
1

Applying Deep Neural Networks for Duty Cycle
Estimation

Ahmed Al-Tahmeesschi1, Kenta Umebayashi1, Hiroki Iwata1, Miguel López-Benítez2, 3, and Janne Lehtomäki4

1Graduate School of Engineering, Tokyo University of Agriculture and Technology, Japan
2Dept. of Electrical Engineering and Electronics, University of Liverpool, United Kingdom

3ARIES Research Centre, Antonio de Nebrija University, Spain
4Centre for Wireless Communications, University of Oulu, Finland

Abstract—A pro-active spectrum usage prediction is a key
technique in decision making and spectrum selection for dynamic
spectrum access systems. This work focuses on the estimation
of the duty cycle (DC) metric to reflect spectrum usage. The
prediction is formulated as a time-series regression problem.
Deep neural networks (DNNs) is selected to obtain accurate
predictions of channel usage. Namely, Multilayer perceptron
(MLP), Long short term memory (LSTM) and a hybrid model
based on convolutional neural network followed by an LSTM
(CNN-LSTM) layer are selected. The hyper-parameters selection
has been optimised utilising both grid search and multi-stage grid
search. Moreover, in many cases, the spectrum usage is measured
on a smaller time scale from the actual required one. Hence,
down-sampling and averaging is required. Averaging operation
results in flattening the data and losing essential features to
assist DNN to predict the channel usage. We show what is the
minimum required time resolution to have a pro-active prediction
system. Then, we propose utilising feature engineering to improve
prediction accuracy. All the proposed DNNs approaches are
trained on real-life measurements. The experimental evaluation
demonstrated a high potential of DNNs to learn from previous
spectrum usage and accurately predict the spectrum usage.
Moreover, adding input features significantly assists the system
to achieve accurate predictions in a pro-active manner.

Keywords— Cognitive radio, deep neural networks, spec-
trum awareness, duty cycle.

I. INTRODUCTION

The spectrum scarcity led to a significant interest in dy-
namic spectrum access principle [1, 2]. Several spectrum
usage surveys have demonstrated the under-utilisation of the
current spectrum allocation strategies. Having a dynamic
access paradigm would highly increase spectrum efficiency
[3]. In this scenario, the spectrum would be dynamically
and autonomously assigned based on actual user usage and
demands. However, this type of approach is highly dependent
on accurate estimation of the temporal spectrum usage in terms
of duty cycle (DC). DC is defined as the fraction of one period
in which the channel is occupied.

Having a pro-active spectrum prediction system could assist
the cognitive users by reducing the energy consumption in
spectrum sensing [4] and to improve spectrum access and
minimise interference on the primary network [5]. Recently,
several attempts have been conducted to forecast the spectrum
usage such as [6] and a comprehensive survey [7]. However,
most of the conducted studies are based on conventional statis-
tical techniques (a regression approach) such as autoregressive
moving average (ARIMA) [8].

In the last few years, the topic of deep neural networks
(DNN) has attracted significant attention in the field of
wireless communications, such as in automatic modulation
recognition [9], indoor localisation [10] and path loss exponent
estimation in radio wave propagation [11]. [12] provides a
comprehensive survey on DNN utilisation in smart wireless
networks. This is mainly due to the advancement in massively
parallel GPU architecture and high-level languages [13]. Mo-
tivated by the vast applicability of DNNs, we propose the
utilisation of DNNs for spectrum usage prediction.

Even with the success of using DNNs in several areas,
only a few studies considered utilising DNN in spectrum
occupancy prediction. In [14], the channel occupancy in the
form of a binary classification is considered. The closest to
our proposed work is the one reported in [15]. Nevertheless,
there are several differences between the reported and ours.
First, different optimisation approaches are considered in both
works. Second, a hybrid DNN is also considered in our work.

