
is obtained:

E{nd} =N +N

[
E{T1}
Ts

Pmd +
E{T0}
Ts

Pfa

]
− (13)

−NPmd −
bE{T1}/Tsc∑

k=2

N

2

E{T1}
Ts

P kmd−

−NPfa −
bE{T0}/Tsc∑

k=2

N

2

E{T0}
Ts

P kfa

The previous analytical results are for a single CR and
can be easily scaled up by multiplying by the number of
cooperative SUs K.

V. SPECTRUM SENSING DATA FALSIFICATION
In previous sections, all cooperative users are assumed to be
honest. Unfortunately, given the openness nature of wireless
communications, cognitive networks and advances in soft-
ware defined radios have made the system vulnerable to data
falsification attacks carried out by malicious or greedy nodes
disguised [40]. MUs will send falsified reports. This type of
attack is known as SSDF [25]. MUs have two main objectives
for attacks [41]: first is to interfere with the primary system

by having MUs report with idle states at busy primary chan-
nels, second is to report with busy states when local sensing
decisions provide an idle state and, as a result, the FC falsely
declares the primary channel as busy so that legitimate SUs
have to wait for another sensing event. Meanwhile, MUs can
access the idle channel exclusively. This attack strategy is
typically utilised by greedy MUs to maximise their data rate.
In this work, the main focus is on the later scenario.

A. SPECTRUM SENSING DATA FALSIFICATION
ATTACKS
In this work, the considered SSDF attacks are similar to the
ones described in [29], [42], [43]. Intelligent attacks such as
those in [44] are out of scope of this work. The considered
SSDF attacks are:

1) Blind attack: The attackers report with busy state in
every sensing event [25].

2) Random attack: The MUs attack (i.e., report an idle
channel as busy) with a given probability of attack
Pa < 1 [45].

The blind attack would have a devastating effect on the
resulting global detection if it succeeds, however its detection
is straightforward. Notice that under periodic and On/Off
reporting, the MU would report a busy PU channel in 100%
of the submitted reports, while under differential reporting
the MU would indicate the channel as busy in the initial
report and then would not report anymore, implying that the
channel still remains busy. These extreme cases would be
very easy to detect by the FC by simply counting the number
of reports and states sent by each user and comparing with
the rest of users (taking into account the employed reporting
mechanism). As a result, a modified version of the pure blind
attack is here considered (see Algorithm 4), which is more
sophisticated and therefore increases the chances of this type
of attack to succeed. Notice that this modified blind attack
requires MUs to sense the PU channel before sending a report
to the FC, while the pure blind attack would not require
any sensing at all. The random attack (Algorithm 5) also
requires MUs to sense the PU channel before sending a report
(regardless of the reporting mechanism employed) since the
actual states of the PU channel need to be known in order
to meet the desired probability of attack (Pa). Therefore, in
both types of attack (blind and random) MUs need to sense
the channel before sending the report to the FC.

For the case of differential reporting, in order to be able
to apply SSDF attacks successfully, MUs need to follow the
reporting rules imposed by the FC. Not following the report-
ing rules would lead to anomalous sequences of reports, with
much higher/lower number of reports than the average, which
would make the attack process susceptible of being detected
by the FC. Thus, it is essential for MUs to follow the same
reporting procedure imposed by the FC.

Finally, it is also worth mentioning that MUs may attack
not only during the idle periods of the PU channel (by
sending a busy report), but also during the busy periods of the
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Algorithm 4: Modified blind attack (with differential
reporting)

Input : λ ∈ R+ . Energy decision threshold
Ns ∈ N+ . Number of signal samples

Output: Rch,i ∈ {0, 1} . Channel state report
1 for each sensing event i do
2 Yi ← Energy of Ns samples . Energy detection
3 if Yi ≥ λ then
4 Rch,i ← 1 . Flag channel as busy
5 else
6 Rch,i ← 0 . Flag channel as idle
7 end
8 if Rch,i = Rch,i−1 (i.e., same as previous state) then
9 MU remains silent

10 else
11 MU sends Rch,i = 1 to FC
12 end
13 end

PU channel (by sending an idle report), or a combination of
both. While attacks during PU busy periods may be possible,
in this case the MU does not obtain an individual benefit from
leading the FC to believe that the channel is idle when it is
actually busy and therefore the MU does not have a strong
incentive to carry out such attack. On the other hand, leading
the FC to believe that the channel is busy when it is actually
free allows the MU to prevent other SUs from transmitting
and hence use the PU channel idle times for its own trans-
missions. Therefore the MU does have a strong incentive to
attack during idle periods (by sending a busy report), which
is not the case during busy periods. Notice that the algorithms
and analyses presented in this work can be readily adapted to
the either type of attack by simply reverting idle/busy periods
(both in the algorithms and analysis of results). However,
in order to simplify the subsequent analysis and discussion,
we restrict ourselves, without loss of generality, to the case
where MUs attack during idle periods only.

