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Abstract

The concept of Signal Area (SA), defined as the rectangular time-frequency region in a spectrogram where a signal is detected,
plays an important role in spectrum usage measurements. The need for Signal Area Estimation (SAE) is justified by its role in the
process of allocating white space spectrum to secondary users in dynamic spectrum access systems as well as in other interesting
applications such as compliance verification and enforcement of spectrum regulations, signal interception and network planning and
optimization. Existing SAE methods are far from perfect and therefore new solutions capable to provide more accurate estimations
are thus required. In this study, a novel approach based on image processing techniques is explored. Concretely, the feasibility
of using Morphological Operations (MOs) is explored to examine its usefulness in the context of SAE. By means of extensive
simulations, the performance of different MOs (erosion, dilation, opening and closing) in the context of SAE is investigated under
various configurations, including different shapes and sizes of the Structuring Element (SE), when used both as standalone SAE
methods and in combination with other SAE methods from the literature. Based on the obtained results, an MO-based SAE method
is formulated based on the optimum MO and SE configuration for each specific SNR regime, which can improve substantially the
performance of other proposed SAE methods when used as a pre- or post-processing technique. Concretely, the accuracy improve-
ment in terms of F1 score is up to 40% in the low SNR regime while achieving a perfect accuracy of 100% in the high SNR regime.
This is achieved without having a noticeable impact on the associated computational cost (and even reducing it by up to 15% at high
SNR). The performance improvement is thus particularly significant in the low SNR regime, where most methods’ performances
are limited, and as a result the proposed SAE approach can extend the operational SNR range of existing SAE methods.

Keywords: Enabling technologies, signal area estimation, spectrum aware systems, image processing, morphological operations,
contour-tracing

1. Introduction

The historic success of wireless communication systems and
their various technologies [1] has been manifested in the large
number of users and services that are currently deployed and
are expected to grow in the near and far future. However, while
wireless communication networks, operators and services have
been growing steadily, the amount of available spectrum – the
main resource of wireless communication systems – has grown
at much slower pace and, in many cases, has remained con-
stant. While higher frequency bands have been made available
for new systems [2, 3], these are usually characterized by more
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challenging propagation conditions and more complex and ex-
pensive equipment. This has increased tremendously the pres-
sure placed on the available spectral resources, in particular
those in the lower region of the spectrum up to a few giga-
hertz, where the most favourable radio propagation conditions
can usually be found. In order to fully exploit the available
spectrum, several ideas and principles for Dynamic Spectrum
Access (DSA) [4, 5, 6, 7] have been proposed.

When deploying DSA in real environments, the availability
of smart techniques for an accurate, cost-effective, and low-
latency assignment of the existing spectrum to users is crucial
[8, 9]. Moreover, the presence of multiple radio technologies
sharing the same spectrum has led to the development of Spec-
trum Usage Detection (SUD) methods to help identify the level
of usage of the spectrum as well as their users (technologies,
networks and services). One of the key techniques required
to materialize SUD is the Signal Area Estimation (SAE). The
idea of Signal Area (SA) [10] has been proposed in the area of
spectrum usage measurements [11] and is defined as the rectan-
gular time-frequency region in a spectrogram where a signal is
detected. The SA is treated as a set of one or more rectangular-
shaped clusters of tiles that are occupied by a transmitted signal.
SAE methods, through different algorithms and techniques, de-
termine the subsets of elements in the time-frequency domain
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in which a signal exists (i.e., the SA), where each of those ele-
ments represents a time-slot and frequency-bin. SAE has high
efficiency, low cost of implementation and represents an im-
portant source of useful information for DSA [8]. Based on
spectrum measurements, SAE techniques can be used to gen-
erate statistical information that can then be used to identify
transmitters and their transmissions based on SUD [12] and in
other spectrum-related applications such as compliance verifi-
cation of the requirements for spectrum usage and enforcement
of spectrum regulations (e.g., verifying that spectrum resources,
an asset of societal value, are lawfully used as required by spec-
trum regulators), or signal interception and other signals intelli-
gence related operations (e.g., to determine if unauthorised ra-
dio transmissions are present in a particular frequency band) as
well as network planning and optimisation (e.g., to design net-
work protocols and algorithms such that they efficiently match
spectrum usage patterns) [13].

Various authors have identified different techniques and al-
gorithms for implementing SAE. The most commonly explored
and proposed techniques include energy detection utilizing fast
Fourier transforms (ED-FFT) [14], Contour-Tracing (CT-SA)
methods [15], and the Simple Signal Area (SSA) strategy de-
veloped in [10, 12, 8]. In this context, this research explores a
different strategy where Morphological Operations (MOs) [16]
from the field of Image Processing are utilized to improve the
detection accuracy of the estimated SA. The use of MOs in
SAE is motivated by the fact that the problem of estimating a
SA in a time-frequency matrix of observed power samples (ob-
tained from spectrum measurements) is similar to the problem
of recognition of patterns in an image (in this case, rectangu-
larly shaped areas). Image processing techniques can be uti-
lized to identify shapes after separating them from their back-
ground. This principle can be applied in SAE by taking the
entire time-frequency matrix of power samples and converting
it into a binary matrix of idle/busy states (by comparing each
power sample to a properly set decision threshold). The bi-
nary matrix of zero/one elements (where each element repre-
sents the detected idle/busy state of that element) can be seen
as an image where each element of the time-frequency matrix
is considered as a black/white pixel. The problem of SAE is
then made equivalent to the problem of identifying rectangular
shapes in noisy binary images. This viewpoint opens an en-
tirely new line of research where the utility of many powerful
tools available in the field of Image Processing for SAE can be
explored. Image Processing is a very mature field of knowl-
edge where a diverse range of sophisticated and advanced tools
have been developed to detect a broad range of shapes and pat-
terns in images typically obtained in many application scenarios
[17, 18, 19, 20, 21, 22, 23, 24, 25, 26]. Many existing tech-
niques, despite generally having been proposed and developed
in different application scenarios, have the potential to effec-
tively contribute to the problem of SAE considered in this work.
Such tools are therefore potentially appropriate for the problem
of SAE that is studied in this work and their applicability in this
context is the focus of the research presented in this paper. In
particular, the interest of this research is in investigating the vi-
ability of using MOs to enhance the accuracy and performance

of SAE. The interest of considering MOs lies in their potential
ability to handle and fix certain imperfections and degradations
that are observed in real-life spectrum measurements. Certain
MOs can remove small objects from an image (useful to remove
signal false alarms), while other MOs can replete gaps between
objects (useful to overcome the impact of signal missed detec-
tions). This suggests that MOs can help overcome the degrad-
ing impact of the signal detection errors (i.e., false alarms and
missed detection) that are present in the process of SAE.

There have been a few attempts in the literature to utilise or
explore the utility of MOs in order to process spectrum power
measurements. In [27], a technique for automatically estimat-
ing the noise floor in the presence of signals (i.e., without re-
quiring spectrum noise-only measurements) is proposed based
on mathematical morphology. The work reported in [28] and
references therein proposes a method relying on morphologic
image processing and statistical analysis to automatically se-
lect a suitable energy detection threshold based on power spec-
trum measurements where radio-frequency signals are present
as well. The applicability of mathematical morphology to the
Short-Term Fourier Transform (STFT) is explored in [29], with
a special focus on the detection of radar signals. A related
STFT-based approach is proposed in [30] to extract features
from frequency-hopping signals (hopping carrier frequency,
hop timing and hop rate) based on MOs. A morphological al-
gorithm is proposed in [31] for radio-frequency interference de-
tection (in the context of astronomy rather than radio commu-
nications). However, to the best of the authors’ knowledge, this
constitutes the first attempt in the open literature to apply mor-
phological image processing methods to enhance the accuracy
and performance of SAE.