Another problem not been considered in previous works is
when the dataset is down-sampled (i.e., several DC values are
block averaged). The averaged DC blocks are then used to
predict the next DC block. For instance, the measurements
provide DC estimations over 100 msec time windows, but the
network requirements predictions is over 5 seconds. In this
case, having accurate DC estimations at larger time scales
provide valuable information on which channel will be empty
for a longer period of time, hence selection of channels
with less data usage over long periods of time. Having DC
estimation over longer periods improves spectrum allocation
efficiency and reduces the number of channel hops for the
dynamic spectrum access system users. First, we show the
required block size (in time) to obtain an accurate estimation of
the next step DC. Then, we propose to improve DC prediction
by utilising input features beside the historical samples of
DC, such as, samples’ variance of the input dataset. Including
these input features provide significant improvements to the
estimation accuracy at larger DC block sizes.

This work aims to tackle the problem of downsampling by
utilising DNN with suitable tuning. Then to further improve
the prediction accuracy we introduce more input features
to assist the DNN to make a pro-active estimation. The
contributions of this work are outlined as follows:

1) Propose a spectrum usage prediction approach based
on deep neural networks, namely MLP, LSTM and a

2

hybrid CNN-LSTM. It predicts the duty cycle based on
experimental dataset.

2) The performance of DNN is highly influenced by hyper-
parameters selection. Hence, the optimisation/tuning of
the DNNs is accomplished by utilising grid search al-
gorithm for the case of MLP and LSTM. A multi-layer
grid search is implemented for CNN-LSTM. Extensive
evaluation of the proposed methods is presented.

3) It is shown that the minimum average window size to
accurately estimate the DC is 1 sec. This can be extended
to 5 sec by applying feature engineering and extracting
information from the input dataset to be used as features
(such as, variance, slope) on the input data to further
enhance the prediction accuracy.

The remainder of this paper is organised as follows. First,
Section II presents the measurement system and the problem
addressed in this work. Section III presents the considered
models for time-series prediction with the evaluation metrics
to assess the prediction performance. The hyper-parameters
optimisation approaches are described in Section IV. Section
V presents dataset preprocessing and preparations, as well as,
data feature engineering. Section VI provide the simulation
results for the considered prediction methods. Finally, Section
VII summarises and concludes this work.

II. MEASUREMENT SETUP AND METHODOLOGY

A measurement system has been developed to continuously
monitor the spectrum usage data as seen in Fig. 1. The system
includes two real time spectrum analysers (RSAs), an external
control trigger, a network attached storage (NAS), a measure-
ment system control computer, a data analysis computer and a
switching hub. The RSAs are configured to monitor the same
channel, hence they operate in an alternating manner. The first
RSA captures the IQ data while the second RSA transfers the
captured IQ data to the network storage unit. The alternating
functionality is controlled by the external trigger which is in
turn controlled by the measurement system control computer.
All data processing, such as detection and DC calculation are
handled by the data analysis computer [16].

All spectrum usage measurements took place in WiFi chan-
nel 6 (centred at 2427MHz) with a sampling frequency of 1.75
MHz and bandwidth of 1.25 MHz. The first RSA will measure
the IQ data over a time duration of)B = 100 msec. Meanwhile,
the second RSA will upload the previously captured IQ data to
the network storage device. Then they swap operation (i.e., the
first RSA uploads captured IQ and second RSA measures the
IQ). By this alternating strategy, measurements without time
domain gaps are achieved. As for signal detection, constant
false alarm ratio (CFAR) strategy with probability of 0.01
is utilised. In order to find the detection threshold, one of
the RSAs antennas was terminated and the noise floor was
estimated based on dataset of 5 mins.

The measurement dataset spanned over 4 days, which pro-
vided 3456000 DCs sampled over 100 msec. It is important
to notice that each DC value is based on large number of
samples (received within 100 msec window). While it is
possible to utilise an even smaller time duration ()B) for
the DC estimation, but this would result in having a larger
dataset with a significant increase in DNN training complexity

Network Attached
storage

Data analysis
computer

Measurement
system

control computer

Switching
hub

RSA 2

Trigger

RSA 1

Fig. 1. Measurement system.

and larger storage requirement. Moreover, from the obtained
results, it can be concluded that there is no need for higher
time resolution as will be shown in Section VI.