B. PROPOSED ALGORITHM
To eliminate the effects of SSDF attacks, a secure and
efficient data fusion is essential, which in turn requires a
reliable defence reference to identify MUs [42]. However
in practical scenarios, a reliable reference is not always
available. Eventually honest reports are mixed with malicious
ones. In this context, we propose a novel algorithm to identify
contrived MUs reports without the requirement of a previous
reference. The key idea, which is shown in Algorithm 6, is
based on the differential reporting mechanism. Whenever a
report is available at the FC from a specific SU, a comparison
is made with the previous report from the same SU. If the
report contains information of same state as the previous
report, then the report is discarded and the decision rule is
applied based on the reports from the other K − 1 SUs.
Furthermore, the proposed algorithm can almost function in

Algorithm 5: Random attack (with differential reporting)
Input : λ ∈ R+ . Energy decision threshold

Ns ∈ N+ . Number of signal samples
Output: Rch,i ∈ {0, 1} . Channel state report

1 for each sensing event i do
2 Yi ← Energy of Ns samples . Energy detection
3 if Yi ≥ λ then
4 Rch,i ← 1 . Flag channel as busy
5 else
6 Rch,i ← 0 . Flag channel as idle
7 end
8 if Rch,i = Rch,i−1 (i.e., same as previous state) then
9 MU remains silent

10 else
11 MU generates a radom number Z ∼ U (0,1)
12 if Z < Pa then
13 MU sends Rch,i = 1 to FC
14 else
15 MU sends Rch,i to FC
16 end
17 end
18 end

Algorithm 6: Defence against attackers (with differential
reporting)

Input : Reports from sensing nodes
Output: Decision

1 for each report Rk,i from SUk in sensing event i do
2 if Rk,i = Rk,i−1 then
3 Rk,i is discarded
4 Apply MAJORITY rule to K − 1 SUs
5 else
6 Apply MAJORITY rule to K SUs
7 end
8 end

real-time without the need for a comparison with statistical
characteristics for sensors as the operation of obtaining accu-
rate statistical information requires a significant sample size
[15]. The proposed algorithm differs from the literature in
that it is much simpler and does not require any pre-defined
trusted nodes nor sophisticated rules at the FC.

VI. SIMULATION AND EXPERIMENTAL METHODOLOGY
The performance of the considered methods was evaluated
both with simulations and hardware experiments. Simula-
tions were performed in MATLAB by generating several
sequences with a sufficiently large number of interleaved
on/busy and off/idle periods from an exponential distribution.
The simulation procedure can be summarised as follows:

1) Generate idle/busy periods’ lengths Ti following an
exponential distribution with predefined location (µi)
and scale (λi) parameters.
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FIGURE 2: Block diagram of the PECAS prototype employed for hardware experiments [46].

2) Perform idle/busy sensing decisionsH0/H1 on the gen-
erated sequence in step 1 every Ts time units (t.u.).

3) Calculate the idle/busy lengths estimated under PSS.
4) Add random errors (with Pfa > 0 and Pmd > 0) in the

sequence resulting from step 2.
5) Using the new H0/H1 sequence from step 4, calculate

the period lengths T̃i that would be estimated under ISS.
6) MUs will fake H0 to H1 with a given attack probability

of Pa > 0.
7) FC computes the CDF of the idle/busy lengths obtained

in steps 5 & 6 by applying a hard decision rule and
compares with the CDF of the original periods.

The hardware experiments were conducted with a Pro-
totype for the Estimation of Channel Activity Statistics
(PECAS) [46]. This prototype is implemented with common
low-cost components with the aim to reproduce a realistic
scenario with inexpensive CR devices and introduce typical
hardware sources of error and inaccuracies. This prototype is
based on free open source code1.