The contribution of this research is multiple. First, it con-
tributes a detailed analysis of the impact of the main MOs on
the accuracy of SAE. To the best of the authors’ knowledge,
this has not been considered before in the open technical litera-
ture. By means of simulations, the result of employing a diverse
range of MOs in the context of SAE is investigated under mul-
tiple configurations of the MOs and various operating condi-
tions. The analysis is carried out over a sufficiently large inter-
val of Signal to Noise ratio (SNR) values that are representative
of the typical operating conditions in wireless communication
systems. In such analysis, the performance of MOs is analysed
when used both as a stand-alone SAE technique and together
with other SAE methods that have been proposed in the litera-
ture (as pre- or post-processing stages). Based on the outcomes
of this study, a suitable MO-based SAE method is formulated,
which employs MOs as pre- or post-processing techniques to
other existing SAE methods. As it will be shown, the proposed
approach provides noticeable improvements in the accuracy of
the detected SAs (compared to the scenario where the other
SAE methods are applied alone without the aid of MOs) and
without having a noticeable impact on the total computational
cost (even reducing it in some cases). The performance results
obtained by simulations are corroborated with experimental re-
sults obtained with a hardware prototype specifically used to
this end.

It is worth clarifying that the objective of this work is not
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to provide novel contributions to the field of Image Process-
ing, but to the field of Wireless Communications, by explor-
ing the potential applicability of MOs to the resolution of the
SAE problem. Therefore, this work considers standard MOs as
defined in their standard form, without introducing variants or
modifications to their classical theoretical definitions.

The rest of this paper is organized as follows. First, Section
2 describes the problem of SAE considered in this work and
provides a brief survey of existing techniques for SAE. Sec-
tion 3 details the principle of image processing MOs through
an exposition of its use in image processing applications and
its relevance to the proposed SAE approach. Section 4 then
presents the methodology followed in this research to evaluate
the performance of the proposed MOs in the context of SAE.
The analyzed research findings from the conduction of the sim-
ulations are presented and discussed under Section 5, where a
new MO-based SAE method is proposed based on the observed
performance of MOs. Lastly, Section 6 concludes the study.

2. Signal Area Estimation

2.1. Problem Description and Formulation

A radio spectrogram can be mathematically denoted as a ma-
trix P ∈ RM×N of M × N power values, where the vertical and
horizontal sides of spectrogram P are related to time and fre-
quency dimensions, respectively, so that each element of the
spectrogram matrix P, which can be denoted as P[m, n] ∈ R
(m = 1, . . . ,M and n = 1, . . . ,N), is the power level that has
been observed at the mth time slot and nth frequency bin, the
vertical dimension or size M represents the number of tempo-
ral samples taken in the spectrogram and the horizontal dimen-
sion or size N corresponds to the number of frequency points in
which the whole frequency span has been divided in the spec-
trum measurements.

To determine the potential existence of signal components
in a spectrogram, an energy decision threshold λ ∈ R is em-
ployed, which can be obtained based on various techniques
[32]. The threshold is then utilised to convert the matrix of
continuous powers P observed at the receiver into a binary ma-
trix B ∈ BM×N (with B = {0, 1}), each of whose elements
B[m, n] ∈ B are calculated as:

B[m, n] =
{

0, P[m, n] < λ (1a)
1, P[m, n] ≥ λ (1b)

denoting whether a spectrogram element is assumed to include
a signal component (B[m, n] = 1) or not (B[m, n] = 0).

Let T ∈ BM×N be a matrix whose elements T [m, n] contain
the true states of the elements B[m, n] in the corresponding ma-
trix B at the receiver (Fig. 1). Some elements of B may be
incorrect as a consequence of signal transmission and detection
errors, which can be described in terms of the probability of
false alarm P f a = P(B[m, n] = 1|T [m, n] = 0) and probability
of detection Pd = P(B[m, n] = 1|T [m, n] = 1). Thus, B can be
thought of as a deteriorated version of T, with random errors
appearing with probabilities P f a and 1 − Pd (i.e., B , T).
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Figure 1: Matrix model for spectrograms: (a) transmitter’s ground truth
(matrix T), (b) receiver’s observed states (matrix B).

Let’s now define K ∈ N as the number of unique signal trans-
missions in a spectrogram, where the kth transmission occurs
between the low and high time indexes m(l)

k ≤ m ≤ m(h)
k and

the low and high frequency indexes n(l)
k ≤ n ≤ n(h)

k , respectively
(1 ≤ m(l)

k ≤ m(h)
k ≤ M and 1 ≤ n(l)

k ≤ n(h)
k ≤ N ∀k ∈ {1, . . . ,K}).

Each signal transmission will produce a submatrix inside T
with all its elements set to one (see Fig. 1a). Each of these
submatrices can be seen as a rectangular group of points with
height m(h)

k −m(l)
k +1 corresponding to the kth transmission dura-

tion and width n(h)
k −n(l)

k +1 corresponding to the kth signal band-
width. Each of these groups of elements is called an SA in this
work. The kth SA can be mathematically defined as a subset of
elements Sk = {(m, n) : m(l)

k ≤ m ≤ m(h)
k , n

(l)
k ≤ n ≤ n(h)

k }. Sig-
nal transmissions are assumed to follow some protocol to avoid
interference, therefore all SAs in the same spectrogram are as-
sumed not to overlap (∩K

k=1Sk = ∅). Note that, by virtue of def-
inition, tm,n = 0 ∀(m, n) < Sk ∀k and tm,n = 1 ∀(m, n) ∈ Sk ∀k,
however this condition is not always satisfied in general for the
associated elements bm,n of matrix B owing to errors in the pro-
cess of signal transmission and detection (see Fig. 1b).

The purpose of SAE methods is to process the binary spec-
trogram B obtained by applying a threshold to a radio spectro-
gram P of continuous-power values with the aim to estimate the
ground truth matrix T, which is unknown, as closely as possible
so it can help to identify signal transmissions within the spec-
trogram (i.e., the true SAs) as accurately as possible. This is
ultimately the purpose and objective of SAE.

The idea of SAE comes from the consideration of spectrum
as a two-dimensional region in the time-frequency domain. As
discussed in [33], the spectrum can be divided into a discrete
grid of tiles, with each tile corresponding to an element or a
slot/bin in the time-frequency matrix. A single signal is consid-
ered to occupy a single rectangular area in the matrix or spec-
trum, however several signals and therefore several SAs may
be present in the same time-frequency matrix. The SAE or SA
detection process aims to determine the number and locations
of present SAs and considers two types of tiles in determin-
ing the SA: H0 (unused) and H1 (used). The SA, therefore, is
represented by a set of adjacent occupied tiles (H1) that are ad-
jacent to one another in a rectangular shape5. The concept and
considered system model are illustrated in Fig. 2.

5Certain types of radio transmissions may not generate signal areas with a
rectangular shape. This is particularly true for electromagnetic emissions cre-
ated by systems that are not intended for wireless communication, including
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Figure 2: Illustration of the concept of Signal Area (SA) and system model for Signal Area Estimation (SAE).