The input measurements consist of the temporally ordered
spectrum usages Φ estimated at every 100 msec. In many
cases, it is beneficial to obtain Φ estimation over longer
periods. From a regression point of view, time resolution of
input data should be equal to that of the values to be predicted.
Hence a new spectrum usage (Φ2) with estimation window of
)2 can be defined as:

Φ2 =

∑
:=1Φ:

, (1)

where, =
)2

)B
and : is the DC index number. In Section VI,

the estimation accuracy of different)2 values is studied.

III. PREDICTION METHODS

In this section, first the considered models for time-series
prediction are introduced, then the evaluation metric to asses
the prediction performance of a DNN is defined.

A. MLP network
An MLP network is a feed-forward neural network based

on the back propagation algorithm. An MLP consists of at
least 3 fully connected (dense) layers namely, input layer,
hidden layer(s) and output layer [17]. Each of the network
layers includes a single or multiple neurons. The mathematical
representation of a neural output is given as:

H< = k

(
=∑
8=1

F8G8 + 1
)
, (2)

where F and G with different subscripts are the weights of
transformation and input to neurons respectively and 1 is the
bias. H< is the neuron output. = is the number of inputs to
a neuron and k(.) is the non-linear activation function. The
activation function is used to describe the non-linear properties
between neuron input and output. In this work its assumed
that k(.) is a ReLU activation function which is defined as
k(I) = <0G(0, I). Using ReLU function in the hidden layers
provides several advantages over other activation functions
such as sigmoid or Tanh including the increase in training
speed and reducing the likelihood of vanishing gradient [18].

B. LSTM network
An LSTM network is a special type of recurrent neural net-

works (RNNs). It was first proposed in [19] as an improvement
over RNN. RNNs are usually used for time-series data type.
Similar to any DNN type, an LSTM includes an input layer,

3

tanh

σ tanh σ X

X

+X

σ

ℎ𝑡

ℎ𝑡

𝑥𝑡

ℎ𝑡−1

𝑐𝑡
𝑐𝑡−1

𝑜𝑡

𝑖𝑡𝑓𝑡
ĉ𝑡

Fig. 2. LSTM cell.

hidden layer(s) and an output layer. LSTM was proposed to
solve the problem of long term dependencies by adding an
adaptive memory unit (cell state). The cell state unit value is
only changed in a linear manner as can be seen in Fig. 2.

A standard LSTM layer includes three gates, an input gate
(8C), a forget gate (5C) and an output gate (>C). The input gate
decides the amount of input GC to the control unit 2C . The forget
gate adjusts the value of the previous control unit 2C−1. The
output gate controls the extent to which the value in memory
is used to compute the output activation block. The gates are
implemented with a sigmoid function which outputs a value
between 0 and 1 to control information flow in an LSTM layer.
The mathematical representation of the gates is given as:

8C = f
(
, 8
G · GC +, 8

ℎ · ℎC−1 + 18
)
, (3)

5C = f

(
,
5
G · GC +, 5

ℎ
· ℎC−1 + 1 5

)
, (4)

>C = f
(
,>
G · GC +,>

ℎ · ℎC−1 + 1>
)
, (5)

where ,G ,,ℎ and 1 are the input weights, recurrent weights
and the biases in an LSTM cell, respectively. f is the sigmoid
function. GC and ℎC−1 are the input and the preceding hidden
state values, respectively. Before generating the hidden state
2C a temporary value 2̂C is generated first as follows:

2̂C = C0=ℎ
(
,2
G · GC +,2

ℎ · ℎ8−1 + 12
)
, (6)

then, the updated hidden state is obtained from:

2C = 8C � 2̂C + 5C � 2C−1, (7)

where � denotes the element-wise multiplication. Finally, the
output of LSTM block can be expressed as:

ℎC = >C � C0=ℎ(2C). (8)
From the above expressions, it can be concluded that the

gates play a vital role in controlling the historical information
travelling in the LSTM networks.