The hardware experiments are based on the same prin-
ciple as the simulations but using a real transmitter and a
real receiver. The block diagram is shown in Fig. 2. The
transmitter (primary user) sends a sequence of exponentially-
distributed idle/busy periods utilising a 433 MHz ON-OFF
Keying (OOK) modulator with an output power of 2 dBm
(controlled from a C program based on the wiringPi library).
The receiver (secondary DSA/CR user), placed 1 metre apart,
uses an RTL-SDR Software-Defined Radio (SDR) with a
gain of 20 dB to monitor the transmitter activity (idle/busy)
at 433 MHz every Ts seconds. At every sensing event, signal
samples are captured at a sample rate of 106 samples per sec-
ond, which are processed to decide the instantaneous channel
state (idle/busy) using energy detection. The outcomes of the
energy detection decisions are used to estimate the durations
of the observed idle/busy periods and compute the primary
activity statistics. While transmitter and receiver are con-
trolled by C programs running on the same Raspberry Pi mi-
crocomputer, both programs run independently without syn-
chronisation (as it would be the case of primary/secondary
users in a real scenario). Real-time operation is achieved by a
patched version of the Linux kernel and running the programs
as processes with real-time priority.

1Available at: www.lopezbenitez.es/misc/PECAS.zip

The energy detection threshold can be selected through
one of the following criteria:
• To meet a specific probability of false alarm (Pfa). This

method requires knowledge of the SU noise power. In
practice, this can be achieved by keeping the receiver
function on an empty frequency channel for a sufficient
time (several minutes in PECAS [46]) then setting the
threshold to maintain the desired Pfa [47].

• To meet a specific probability of missed detection. This
method requires knowledge of the received primary
SNR in addition to the device noise power [48].

• To minimise the combined error from Pfa and Pmd.
This method also requires the knowledge of both the
device noise power and primary signal SNR [49].

A more detailed description of these methods can be found
in [50]. Since it is difficult to set accurately the energy detec-
tion threshold to result in a specific Pfa and Pmd with the
RTL-SDR [46], the errors are introduced through emulations
to the on/off periods received by the RTL-SDR.

Even though the original PECAS is designed for a single
CR scenario, the experiments are repeated for the required
number of SUs to produce different streams for every SU and
emulate a cooperative estimation scenario.

VII. SIMULATION AND EXPERIMENTAL RESULTS
In this section, the analysis and validation of the proposed
methods are provided. The value considered for each param-
eter is shown in the title of each figure in terms of generic
time units (t.u.). In the case of experimental results, where
a particular time unit needs to be selected according to the
real-time capabilities of the employed hardware platform,
the reference unit is the second (i.e., 1 t.u. = 1 second).
First, different decision rules will be assessed, followed by
different methods to assess the estimated primary distribution
accuracy. The comparison between the estimated and original
distributions is performed using the classic Kolmogorov-
Smirnov (KS) distance [51], defined as:

DKS = sup
Ti

∣∣∣FTi
(Ti)− FT̃i

(Ti)
∣∣∣ (14)

where FTi(Ti) and FT̃i
(Ti) represent the CDFs of the origi-

nal and estimated periods, respectively.
Fig. 3 compares the estimation accuracy of the considered

hard decision rules (AND, OR, MAJORITY) when the co-
operative SUs use periodic reporting and the FC uses the
DEM to estimate the CDF of busy periods. For comparison
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FIGURE 3: Accuracy of the estimated distribution for different fusion rules and
periodic reporting under sensing errors.

purposes, the case of single SU is also included in Fig. 3.
The duty cycle is set to 0.5 (Ψ = 0.5), where both busy and
idle periods will have similar parameters. The MAJORITY
rule outperforms the other rules in the estimation of the
primary statistics (4 cooperative SUs can estimate accurately
the primary statistics under Pfa = Pmd = 0.01, while
12 SUs are required to estimate the primary statistics under
Pfa = Pmd = 0.1). As for the AND and the OR rules, both
of them fail to provide an accurate estimation of the primary
distribution (low KS distance value) for both scenarios of
high and low sensing error probabilities. For the OR rule,
the obtained results can be explained as any CR reports with
a busy period will result in the FC announcing the channel
as busy and as the number of cooperative SUs increases the
probability of having false alarms increases as well. It is
interesting to notice that the direct estimation of the CDF
(i.e., DEM, which is considered in all cases in Fig. 3) never
reaches a perfect accuracy (DKS = 0) regardless of the
number of SUs and the fusion rule. This is a result of the
finite sensing period Ts [38]. Based on these results, further
numerical results will only consider the MAJORITY fusion
rule.