However, this process is not trivial given the fact that the
spectrum data received by the spectrum-aware system that mon-
itors the spectrum usage is typically a highly deteriorated ver-
sion of the transmitted signals as a result of the degrading ef-
fects of the radio propagation channel, the random noise power
at the receiver and other sources of external interference (e.g.,
out-of-band transmissions, ambient noise, man-made noise)
[37, 38, 39, 40, 41, 42]. The process of performing SAE en-
counters similar challenges to that of spectrum sensing or signal
detection, howbeit with some differences. For instance, for SA
processes, the focus is on the understanding of the pattern of
spectrum users’ occupation of the tiles in the time-frequency
domains rather than deciding the instantaneous idle or busy
channel state as it is the case with spectrum sensing. As such,
the priority of SAE schemes is not on detecting whether each
individual tile is in the H0 or H1 state, but the region of the
time/frequency grid that the signal occupies. The outcome of
knowing the state of individual tiles is not the target in itself but
is however a necessary requirement for an accurate SAE. More-
over, while spectrum sensing information is normally used for
short-term decisions (i.e., transmit or vacate the channel imme-
diately), the information obtained from SAE is typically useful
for optimizing spectrum and radio resource management in the
longer-term since the input spectrum data needs to be collected
over longer time intervals.

SAE methods are based on spectrum sensing principles,
making them equally vulnerable to missed detections and false
alarms [8]. The missed detections occur when the algorithms
detect occupied tiles as idle while the false alarms occur when
idle tiles are deemed busy, with the two errors affecting the
shape of the observed SAs and degrading the performance of
SAE schemes. The process of determining the right SA begins
with sampling the spectrum and generating the observed power

various types of radars [34, Figs. 1 and 9], microwave ovens [35, Fig. 2b], and
diverse sources of man-made noise [36, Fig. 4]. These specific types of signals
have a particular signal format that requires an individual and tailored study.
Such study falls beyond the scope of this work, whose focus is on signals em-
ployed in wireless communication systems, which are normally characterised
by rectangular SAs in the resulting spectrograms.

levels for each time slot and frequency bin (i.e., each tile) [33].
The process then involves the use of a pre-determined threshold
(e.g., [43]) to check the power levels, producing a binary ma-
trix that indicates whether a tile is H0 or H1 (this operation is
referred to as binarization in the context of image processing).
This matrix becomes the input to the SAE algorithm, which
extracts the tiles for which it detects one or more SAs. The oc-
currence of sensing errors for individual tiles is, as highlighted
in [8], the major challenge in the use of SAE techniques. In
their implementation, SAE methods should employ a properly
configured set of parameters, including the employed energy or
power decision threshold and the time/frequency resolution for
the data grid. Their optimum configuration was investigated in
[44] showing how they can be optimized through modifications
of the sensing period (in the time domain) and the FFT size (in
the frequency domain).

2.2. Existing SAE Methods
From the existing literature on SAE, the most common ap-

proach that many authors have exploited is ED-FFT [14] owing
to its simplicity and reduced computation cost. This approach
requires the determination of the state of each tile (busy or idle)
in the time-frequency domain employing ED-FFT on a tile-by-
tile basis [45]. While simple and convenient, ED-FFT methods
produce no rectangular estimation of the SA in the spectrum
and therefore tend to be less accurate. Nevertheless, ED-FFT
will be considered as a baseline or reference for comparison
with the existing and newly proposed SAE methods. A more
sophisticated approach is CT-SA, in which the algorithm ap-
proximates a rectangular SA by means of contour tracing tech-
niques [15]. A more accurate SAE method is the SSA strategy
developed in [10, 12, 8]; this is an elaborated method designed
to estimate the SA in a spectrogram following a series of steps.
The SSA steps include a raster scan to determine the first corner
of a possible SA, a horizontal scan to estimate the width of the
SA, then a coarse estimation of the height of the SA, and finally
a fine height estimation process aimed at determining the di-
mensions of the SA. More recently, a Minesweeper Algorithm
(MA) has been presented in [46], which makes a decision on
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the final state of each tile according not only to its own state
but also the state of the tiles in the immediate neighbourhood.
The MA method has a heuristic nature and does not necessar-
ily always outputs a rectangular SA but can provide significant
accuracy improvements both as a standalone SAE method and
combined with CT-SA and SSA as a pre- or post-processing
technique. The MA can be seen as a form of MO-based SAE.
Motivated by this observation, this work provides a more de-
tailed and rigorous analysis of the potentials of MOs in improv-
ing the accuracy of SAE.

3. Morphological Image Processing

Noticing that the readership of this periodical will typically
have a background in the field of communications engineering,
this section offers an overview of the most relevant image pro-
cessing concepts involved in this research and shows as well
some examples of how MOs affect the process of SAE.

3.1. Overview

Image processing refers to the procedure of extracting mean-
ingful information from an object to generate reports and data
for further analysis [47]. The analysis of images is a necessity
in different disciplines, including engineering. Thus, there is
a need for accuracy in the image processing technique that is
adopted for a specific function or operation [48].

Mathematical morphology is a set theory and collection of
non-linear operations and techniques that provide an approach
to digital image processing based on geometrical structures
(i.e., morphological image processing is related to the shape or
morphology of features in an image). Depending on the type of
operation, specific features of the objects in an image, such as
shape and size, can be given consideration. The morphological
image processing approach is used in the identification of the
characteristics and properties of an image by removing irrele-
vant background information [49]. The background is consid-
ered to be noisy and is eliminated to allow a more clear analysis
of the object under study depending on its morphology. After
the elimination of the background, the process then involves an
analysis of the morphology.

3.2. Structuring Element

Morphological techniques probe an image with a small tem-
plate referred to as the Structuring Element (SE). The SE is a
small binary image (smaller than the processed image) repre-
sented as a small matrix of pixels, each with a value of zero
or one. The SE is defined by three main configuration param-
eters, namely: (i) the shape, which is usually a discrete repre-
sentation of a continuous shape and is defined by the specific
pattern of ones and zeros; (ii) the size, which is specified by the
SE’s matrix dimensions; and (iii) the origin, which identifies the
pixel on which the SE is superposed when probing the image.
In general, the origin of the SE can be located anywhere (in-
cluding outside the SE), however it is usually one of its pixels,
most commonly the one lying at the geometrical centre of the
SE (which is the case considered in this work). Table 1 shows

some examples of typical shapes for the SE commonly used in
MO-based image processing.

It is worth noting that, while the origin can be freely cho-
sen for any SE, the shape and size are not always completely
independent configuration parameters. For instance, Table 1
shows that for an SE size of 7 × 7 pixels the disk/circle and di-
amond shapes are almost identical (only 4 out of the 49 pixels
differ between both SEs); for a 5 × 5 SE, both shapes would be
completely identical, and for a 3 × 3 SE the disk/circle and the
diamond would both converge to a cross.

Establishing the shapes and sizes of an SE is predominantly
an experiential procedure. However, the universal designation
of a SE relies on the graphic figures and patterns that one sets
out to extricate from the image data [50]. Since the SE is a
shape used to probe or interact with a given image to draw con-
clusions on how this shape fits or hits the shapes in the input
image, one usually sets a way of differentiating objects (or parts
of objects) from others according to their shape or spatial orien-
tation by choosing a particular SE accordingly [47]. Therefore,
when the target is to identify rectangular SAs in the image data,
it seems reasonable to select a SE with a squared or rectangular
shape rather than SEs in the shapes of disks, diamonds or cir-
cles, for instance. The impact of the SE shape and size on the
accuracy of MO-based SAE will be analysed and discussed in
more detailed in Section 5.

3.3. Morphological Operations
A MO is conceptually defined by moving the SE over the

binary image to be modified in such a way that it is eventu-
ally centred over every image pixel (based on the defined SE’s
origin), where a local logical operation is performed. The SE
is moved across each possible location in the image and then
compared to the neighbourhood of pixels. Some operations
are designed to test whether the SE fits within the neighbour-
hood, while other operations test if the SE hits or intersects such
neighbourhood. Based on the outcome of the applied MO, the
pixel at the origin of the SE is assigned a value according to the
associated logical operation. Therefore, in a MO the value of
each picture element (pixel) in the output image is dependent on
a collation of the analogous image at the input with its border-
ing (i.e., every pixel in the original image is adjusted according
to the value of other pixels in its neighbourhood) [50]. For ev-
ery input image, MOs produce an output image of matching
dimensions and proportions. A MO on a binary input image (as
it is the case in the context of SAE) creates a new binary image
in which each pixel has a non-zero value only if the logical test
is true at that location in the input image.