C. Hybrid CNN-LSTM network

A hybrid CNN-LSTM is also considered in this work. The
CNN part of the network consists of a single or several
1D convolutional layer(s) and a flatten layer. As the name
implies, a convolutional layer performs convolution operation
to amplify local features and produce the feature map. The
convolutional layer utilises only part of the previous layer
connections which makes it more efficient than a dense layer.
The output of a convolutional layer is then fed to the flattened
layer to transform it into one long vector that can then be
used as input to the subsequent layers. The output of CNN

network is fed to the subsequent LSTM network to learn long-
range temporal dependencies. Adding a CNN layer on top
of LSTM makes the DNN even more suitable for estimation.
More details are presented in Section IV-B.

A pooling layer is not considered in this work as it involves
downsampling for the output of convolutional layers, which
could lead to loss of sequence characteristics. A similar
approach can be found in [9]. A vanilla CNN is usually utilised
for image like data [20], hence results for a stand-alone CNN
are not considered in this work.

D. Performance evaluation metrics

In order to assess the suitability of the proposed models in
predicting the DC, the R Squared ('2) metric is considered
[21]. The '2 takes values of the range between −∞ and 1

making it easier to interpret. Values of '2 closer to 1 indicate
that the model accounts for most of the variance in the dataset.

'2 = 1 −
∑#
:=1 (H: − Ĥ:)

2∑#
:=1 (H: − H̄:)

2
, (9)

where H: and Ĥ: are the actual and predicted DC values
respectively. # is the number of predictions and H̄: is the
mean of the actual DCs.

IV. HYPER-PARAMETERS OPTIMISATION

The hyper-parameters design is an essential task in the
design of DNNs. In this section, two hyper-parameters opti-
misation approaches are considered, grid search (GS) utilised
for MLP and LSTM and multi-stage grid search applied for
hybrid CNN-LSTM.

A. Grid search

The performance of a DNN is highly influenced by the
selection of the hyper-parameters. In order to properly tune
the DNN, an exhaustive grid-search is utilised to find the
optimal hyper-parameters’ values. Fig. (3), demonstrates the
flowchart of the proposed GS algorithm. The architecture of
MLP is utilised for explanation purposes. Nevertheless, the
same concept is also applicable to LSTM networks. A total
of 256 (44) possible combinations for each DNN (MLP and
LSTM) model are searched through using GS. The following
hyper-parameters are optimised:

1) The first hyper-parameter to optimise is the depth of the
neural network (i.e., the number of hidden layers). The
number of hidden layers is set to 1, 2, 3, and 4. Adding
more layers increases the model ability to interpret inputs
to outputs, but would result in overfitting with training
dataset if too many layers were added.

2) The number of neurons or selecting the width of the
neural network. In theory, a very wide neural network
with a single hidden layer can obtain the same accuracy
as a multi-layer deep neural network at the expense of
increasing the complexity of training. In this work, the
widths of 10, 20, 30 and 40 are considered for all hidden
layers.

3) The activation function transforms the summed weighted
inputs to the output. The following linear and non-linear
activation functions are considered in this work: sigmoid,

4

Start

Load
dataset

Apply hyper-parameters
grid search for number of
hidden layers, number of

neurons, activation
function and dropout rate

End

X

X

Prediction

Input layer

Output layer

Hidden
layers

Fig. 3. Grid search flowchart.

TABLE I
HYPER-PARAMETERS SETTINGS FOR THE GRID SEARCH.

Hyper-parameter Settings
Number of hidden layers 1, 2, 3, 4
Number of neurons 10, 20, 30, 40
Output activation function Tanh, Linear, Sigmoid, ReLU
Drop out 1, 0.9, 0.75, 0.5
Batch size 128
Learning rate 0.001
Losses MSE
Optimiser Adam
Epochs 300

ReLU, Tanh and linear. The activation functions are
applied to the third layer (output layer).

4) The last hyper-parameter is the dropout rate. Dropout is
used as a regularisation method where some number of
layer output is randomly ignored. The dropout is only
applied on the hidden layers neurons’. The dropout rate
is selected to have values of 1.0, 0.9, 0.75, and 0.5, where
1.0 means no drop out is considered.