Fig. 4 shows the accuracy of the considered methods to
estimate the distribution of the primary traffic for different
sensing periods. Experimental results are considered only
here due to the significant amount of time required to run
experiments for cooperative SU scenarios using a single SU
hardware platform. As it can be observed, the experimental
results (with PECAS) provide a perfect fit with simulations.
For small sensing periods (Fig. 4(a)), the DEM performs
better than the MoM and its modified version in Section
III-B3 (MMoM), but for high number of SUs, MoM and
MMoM can provide a more accurate estimation. For higher
sensing durations (Fig. 4(b) and Fig. 4(c)) MoM and MMoM
provide better accuracy in the estimation of the primary traf-
fic over the whole range of the number of cooperative SUs.
The minimum period obtained from MMoM gives better

estimation than the minimum obtained through the original
MoM, except for the case where Ts has a small duration (i.e.,
multiple sensing events occur in a single period) where both
minimums provide a similar KS distance. The direct esti-
mated minimum with MoM provides results with significant
inaccuracy regardless of the sensing period or the number of
cooperative SUs. Since the MMoM performs better than the
rest of methods, it will be the only method considered in the
remainder of this section.

The performance of the periodic reporting, On/Off report-
ing and the proposed differential reporting mechanisms for
cooperative estimation will be discussed based on the MA-
JORITY fusion rule with MMoM distribution estimation. As
it can be appreciated in Fig. 5, the three considered methods
have a similar performance under sensing errors, however the
differential reporting mechanism provides higher efficiency
and security advantages in comparison with the other meth-
ods as discussed below.

Fig. 6 shows the required number of channel reports for
20,000 periods for the three considered reporting mech-
anisms (periodic, On/Off and differential) under different
primary loads (high Ψ = 0.75, moderate Ψ = 0.5 and low
Ψ = 0.25). As it can be appreciated, the derived analytical
expressions provide a perfect match for the periodic and
On/Off reporting methods, while the result of (13) provides
a tight upper bound for the required number of reports in the
case of the differential reporting mechanism. The reduction
in the amount of reports transmitted using the On/Off and
differential reporting mechanisms with respect to the periodic
reporting mechanism can be quantified, respectively, as:

Bof =
E{nof}
E{np}

(15)

Bd =
E{nd}
E{np}

(16)

where Bof and Bd are the reduction in the amount of
reports for On/Off and differential reporting mechanisms
respectively. The smaller the value of Bof/Bd , the lower
the amount of reporting overhead required for feedback and
therefore the higher the efficiency. Figs. 7 and 8 show the
reduction in the amount of reports for On/Off and differential
reporting mechanisms with respect to the periodic reporting
mechanism under perfect and imperfect spectrum sensing
scenarios, respectively. The scenario of perfect spectrum
sensing is considered to give an idea on the reduction in
the case of high primary signal power present at the SU.
As it can be concluded from both figures, the differential
reporting mechanism outperforms the On/Off in nearly every
channel load, except for small duty cycles (Ψ = 0.25) and
large sensing periods (Ts > µi

2 ) as at low duty cycles the SUs
will remain idle for most of the time due to the absence of PU
traffic. As it can be observed, the best estimation accuracy
obtained for smaller sensing periods. In practice, the duty
cycle of PU is unknown and the differential reporting mech-
anism provides higher efficiency. As it can be appreciated,
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FIGURE 4: Different methods to estimate the distribution under periodic reporting: (a) Ts = 0.01 t.u., (b) Ts = 0.05 t.u., (c) Ts = 0.09 t.u.
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FIGURE 5: Accuracy of the estimated distribution for different reporting mech-
anisms.

the proposed mechanism reduces significantly the amount of
required reports for all scenarios.

The accuracy of the estimation of primary traffic statistics
under random attacks with different fusion rules is shown
in Fig. 9. As it can be appreciated, the MAJORITY rule
outperforms the AND/OR rules in the presence of attacks.
The OR rule is ineffective against attacks because only
one busy report is required to declare the channel as busy,
therefore a single MU would be able to prevent the whole
SU network from transmitting. The AND rule would be
effective in an ideal case of perfect spectrum sensing, since
a single honest SU who reports an idle channel as idle
would be enough to make any attack fail, regardless of the
number of MUs; however, in a realistic ISS scenario, the
presence of sensing errors means that an idle channel may
be reported as busy (false alarm) and vice versa (missed
detection) even by honest SUs. Overall, the MAJORITY rule
provides the best balance between malicious and erroneous
reports, and therefore leads to the best estimation accuracy
as observed in Fig. 9. By increasing the number of SUs, the
MAJORITY rule enables an accurate estimation even under
SSDF attacks. Comparing Figs. 3 and 9, it can be observed

that the presence of MUs (Fig. 9) increases the total number
of required SUs in order to achieve an accurate estimation of
the distribution with the MAJORITY rule with respect to the
case of no MUs (Fig. 3), however the MAJORITY rule still
provides the best estimation accuracy. Similar conclusions
are obtained in the case of blind attacks (not shown here for
brevity). Therefore, the MAJORITY rule provides the best
estimation accuracy, even in the presence of SSDF attacks.
The subsequent performance analysis under SSDF attacks
will consider the MAJORITY fusion rule only.