This work investigates the SAE accuracy of the four main
basic and most commonly used MOs, namely erosion, dilation,
opening and closing. It is worth noting that the interest and
focus of this work is not on image processing techniques them-
selves but on their application and the potential benefits they
can bring to the SAE problem. Therefore, this work focuses on
the main existing MOs; other MOs that can be constituted as se-
quential combinations of these main MOs and/or by combining
(adding/subtracting) their output with the original image (such
as the adjunct of a binary image or the convergence of two or
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Table 1: Typical SE shapes for MOs.

Square Disk or Diamond Cross Horizontal Vertical
Circle rectangle rectangle

more binary images [47]) are out of the scope of this work. For
the objectives of this work, the four main MOs are sufficient as
it will be shown in Section 5. A description of the considered
MOs is provided below.

1. Erosion: The erosion of an input image I by a SE S (de-
noted I⊖S ) produces a new image Inew = I⊖S with ones at
all the locations (x, y) at which that SE S fits the input im-
age I. In other words, Inew(x, y) = 1 if S fits I at (x, y) and 0
otherwise, repeating for every pixel coordinate (x, y). The
SE S is said to fit I at location (x, y) when the SE’s origin
is placed at (x, y) and all the SE’s ones are matched by cor-
responding ones in the same positions of the input image
I. In a binary image (as it is the case in SAE), a pixel is
set to one only if all the neighbouring pixels (as defined
by the SE) have the value one, and set to zero if any of the
neighbouring pixels (as defined by the SE) have the value
zero. Morphological erosion removes islands and small
objects in the input image, so that only substantive objects
remain, and makes gaps between different regions become
more pronounced. However it also reduces the size of re-
gions of interest. An example of the impact of erosion on
SAE is shown in Fig. 3c.

2. Dilation: The dilation of an input image I by a SE S (de-
noted I ⊕ S ) produces a new image Inew = I ⊕ S with ones
at all the locations (x, y) at which that SE S hits the input
image I. In other words, Inew(x, y) = 1 if S hits I at (x, y)
and 0 otherwise, repeating for every pixel coordinate (x, y).
The SE S is said to hit I at location (x, y) when the SE’s
origin is placed at (x, y) and at least one of the SE’s ones
is matched by a corresponding one in the same position of
the input image I. In a binary image (as it is the case in
SAE), a pixel is set to one if any of the neighbouring pix-
els (as defined by the SE) have the value one, and set to
zero if all the neighbouring pixels (as defined by the SE)
have the value zero. Morphological dilation has the oppo-
site effect to erosion: it adds more pixels to the boundaries
of existing regions, making objects more visible and re-
ducing gaps between them. An example of the impact of
morphological dilation on SAE is shown in Fig. 3d.

3. Opening: The opening of an input image I by a SE S
(denoted I ◦ S = (I ⊖ S ) ⊕ S ) is attained by first erod-

ing and then dilating an image using the same SE for
both operations. With morphological opening, any re-
gions that survive the erosion are (almost) restored to their
original size by the subsequent dilation. The visual result
of morphological opening is that larger objects joined by
thin lines of adjacent pixels are disconnected, thus open-
ing up gaps between such objects, hence its name. Mor-
phological opening can remove small entities from an im-
age while conserving the dimensions and proportions of
larger objects almost unaltered. Noteworthy, opening is
an idempotent operation, meaning that once an image has
been opened, subsequent morphological openings using
the same SE will have no further effect on that image (i.e.,
(I ◦S )◦S = I ◦S ). An example of morphological opening
in SAE is shown in Fig. 3e.

4. Closing: The closing of an input image I by a SE S (de-
noted I•S = (I⊕S )⊖S ) is attained by first dilating and then
eroding an image using the same SE for both operations
(this sequence is the inverse of the morphological open-
ing). Morphological closing enlarges an image and then
corrodes the expanded image, with the visual effect being
the repletion of gaps in the image. Closing is also an idem-
potent operation, therefore once an image has been closed,
subsequent morphological closings using the same SE will
have no further effect on that image (i.e., (I•S )•S = I•S ).
An example of morphological closing in SAE is shown in
Fig. 3f.

3.4. Application of Morphological Operations to SAE

As discussed above, MOs can help remove small objects
from images (useful to remove signal false alarms) or replete
gaps between objects (useful to overcome the impact of sig-
nal missed detections). This suggests that MOs can potentially
handle and fix imperfections and degradations that are observed
in real-life spectrum measurements, by overcoming the degrad-
ing impact of the signal detection errors (i.e., false alarms and
missed detection) that are present in the process of SAE, which
motivates their application in the context of SAE.

The simplest form of SAE is based on ED, which con-
verts a time-frequency matrix of continuous power samples ob-
tained from measurements into a binary matrix with zero/one
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Figure 3: Several versions of the same time/frequency grid: (a) Original generated by transmitter, (b) Observed at receiver after ED (with threshold set for P f a = 1%)
at SNR = –7 dB (Pd ≈ 0.39), (c) Eroded at the receiver with a 1×2 rectangular SE, (d) Dilated at the receiver with a 1×2 rectangular SE, (e) Opened at the receiver
with a 1×2 rectangular SE, (f) Closed at the receiver with a 1×2 rectangular SE.

(idle/busy) elements. This conversion is achieved by compar-
ing the input power samples to a properly set decision thresh-
old [44]. Other methods specifically envisaged for SAE (such
as CT-SA and SSA) take as an input a binary matrix (already
obtained as the output of ED such as Fig. 3b) and produce as
the final output another binary matrix with a (hopefully) more
accurate identification of the desired SAs. Fig. 4 shows an
example of the outputs generated by the CT-SA and SSA al-
gorithms when the input is as shown in Fig. 3b. MOs could
be applied in this context as another SAE method, which also
takes and produces binary matrices; in this case, the output ma-
trix is the result of executing MOs on the input matrix, which
can help identify existing SAs according to the shape and spa-
tial orientation of the employed SE [51]. However, as observed
in Figs. 3c–3f, MOs by themselves do not seem to provide an
estimation of the true SAs (shown in Fig. 3a) as accurate as
those provided by methods specifically designed for SAE such
as CT-SA and SSA (depicted in Fig. 4). On the other hand, Fig.
4 also shows that existing SAE methods from the literature are
imperfect and certain gaps and other imperfections in the esti-
mated SAs could be handled and fixed by means of MOs. This
suggests that a combination of existing SAE methods and MOs
could provide an improved accuracy in the estimated SAs. To
obtain some insights into how MOs can contribute to enhace the
performance of SAE, two scenarios of application are explored
in this work: (i) first, a scenario where MOs are employed as a
standalone method for SAE taking as input information the bi-
nary matrix obtained from the use of an ED principle (Fig. 3b)
and producing its own final output (Figs. 3c–3f); (ii) second, a
scenario where MOs are combined with other relevant methods
for SAE from the literature (such as CT-SA and SSA) which
are used as a pre/post-processing stage in which MOs can be
used only before, only after, or both before and after the other
SAE method. The investigation of these two different scenar-
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Figure 4: Outputs generated by: (a) CT-SA algorithm, and (b) SSA algorithm,
when the input is as shown in Fig. 3b.

ios is expected to shed some light on how to best formulate an
appropriate MO-based SAE method.