Table I summarises the considered hyper-parameters for
MLP and LSTM.
B. CNN-LSTM hyper-parameters selection

The grid search algorithm provides an optimal hyper-
parameters optimisation, but suffer from high computational
complexity. Implementing directly a grid search to optimise all
the hyper-parameters in the hybrid CNN-LSTM would require
a significant amount of time and resources. Inspired by the
multi-stage deep model optimisation proposed in [22], a new
optimisation stage for the CNN is added. The optimisation
procedure would be to first optimise hyper-parameters of the
LSTM layer, then the CNN.

The CNN hyper-parameters are optimised on top of the op-
timum LSTM layer (i.e. optimum values for hyper-parameters
obtained from normal GS) as can be seen in Fig. 4. The
following CNN hyper-parameters are optimised.

1) The number of convolution layers act as feature or pattern
detectors. First layer detects large features, then second
layer smaller features and so on. Adding many layers
might result in over-fitting and saturation.

2) The number of filters decides how many filter weights
are learned during backpropagation algorithm.

3) The filter size, usually a small number of filters is utilised.
The value of filters are automatically decided based on
the dataset and backpropagation algorithm.

Start

Apply CNN hyper-
parameters grid search

for number of
convolutional layers,
number of filters and

filter size

End

Use optimised
LSTM model
Based on GS
from Fig 3.

Fig. 4. Two stage grid search.

TABLE II
CNN LAYER HYPER-PARAMETERS SETTINGS FOR THE GRID SEARCH.

Hyper-parameter Settings
Number of convolutional layers 1, 2, 3, 4
Number of filters 32, 64, 128
Kernel length 2, 3, 4
Pooling layer size 1, 0.9, 0.75, 0.5
Batch size 128
Learning rate 0.001
Losses MSE
Optimiser Adam
Epochs 300

A ReLU activation function is utilised for all of the con-
volutional layers. Table II summarises the considered hyper-
parameters for CNN-LSTM.

V. DATASET PREPROCESSING

This section describes the dataset preparations for super-
vised DNN as well as features extraction for improved pre-
diction accuracy.

A. Walk forward validation
The supervised training dataset is made using sliding win-

dow validation approach. The dataset is divided into sliding
windows. Each time step of the training dataset will be walked
one step at a time (one step here is a single DC value). The
sliding window size is set to the number of historical DC
measurements. The walk forward could be thought of as in
real-life scenario where at every time a spectrum measurement
is done and used to forecast the following DC.

B. Testing for stationary
The advances in DNN methods made them rather inde-

pendent on data preprocessing (such as scaling and differ-
encing). This statement holds to a large extent for MLPs,
but an LSTM for time-series forecasting might require some
preprocessing to further improve it is performance. Mainly, the
data should be tested for stationarity (i.e., the dataset should be
time independent and maintain the same mean, variance and
autocorrelation throughout the time). Stationarity is essential
to improve the LSTM model prediction accuracy.

All of the re-sampled time series at different time instants
need to be tested for stationarity. If the series were found to
be nonstationary, then methods such as differencing must be
included before the training phase. The augmented Dickey-
Fuller (ADF) statistical test which is part of unit root test is
used to confirm whether the datasets are stationary or non-
stationary [23]. When the ? value is above 0.05, the null
hypothesis is failed to be rejected, hence, the data has unit root
and thus none stationary. Otherwise, the dataset does not have
a unit root and is thus stationary. After analysing our datasets,
the dataset is found to be stationary for all time steps samples.

5

MLP1 MLP2 MLP3 MLP4

0.956

0.958

0.960

0.962

0.964

R
2

MLP

(a)

LSTM1 LSTM2 LSTM3 LSTM4

0.956

0.958

0.960

0.962

0.964

R
2

LSTM

(b)

CNN1-LSTM3 CNN2-LSTM3 CNN3-LSTM3 CNN4-LSTM3

0.956

0.958

0.960

0.962

0.964

R
2

CNN-LSTM

(c)

Fig. 5. Accuracy for multiple DNNs with)2 = 1 sec and only DC as input feature. (a) MLP, (b) LSTM, (c) CNN-LSTM.