The accuracy of the estimation of primary traffic statistics
under blind and random attacks is shown in Figs. 10 and
11 respectively. As it can be appreciated, the blind attack
has the same level of degradation on the estimation of the
PU distribution for the three reporting mechanisms (periodic,
On/Off and differential). Moreover, when the population of
attackers becomes half of the SUs (Fig. 10(a)), the FC will
be overwhelmed with wrong reports and produce false global
decisions regardless of the probability of missed detection
and false alarm. For smaller MUs population (Fig. 10(c)),
a large number of SUs is required to produce an accurate
estimation of the primary statistics. The random attack has
less severe effects on the estimation of the statistics in
comparison with the blind attack. In fact, the blind attack is
a special case of the random attack with attack probability
Pa = 1. In general, the differential reporting mechanism
performs better than the periodic and On/Off counterparts
regardless of the Pa value. Nevertheless, all methods fail to
provide an accurate estimation of the PU statistics except
for small Pa (Fig. 11(a)), where a high number of SUs are
essential to have a relatively acceptable estimation (SUs >
20). As it can be appreciated from Fig. 12, the proposed
defense algorithm can significantly improve the estimation
of primary statistics while mitigating the effects of MUs
by discarding the contrived reports and keeping the correct
ones for the cooperative estimation. Moreover, the proposed
method provides accurate results regardless of the attack type
or the population of MUs.
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FIGURE 6: Required number of reports under sensing errors (Pfa = Pmd = 0.1) for: (a) Periodic reporting, (b) On/Off reporting, (c) Differential reporting.
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FIGURE 7: Reduction in the number of reports under PSS (Pfa = Pmd = 0).
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FIGURE 8: Reduction in the number of reports under ISS (Pfa = Pmd = 0.1).

VIII. CONCLUSIONS
CR systems can benefit from the knowledge of PU activity
statistics, which can be exploited to prevent interference
and access the spectrum more efficiently. This information
can be obtained individually by each CR user based on its
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FIGURE 9: Accuracy of the estimated distribution for different fusion rules under
both ISS (Pfa = Pmd = 0.01) and random attacks (MUs =K/4, Pa = 0.75).

local spectrum sensing observations, however a cooperative
estimation approach can provide significant benefits both in
terms of accuracy (overcoming the degrading effects of sens-
ing errors) and reliability (overcoming the degrading effects
of malicious users). In this context, this work has provided
a detailed study on the cooperative estimation of the PU
activity statistics (in particular, the distribution of the channel
holding times) under both spectrum sensing errors and SSDF
attacks. This study has evaluated the impact on the accuracy
of the estimated statistics that several aspects may have, such
as the hard decision rule used for cooperative sensing-based
estimation (the MAJORITY rule was observed to provide the
best performance) and the method employed to estimate the
distribution (the MMoM approach proposed in this work has
been proven to provide the most accurate estimation). While
cooperative estimation can improve the estimation accuracy,
it also increases the amount of signalling in the system (as-
sociated with the reporting overhead) and introduces security
threads (from MUs deliberately sending incorrect reports).
Both issues have been successfully addressed in this work
by proposing a differential reporting mechanism that can
decrease significantly the signalling overhead as well as a de-
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FIGURE 10: Accuracy of the estimated distribution under blind attacks: (a) MUs = K/2, (b) MUs = K/3, (c) MUs = K/4.

2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

(a)

2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

(b)

2 4 6 8 10 12 14 16 18 20
0

0.2

0.4

0.6

0.8

1

(c)

FIGURE 11: Accuracy of the estimated distribution under random attacks: (a) MUs = K/2 and Pa = 0.25, (b) MUs = K/2 and Pa = 0.5, (c) MUs = K/2 and
Pa = 0.75.
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FIGURE 12: Accuracy of the estimated distribution under SSDF attacks with the proposed defence method: (a) MUs = K/2 and Pa = 1 (blind attack), (b) MUs =
K/3 and Pa = 1 (blind attack), (c) MUs = K/2 and Pa = 0.5 (random attack).

fence mechanism that can effectively remove both blind and
random SSDF attacks. The obtained simulation and experi-
mental results demonstrate that the methods proposed in this
work enable a more accurate estimation of the PU activity
statistics with a reduced level of signalling overhead and a
high level of security against SSDF attacks. Future extension
to the presented work is to pair the differential reporting
mechanism with other defence algorithms to tackle more
sophisticated and intelligent attacks performed by MUs.
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