4. Methodology

4.1. Simulation Procedure

This experimental study adopts the use of simulation to test
SAE techniques based on MOs. In the simulation, the generated
time-frequency matrices (refered to as test grids) include chan-
nelized SAs that have occupancy statuses generated randomly
through clearly defined constraints and are corrupted through
the addition of random noise and interference. MOs are then ap-
plied to the ED, CT-SA, and SSA algorithms to evaluate the ac-
curacy of the estimated SAs in the corrupted test grids. The pro-
cess takes place in four distinct steps, namely time-frequency
test grid creation, corruption of test grids, estimation of SAs,
and assessment of the accuracy of the estimated SAs.

Step 1. Create clean time-frequency test grids
For each simulation, a set of 100 random test grids is created

with a resolution of 50×100 tiles, which represents a medium
size [44]. The horizontal dimension of 100 tiles represents the
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number of frequency points, with the vertical dimension of 50
tiles is determined by the time resolution. A group of ON/OFF
transmissions randomly generated from exponential distribu-
tions with rate parameters λon = λo f f = 0.5 s−1 and minimum
on/off durations of 10 s and 5 s, respectively, are generated for
three different frequency channels with the same bandwidth,
where only the central one is in use. Guard bands equivalent to
5% of the channel bandwidth (represented by always-idle tiles
between channels) are included as well. These test grids emu-
late the original transmission pattern of the transmitter before
the signal passes through the wireless channel and is degraded
by propagation as well as internal and external noise and in-
terference. Fig. 3a shows a simple example with one single
transmitter (i.e., one channel) in the test grid.

Step 2. Add errors to the test grids
This step involves the addition of errors to the clean test grids

generated in Step 1. The errors are added in such a manner that
they affect both the idle tiles (false alarms) and busy tiles (signal
missed detections). In specific, idle (busy) tiles can randomly
change to busy (idle) state with a certain false alarm probabil-
ity P f a (missed detection probability 1 − Pd). These probabil-
ities are computed assuming that the measured power samples
are transformed to binary idle/busy states by using an ED ap-
proach with a fixed probability of false alarm P f a = 0.016 and
thus an SNR-dependent probability of detection Pd [44, eqs.
(1)-(2)]. These test grids represent the pattern observed by the
receiver or spectrum-aware monitoring system after the desired
signals have travelled through the wireless propagation channel
and have been deteriorated by propagation as well as internal
and external noise and interference. Fig. 3b shows how the test
grid of Fig. 3a is seen at the receiver side after applying of ED
with a decision threshold corresponding to P f a = 0.01 and a
receiving SNR of –7 dB, at which Pd ≈ 0.39.

Step 3. Estimate the SAs
In this step, one of the SAE methods described in Section 2.2

are applied and/or one or more of the MOs described in Section
3.3 to the (corrupted) noisy test grids obtained in Step 2 to es-
timate the SAs existing in the clean test grid. When MOs are
applied, these are used either as a standalone SAE method (as in
Figs. 3c–3f) or in combination with the CT-SA and SSA algo-
rithms (shown in Fig. 4) as pre/post-processing techniques (i.e.,
only before, only after, or both before and after). It is worth
mentioning that the performance of the SSA method is sensi-
tive to its configuration parameters. In this work, the detec-
tion masks of the SSA method were configured as in [10, eqs.
(3)–(4)], while the values for the sensitivity thresholds were the
same as those suggested in [10]. This choice is assumed to per-
form well but may not necessarily lead to a perfectly fine tuning
of the SSA performance in the case of the particular spectrum
dataset used in this research (an optimization approach is dis-
cussed in [10], which is beyond the scope of this work).

6Notice that the resulting P f a can be easily controlled by properly setting the
ED threshold. Selecting high P f a values would in principle lead to a degraded
SAE accuracy and therefore it is sensible to keep P f a at a relatively low value
such as P f a = 0.01, which is a very common choice in the literature.

1
2 3

4

Figure 5: Experimental platform used in this work: (1) vector signal generator,
(2) coaxial cable, (3) attenuator, and (4) spectrum analyzer.

Step 4. Assess the accuracy of the estimated SAs
In this step, the accuracy of the estimated SA obtained from

Step 3 is assessed. This is achieved by comparing each test grid
obtained in Step 3 to the corresponding original clean test grid
produced in Step 1.

4.2. Experimental Platform

Software simulations are a convenient and efficient way to
test the performance of multiple configurations of MOs on syn-
thetic spectrum data and determine the best configuration for
each operating condition. However, a convincing demonstra-
tion requires validation with experimental spectrum data ob-
tained from a real transmitter and receiver acting as a spectrum
monitoring device. To this end, the hardware platform shown
in Fig. 5 is employed to acquire experimental data to validate
the final version of the proposed MO-based SAE method. The
platform is composed of: (1) a vector signal generator as the
signal transmitter (Signal Hound VSG25A); (2) a coaxial ca-
ble (Mini-Circuits HandFlex 141-4SM+) along with (3) a 20
dB power attenuator (a Mini-Circuits VAT-20+) both together
emulating a radio propagation channel; and (4) a real-time spec-
trum analyzer as the signal receiver or spectrum monitoring de-
vice (Tektronix RSA306B). A wired connection is used in the
experiments to prevent undesired interference between the ex-
perimental platform and other wireless devices operating in the
surrounding area. A Matlab tailored control script is used to
control the operation of transmitter and receiver using Instru-
ment Control Toolbox available in Matlab along with the man-
ufacturer’s provided library and Application Programming In-
terface (API). A central control host is used to ensure a correct
synchronization between transmitter and receiver operation so
that the spectrogram observed at the receiver can be compared
to the ground truth at the transmitter. The experimental pro-
cedure is parametrized to follow the simulation conditions. A
careful calibration of the relationship between power transmit-
ted by the signal generator and the SNR level received at the
spectrum analyzer is performed in order to allow a fair compar-
ison of simulation and experimental results.
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4.3. Performance Metrics

The performance of the MO-based SAE approach investi-
gated in this work could be intuitively assessed based on the
measure of the fraction of tiles, either idle or busy, that are cor-
rectly detected in their true original state. This measure can be
obtained as the sum of true positive and true negative detection
rates. The limitation of such accuracy metric is that the num-
ber of tiles in one state may outnumber those in the other state,
thereby introducing a bias in the value of the metric. Thus,
the preferred metric used here is the F1 score, which takes into
account potential imbalances between the number of idle and
busy tiles in the original test grid. The F1 score is defined as:

F1 =
2 × T P

2 × T P + FP + FN
, (2)

where T P, FP and FN are the number of true positive, false
positive and false negative detections, respectively [52]. As op-
posed to the accuracy metric, whose range of values is affected
by the ratio of idle/busy tiles in the original test grid, the F1
score always ranges within the interval [0,1] and therefore is a
more fair and useful metric when there is an imbalance in the
amount of idle/busy tiles in the original image, which is usu-
ally the case in most practical contexts. Therefore, the F1 score
metric will be considered in this work.

It is worth mentioning that the performance of SAE methods
could also be assessed through the probabilities of false alarms
and missed detections. However, in SAE, the focus is not on the
accuracy of the detection of individual tiles but on the detection
of the entire SA present in the time-frequency domain. Since
the detected SA results from a reconstruction of the subsets of
tiles that are associated together, the analysis of the probabili-
ties of false alarms and missed signals for individual tiles does
not provide a complete characterisation of the efficacy of SAE
methods. It is for this reason that the present study does not
use these probabilities as performance measures for the stud-
ied MO-based SAE methods and instead relies on the F1 score,
which provides a single numerical quantity to assess the overall
accuracy of the estimated SAs.