C. Input features engineering
In many cases, the estimated spectrum usage window needs

to be higher than the original dataset. In a time-series dataset,
this means the original data set needs to be averaged then
downsampled (i.e., block averaging). The problem becomes
more significant as the window size increases (with both and
)2 being larger) as averaging would flatten the input dataset
rendering a pro-active prediction significantly more complex.

To overcome this problem, we propose the inclusion of the
following features besides the downsampled DC (Φ2). Hence
the input vector to the DNN will have the shape of I × ?,
where I is the number of look back points and ? is the number
of input features. The considered input features are the input
sample variance, slope and last DC value (i.e., Φ).

1) Observed variance of input samples. The idea of using
the observed variance is to provide a measure of how
much fluctuation is present in the downsampled dataset.
It can be computed as: +0A (Φ) =

∑
:=1 (Φ:−Φ2)2

.

2) Slope between the last two DC components. It provides
an understanding if the Φ value was increasing or de-
creasing. It can be estimated as: B;>?4 = Φ −Φ −1.

3) The last DC component Φ (i.e., the last value before
downsampling for the given time window).

VI. EXPERIMENTAL EVALUATION

In this work, Python 3 language is used alongside Keras
[24] API with TensorFlow [25] as backend. Given that neural
networks models are stochastic, hence, different weights will
result at each training time even when the same model con-
figuration is utilised. In order to address the model accuracy
evaluation, each model configuration is evaluated multiple
times (10 times in our case). The reported accuracy is averaged
across the evaluations. A batch size of 128 is used for the
training. The maximum number of epochs is set to 300. To
ensure the DNNs do not overfit, an early stopping algorithm is
utilised with an early stop of 20. At each prediction point, we
assume that 5 previous DC measurements are present when
making the prediction.

First, we would like to investigate the impact of adding
more hidden layers on accuracy. Based on the optimised hyper-
parameters for each of the hidden layers number, the boxplot
of the best performing DNN models is shown in Fig. 5. The
middle line inside each box represents the median accuracy
value and the lower and upper edges represent the first and
third quartiles, respectively. The end of whiskers shown on

the lower and upper sides are the minimum and maximum
values, respectively. The small circles are the outlier values.

Fig. 5(a) shows the performance of four MLP architectures
with different hidden layers number. MLP1 means a single hid-
den layer, MLP2 means two hidden layers and so on. Sigmoid
activation function was found to provide the best outcome
with 40 neurons in each hidden layer and no dropout. As can
be appreciated, MLP3 and MLP4 have similar performances
with a slight advantage for MLP3 in terms of a slightly better
median value and less complexity, hence will be considered
in the rest of this work. This could be a result that all signal
characteristics are being learned when having 3 hidden layers.
Hence no actual benefit from adding extra layers. As for
Fig. 5(b), shows LSTM network prediction accuracy. LSTM1,
LSTM2, LSTM3, and LSTM4 refer for single, two, three
and four hidden layers, respectively. Three hidden layers is
found to provide the best performance in terms of median
values. Interestingly, even though LSTM is considered as
more suitable for time-series type of data, it provided less
accuracy than MLP3. The LSTM gave smaller median value
in comparison with the MLP but with smaller variance which
means more consistent results when compared with MLP. The
accuracy of the hybrid CNN-LSTM is shown in Fig. 5(c).
As can be appreciated, the hybrid CNN4-LSTM3 (CNN4
stands for 4 convolutional layers) gave the best accuracy
when compared to other CNN-LSTMs, stand-alone MLP3 and
LSTM3. It can be concluded that using a hybrid CNN-LSTM
slightly improves the prediction accuracy.

As can be appreciated from Fig. 6, when utilising a small
averaging window of)2 = 1 sec the accuracy of prediction
is high and the DNN models can predict the actual DC with
high accuracy and without having time delayed predictions.
Unfortunately, this observation does not hold when)2 = 5 sec.
As can be seen in Fig. 7, all the DNNs provide an inaccurate
predictions. This indicates that the input spectrum usage data
is losing some essential features, rendering it difficult to have
a pro-active estimation of future spectrum utilisation.