The computation time of each SAE method is also evaluated
in this study. This measure is important because it affects the
overall performance of the SAE method when it is practically
implemented. It was observed in [14] that there exists a strong
correlation between computation time and overall implemen-
tation cost. Consequently, in the practical implementation of
SAE methods, it is convenient to adopt the method that yields
the lower computation times as far as possible.

5. Performance Analysis and Proposed Methods

5.1. Performance of MOs in SAE

The first investigated aspect is the impact of the SE’s shape.
To this end, a maximum reference size of 3 × 3 pixels is se-
lected for all shapes for a fair comparison. For this maximum
size, several shapes are defined (square, horizontal and verti-
cal rectangle both in thick and thin formats, diamond, cross,

and disk/circle7) and their performance is evaluated when the
four MOs are applied as a standalone SAE method. The re-
sults are shown in Fig. 6, including ED as a reference (which
corresponds to the case where no MO is applied). The simula-
tion results reveal that the SEs of different shapes have differ-
ent impacts on the estimation accuracy of the SA through the
processes of erosion, dilation, opening and closing. Moreover,
Fig. 6 also provides some insights into how each MO affects
the detection of SAs. Concretely, it can be noticed in Fig. 6a
that erosion results in an overall accuracy degradation over the
whole SNR range, regardless of the employed SE shape. This
can be explained by the aggressive removal effect of small ob-
jects that erosion has on the processed image. This effect could
be beneficial to remove false alarms, but unfortunately also re-
moves portions of the actual SA when it has been degraded by
the radio transmission process. The overall net effect, as it can
be appreciated, is a general accuracy degradation (with respect
to the case where erosion is not applied, which is the ED curve).
On the other hand, dilation has a different effect depending on
the considered SNR range as shown in Fig. 6b. At high SNR,
dilation has a degrading effect, which can be explained by its
expanding effect on small objects; this effect does not provide a
more accurate detection of the actual SA, which is already easy
to detect at high SNR, however augments the sizes of regions
resulting from false alarms, thus degrading the overall accuracy
at high SNR. However, dilation can be helpful at low SNR: it
still augments the size of regions resulting from false alarms but
also helps filling gaps in the distorted original SA, thus result-
ing in a more accurate SA detection. The overall net effect is
favourable in this case. The square SE provides here the best
accuracy improvement at low SNR, followed by the thick rect-
angular (3 × 2 and 2 × 3) SE shapes. This is in agreement with
the intuitive notion that the SE shape should be selected in ac-
cordance with the geometric shapes that are attempting to be
detected from the input image [51]. Fig. 6c shows that mor-
phological opening has in general a similar effect as erosion,
however with a noticeable accuracy improvement at high SNR.
This is because the initial erosion step of the morphological
opening removes small objects both resulting from false alarms
and found inside the original SA, however the subsequent dila-
tion step fills the gaps opened within the original SA so that the
net effect of morphological opening at high SNR is an effective
reduction of the incidence of false alarms, without significant
degradation of the original SA, and hence an overall accuracy
improvement. In this case, the particular shape employed for
the morphological opening at high SNR is not relevant as all
them provide a similar level of accuracy very close to one. Fi-
nally, Fig. 6d shows that morphological closing provides an
improved level of accuracy over the whole SNR range with re-
spect to ED alone for all SE shapes, again with the best accu-
racies achieved by the square and thick rectangular SE shapes
(3 × 2 and 2 × 3). However, when compared to the other MOs,
closing the image by itself does not outperform dilation at low
SNR nor opening at high SNR. This observation suggests that

7Notice that for a 3 × 3 SE the shapes of disk/circle, diamond and cross lead
to the same SE template.

9



-20 -15 -10 -5 0 5
0

0.2

0.4

0.6

0.8

1

(a)

-20 -15 -10 -5 0 5
0

0.2

0.4

0.6

0.8

1

(b)

-20 -15 -10 -5 0 5
0

0.2

0.4

0.6

0.8

1

(c)

-20 -15 -10 -5 0 5
0

0.2

0.4

0.6

0.8

1

(d)

Figure 6: F1 scores with different shapes of SE for MOs as standalone SAE: (a)
erosion, (b) dilation, (c) opening, (d) closing.

a suitable choice for MOs is indeed dilation at low SNR (with
square SEs) and opening at high SNR (in principle with any
SE shape, however a square SE could also be chosen here for
simplicity).

To determine the impact of the SE size, F1 scores were calcu-
lated for different SE sizes using the best performing combina-
tions of SE shapes as discussed above, namely square and both
horizontal/vertical rectangular SE shapes. The obtained results
are shown in Figs. 7 and 8 for the two MOs with potential to im-
prove the SAE accuracy at low and high SNR, respectively (i.e.,
dilation and opening). The considered SE size categories are as
follows: extra small (2×2 square, 1×2 horizontal rectangle, 2×1
vertical rectangle), small (3×3 square, 2×3 horizontal rectangle,
3×2 vertical rectangle), medium (6×6 square, 2×6 horizontal
rectangle, 6×2 vertical rectangle) and large (9×9 square, 4×9
horizontal rectangle, 9×4 vertical rectangle). These size cate-
gories should not be interpreted in absolute sense but in relation
to the overall image size (e.g., the large size category represents
in this case 9% and 18% of the horizontal and vertical image
dimensions, respectively). Fig. 7 shows that the SE size has
a significant impact on the performance of morphological dila-
tion. In particular, looking at the region of low SNR (where the
morphological dilation is of interest), one can see that the se-
lected SE size should increase as the SNR decreases. For very
low SNR (around –20 dB), a large SE size gives a higher F1
score, while for moderately low SNR (just below 0 dB), small
or extra small SE sizes give a better F1 score. On the other
hand, Fig. 8 shows that the accuracy of morphological opening
does not change significantly when the selected SE size varies
and it remains close to one at high SNR for all SE sizes.

To further explore the impact of the SE size in these two
MOs, some additional results are provided in Figs. 9, 10 and
11 when the original SAs are as shown in Fig. 3a. First, Fig. 9
shows the output of dilation at an SNR of –7 dB using a hori-
zontal rectangular SE shape, which according to Fig. 6b is the

SE shape that provides the best accuracy at that SNR. More-
over, Fig. 10 shows the output of dilation at a lower SNR of
–10 dB using in this case a squared SE shape, which according
to Fig. 6b is the SE shape that provides the best accuracy at
this other SNR. The discussion above concluded from Fig. 7
that when applying dilation in the low SNR regime, the SE size
should increase at lower SNRs. However, observing the exam-
ples of Figs. 9 and 10 one can see that selecting large SE sizes
does not really lead to a useful SAE, even though the numeric
value of the F1 score may be higher in some cases. At such very
low SNR values (such as –10 dB in Fig. 10), an accurate esti-
mation of the SA is not feasible regardless of the selected SE
size. However, at slightly higher SNR values (such as –7 dB in
Fig. 9, only 3 dB more) selecting an extra small SE can provide
a reasonable SAE accuracy, which becomes evident by com-
paring Figs. 3a and 9a. Therefore, when applying a morpho-
logical dilation at low SNR values, the selected SE size should
remain at a small or extra small size; this may not lead to a use-
ful SAE at very low SNR (which may not be feasible anyway)
but will provide significant accuracy improvements at moder-
ately low SNR values. Since the selected SE size does not have
a significant impact on the resulting accuracy when applying
morphological opening at high SNR (as observed in Fig. 8 and
confirmed by Fig. 11) the same SE size selected for dilation at
low SNR may also be employed for opening at high SNR.

The results presented so far correspond to MOs applied as
standalone SAE methods. Simulations were also conducted to
evaluate the performance of the four MOs (erosion, dilation,
opening and closing) when applied as pre/post-processing to
the CT-SA and SSA methods. For comparison purposes, Fig.
12 shows the performance of the four MOs as standalone SAE
methods while Figs. 13 and 14 show the counterparts for the
combination of MOs with the CT-SA and SSA methods, re-
spectively. An extra small (1×2) horizontal rectangular SE has
been selected in this example for illustration purposes, however
similar observations and conclusions are obtained for horizon-
tal vertical and square SEs. Fig. 12 shows that MOs, when
executed as standalone SAE methods, may be able to improve
the accuracy provided by ED in certain SNR regions but, in
general, are unable to outperform or simply provide a compa-
rable estimation accuracy when compared against other meth-
ods specifically designed for SAE such as CT-SA and SSA.
Therefore, MOs by themselves cannot be used as a standalone
SAE method. Nevertheless, the results shown in Figs. 13 and
14 demonstrate that MOs can help improve the performance
of other existing SAE methods when employed as pre/post-
processing techniques. In particular, it can be noticed that, in
line with previous observations, erosion tends to have a degrad-
ing effect on the SAE accuracy, dilation tends to improve the
accuracy in the lower SNR range (with higher improvements
when applied both as a pre- and post-processing technique to
the other SAE methods), opening improves the accuracy in the
higher SNR range (in this case it is enough when used as a pre-
processing technique only8), and closing has no significant im-

8Note that in Figs. 13c and 14c the curves for pre-processing only overlap
the curves for both pre/post-processing.
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(a) (b) (c)

Figure 7: F1 score for dilation with different SE sizes and shapes: (a) square, (b) horizontal rectangle, (c) vertical rectangle.

(a) (b) (c)

Figure 8: F1 score for opening with different SE sizes and shapes: (a) square, (b) horizontal rectangle, (c) vertical rectangle.
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Figure 9: Dilation at SNR = –7 dB using a horizontal rectangular SE for the
SAs shown in Fig. 3a: (a) extra small, (b) small, (c) medium and (d) large.
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Figure 10: Dilation at SNR = –10 dB using a squared SE for the SAs shown in
Fig. 3a: (a) extra small, (b) small, (c) medium and (d) large.
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Figure 11: Opening at SNR = +5 dB using a squared SE for the SAs shown in
Fig. 3a: (a) extra small, (b) small, (c) medium and (d) large.

pact on the final resulting accuracy. These observations can be
exploited to formulate an MO-based SAE method as discussed
below.
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Figure 12: MOs as standalone SAE methods: (a) erosion, (b) dilation, (c) open-
ing, and (d) closing.

5.2. Proposed SAE Method Based on MOs

The results presented above have indicated that the MOs
yield the best results when used as pre/post-processing steps
along with other existing SAE techniques such as CT-SA and
SSA. However, it has also been shown that no single MO can
help improve the accuracy over the whole range of SNR values.
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Figure 13: MOs as pre/post-processing to CT-SA: (a) erosion, (b) dilation, (c)
opening, and (d) closing.

-20 -15 -10 -5 0 5
0

0.2

0.4

0.6

0.8

1

(a)

-20 -15 -10 -5 0 5
0

0.2

0.4

0.6

0.8

1

(b)

-20 -15 -10 -5 0 5
0

0.2

0.4

0.6

0.8

1

(c)

-20 -15 -10 -5 0 5
0

0.2

0.4

0.6

0.8

1

(d)

Figure 14: MOs as pre/post-processing to SSA: (a) erosion, (b) dilation, (c)
opening, and (d) closing.

In fact, certain combinations of MOs at different SNR values
provide better accuracy than others. Taking this observation
into account, a suitable MO-based SAE method can be formu-
lated by selecting the best combination of MO and pre/post-
processing application for each SNR range. Concretely, it has
been shown that at low SNR dilation before and after CT-SA or
SSA provides the best accuracy (with a 2×2 square SE), while
at high SNR the best accuracy is obtained with opening before
CT-SA or SSA (with any shape for the SE). Dilation and open-
ing both help in the morphological filtering process, which can
be used to extract the useful SA from the noisy input [53, 54].
Based on these observations, a simple approach would be to set
an SNR threshold such that any SNR value below (above) the

threshold is considered to be low (high) SNR and the appropri-
ate MO is applied. However, it can be shown that there exists
a certain region of intermediate SNR values (between the so
called regions of low and high SNR) where the optimum MO
and pre/post-processing application may not be any of those
observed at low or high SNR. This motivates a more flexible
version of the method that distinguishes between low, interme-
diate and high SNR ranges and selects the best MO for each.
Accordingly, and based on the results presented above, the pro-
posed MO-based SAE method is formulated as follows:

• Low SNR regime (SNR ≤ SNRL
th): Perform morphological

dilation with an extra small squared SE both before and
after the employed SAE method.

• Intermediate SNR regime (SNRL
th < SNR ≤ SNRH

th): Per-
form morphological opening with an extra small rectangu-
lar SE only after the employed SAE method.

• High SNR regime (SNR > SNRH
th): Perform morphological

opening only before the employed SAE method with an
extra small SE of any appropriate shape (e.g., squared or
rectangular).

The above proposed method is formulated by selecting the opti-
mum MO along with its optimum application and configuration
that is observed to provide the best SAE accuracy according to
the results obtained and discussed in Section 5.1. The parame-
ters SNRL

th and SNRH
th are thresholds that delimit the regions of

low, intermediate and high SNR and therefore where each MO
provides the best accuracy. To determine the optimum thresh-
olds, F1 scores were calculated for threshold values between
–10 dB and –5 dB (where the low-to-high SNR transition oc-
curs). The exhaustive search concluded that SNRL

th ≈ –8 dB and
SNRH

th ≈ –5 dB yield the best accuracy.
The formulation of the proposed algorithm is supported by

the obtained simulation results and can be justified as follows.
First, at low SNR one can expect a higher number of missed
detections. Such missed detections will likely leave a reduced
number of busy pixels where a SA was originally present, thus
making those few busy pixels the only remaining vestige of the
SA that was originally present in that region. Therefore, one
can maximize the probability of detecting as much of the SA
in that region as possible by following an aggressive detection
approach where the presence of a single busy pixel in the neigh-
bourhood of the SE is enough to set the pixel in the centre of
the SE as busy. This can explain why a dilation is the most
convenient morphological operation at low SNR values (below
a properly set threshold). Moreover, due to the difficulty of de-
tecting signal components at low SNR, the greatest benefits can
be obtained by dilating the image both before and after the em-
ployed SAE method; recall that morphological dilation makes
objects more visible and fills in small holes/gaps in the image,
thus making SA detection easier for other SAE methods if ap-
plied beforehand (pre-processing) and making the SAs (or their
portions) detected by the other SAE methods further visible if
applied also afterwards (post-processing). On the other hand, at
high SNR the dilation operation should also enhance the detec-
tion accuracy by filling in gaps within SAs degraded by missed
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detections. However, the main problem of morphological dila-
tion under high SNR conditions is that the filling of these gaps
does not compensate the amplification of false alarms, which
are made more visible as a result of the dilation. For this rea-
son, under high SNR it is more convenient to perform first a
morphological erosion (in order to remove as many false alarms
as possible) followed by a morphological dilation (to safely
fill in gaps within degraded SAs once false alarms have been
removed). This can explain why opening is the most conve-
nient morphological operation at high SNR (above a properly
set threshold). Moreover, due to the relatively easiness to de-
tect signal components at high SNR, it is enough to perform this
operation only before applying the other SAE method (results
show that it could be applied afterwards as well but this does not
provide any accuracy improvements while increases slightly the
computational cost). Similarly, at intermediate SNR morpho-
logical opening is still the most convenient choice, however in
this case performed only after the employed SAE method.

The results shown in Fig. 15 provide supporting evidence
for the discussion above, showing that the proposed MO-based
SAE approach provides the best overall accuracy over the
whole SNR range. The accuracy obtained in the transition area
of intermediate SNR values is marginally above that of the orig-
inal SAE methods without any MOs and comparable to that of
the original SAE methods with the MA technique proposed in
[46]. However, the application of carefully selected and prop-
erly configured MOs can provide significant accuracy improve-
ments both at low and high SNR. In the low SNR region, the
accuracy improvement (as quantified by the F1 score) can be
as large as 40% (for CT-SA with and without MOs at –10 dB),
while in the high SNR region the proposed method achieves a
perfect accuracy of 100% (the only method that achieves this
level of accuracy at high SNR). It can also be noted that CT-SA
and SSA tend to have a noticeably different performance when
applied without MOs, but become more similar when MOs are
introduced (the same observation applies to the introduction of
the MA method). The performance of SSA with MOs tends
to be slightly better than that of CT-SA with MOs (in particu-
lar at low SNR), which is obtained at the expense of a greater
computational cost as shown in Fig. 16 resulting from the more
complex algorithm associated with the SSA method. Interest-
ingly, it can be noted that the introduction of MOs in the SAE
process not only leads to significant accuracy improvements for
both CT-SA and SSA as shown in Fig. 15 but in some cases
can even do so at a lower computational cost as shown in Fig.
16. This can be explained by the benefits of using adequate
MOs in SAE: these operations, when used properly, can reduce
false alarms and fill gaps within the original SAs resulting from
missed detections, which facilitates and simplifies the task of
detecting SAs for both CT-SA and SSA. As a result, the CT-
SA and SSA methods can detect the SAs more accurately and
do so at a similar or even lower computational cost, because
the enhancements introduced by the application of MOs be-
forehand reduces the number of computations required by both
SAE methods (this is particularly true at high SNR). Therefore,
it can be concluded that the proposed MO-based SAE method
can help existing SAE methods provide a significantly more
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Figure 15: F1 score of the proposed MO-based SAE method.
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Figure 16: Computation time of the proposed MO-based SAE method.

accurate estimation of the existing SA without increasing the
computational cost and, in some cases, even reducing the as-
sociated computational workload. This can be seen in Table 2,
which summarises the results shown in Figs. 15 and 16.

Finally, Fig. 17 validates the performance of the proposed
MO-based SAE method by comparing the performance fore-
casted by simulations with the actual performance obtained
based on experimental data collected with the experimental
setup presented in Section 4.2. As it can be observed, simula-
tion and experimental results match very closely over the whole
range of SNR values, except perhaps for SNR values slightly
below the low SNR switching threshold, SNRL

th, where a maxi-
mum deviation between simulation and experimental results of
around 1 dB is observed over a short SNR interval. In this SNR
region, the actual experimental performance is indeed slightly
better than predicted by the simulations. The results shown in
Fig. 17 indicate that the use of MOs can actually improve the
performance of existing SAE methods significantly when im-
plemented in practical systems.

5.3. Practical Implementation Remarks
The proposed SAE method decides the optimum procedure

to be followed based on the SNR of the signal whose area is
to be detected and estimated. In practical system implementa-
tions, this information may or may not be available depending
on a broad range of technical and practical aspects. Several op-
tions can be proposed when the SNR information is not avail-
able and cannot be estimated directly by the spectrum moni-
toring receiver. In some cases it may be possible to make an
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Table 2: Performance summary for the proposed MO-based SAE method.

ED CT-SA SSA CT-SA w/MA SSA w/MA CT-SA w/MO SSA w/MO

High SNR accuracy (0–5 dB) 98% 96% 91% 99% 99% 100% 100%

Low SNR accuracy (–10 dB) 20% 27% 49% 71% 74% 71% 71%

Low SNR accuracy (–20 dB) 2.5% 2.5% 4.0% 3.5% 3.5% 24% 27%

High SNR computation time (0–5 dB) 0.2ms 2.5ms 6.9ms 2.8ms 6.2ms 2.1ms 6.2ms

Low SNR computation time (–10 dB) 0.3ms 3.0ms 9.0ms 1.9ms 6.6ms 3.5ms 9.8ms

Low SNR computation time (–20 dB) 0.4ms 2.8ms 10.1ms 1.9ms 6.6ms 4.2ms 11.5ms
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Figure 17: Experimental validation of the proposed method.

educated guess of the expected SNR; for instance, if the trans-
mitter location is known and its transmission power is constant
and known (or can be estimated), then the use of a suitable path
loss model can give a good approximation to the expected SNR
(or expected range of SNR values if the transmission power is
variable). Note that, in general, the SNR does not need to be
known or estimated to a great level of accuracy since the rel-
evant aspect is whether the SNR is greater or lower than the
thresholds SNRL

th and SNRH
th. In a worst-case scenario where

nothing is known about the signals that may be present, the
solution would be to apply the three procedures described in
Section 5.2 for the low, intermediate and high SNR regimes
and select the output with the highest response. This approach
increases the chances of a more accurate result for completely
unknown signals at the expense of an increased computational
cost.

6. Conclusion

The concept of SA (defined as a set of contiguous occu-
pied tiles that are adjacent to one another forming a rectan-
gular shape within a time-frequency matrix of spectrum mea-
surements) is relevant in dynamic spectrum access, verification
and enforcement of spectrum regulations, and network planning
and optimization. This work has explored the applicability of
MOs from the field of image processing in the context of SAE,
analysing their individual impacts when applied both as stan-
dalone SAE methods and as pre/post-processing techniques to
other existing SAE methods (such as CT-SA and SSA). When
used as standalone SAE techniques, the optimum choice has

been shown to be morphological dilation in the low SNR regime
and morphological opening in the high SNR regime, where the
SE used by MOs should be configured to adopt a square shape
with a small size in relation to the overall image dimensions
(e.g., around 5% or less). However, MOs as standalone SAE
techniques are usually unable to achieve high levels of accu-
racy. On the other hand, the obtained results have demonstrated
that MOs can provide significant accuracy improvements in
the accuracy of the detected SAs when combined with other
SAE methods as pre/post-processing stages with carefully se-
lected and properly configured MOs for each SNR regime. This
has been exploited in this work to propose an optimised MO-
based SAE method that selects the best combination of MO an
pre/post-processing application for each SNR range, concretely
by applying dilation at low SNR (both as pre/post-processing
stages simultaneously), opening at intermediate SNR (only as a
post-processing stage) and opening at high SNR (only as a pre-
processing stage). The corresponding optimum SNR thresholds
between the three operating regions have been determined to be
–8 dB and –5 dB, respectively, based on extensive search simu-
lation results. The application of the proposed MO-based SAE
approach can provide significant accuracy improvements both
at low SNR (with gains of up to 40%) and high SNR (reach-
ing 100% accuracy levels). This is achieved without having
a noticeable impact on the associated computational cost (and
even reducing it by up to 15% at high SNR). When used prop-
erly as indicated above, MOs can reduce false alarms and fill
gaps within the original SAs, which facilitates and simplifies
the task of detecting SAs for both CT-SA and SSA methods. As
a result, the proposed MO-based SAE method can help existing
SAE methods provide a significantly more accurate estimation
of the existing SAs without increasing, and in some cases even
reducing, their computational cost.

The results presented in this work have demonstrated that
the use MOs from the field of Image Processing have the po-
tential to provide significant performance improvements in the
problem of SAE. This motivates the investigation of other im-
age processing techniques to further improve the SAE accu-
racy, which is suggested as future work. The development of
additional new variants aimed at reducing the presence of false
alarms before the application of SAE methods, which has been
shown in previous work to improve the SAE accuracy, is an-
other idea worth investigating in detail in future work.
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