Table III shows the prediction accuracy for the proposed
DNN models as a function of time and input features. In
general, the hybrid CNN4-LSTM3 provides improvement in
accuracy over MLP3 and LSTM3 depending on)2 value.
Nevertheless, when)2 > 1 sec, the prediction accuracy
degrades significantly for all the proposed DNNs. Using DC
as the only input feature is insufficient as long as the DC
estimation is no longer than 1 sec. This means the larger

6

0 10 20 30 40 50
Time in seconds

0.3

0.4

0.5

0.6

0.7

0.8

0.9
DC

Only DC input, predictions vs actual for Tc = 1 sec
Actual
LSTM
MLP
CNN-LSTM

Fig. 6. Accuracy for)2 = 1 sec and only DC as input feature.

the averaging window, the more features are being lost in
the downsampling phase which makes it more difficult for
the DNN to estimate the next DC value. Thus, we propose
the addition of more features to the input layer to have an
accurate representation of the input sequence. Hence, a more
robust trained DNN.

The third columns set under "DC+Var" of Table III show
when both DC and sample variance are used together for the
estimation. Both of the last value and slope have significant
importance at improving the estimation accuracy. Another
important observation is that MLP, which is the least complex
model, provided decent results. In fact, MLP has surpassed
LSTM nearly in most scenarios and provided more accurate
predictions. The CNN-LSTM provided a minor improvement
over MLP. The results suggest that the most important feature
is when the last DC value Φ is available, which provided
most of the improvement, while when using all the input
features further improvement can be noticed.

Figs. 8 and 9 show the prediction accuracy when DC with
last value Φ and all input features are used, respectively.
While the first case improves the prediction over when only
having DC historical information. Nevertheless, Having all
features further improve the prediction accuracy.

Finally, Table III shows that both MLP and CNN-LSTM
have comparable results. Hence we provide the probability
density function (PDF) of the residuals (actual - prediction)
is plotted in Fig. 10. As it can be appreciated positive means
model is underestimating the actual values and minus means
overestimating. Ideally, the best performance achieved when
the PDF has a peak at residuals = 0.0 and the PDF is
zero everywhere else. In case of spectrum assignment and
selection, it is preferred to have an over estimation of the
actual spectrum utilisation than underestimation. As protecting
the primary user from interference prevails over secondary
network performance. Hence the hybrid CNN-LSTM provides
a better estimation of DC.

Future work will include further improving the estimation of
DC through larger time scales averaging windows)2 , besides
studying the optimum number of delays that are required for
the input.

0 50 100 150 200 250
Time in seconds

0.3

0.4

0.5

0.6

0.7

0.8

0.9

DC

Only DC input, predictions vs actual for Tc = 5 sec
Actual
LSTM
MLP
CNN-LSTM

Fig. 7. Accuracy for)2 = 5 sec and only DC as input feature.

0 50 100 150 200 250
Time in seconds

0.3

0.4

0.5

0.6

0.7

0.8

0.9

DC

DC and last value, predictions vs actual for Tc = 5 sec
Actual
LSTM
MLP
CNN-LSTM

Fig. 8. Accuracy for)2 = 5 sec and DC and Φ: as input features.

VII. CONCLUSIONS

A pro-active spectrum usage estimator is essential for dy-
namic access systems. In this work, the feasibility of using
DNNs for pro-active spectrum prediction is investigated. Sev-
eral DNN models namely, MLP, LSTM and hybrid CNN-
LSTM have been proposed for the problem of spectrum
occupancy prediction. It is shown that for WiFi systems it
is possible to obtain accurate DC estimation when using a
window duration of 1 second with only DC as input feature.
Unfortunately, when increasing the DC estimation window the
accuracy of DNNs reduced rapidly. To solve this, a solution is
proposed based on utilising more input signal features (such
as, variance and slope) to assist the DNN to learn useful
features on the input time-series dataset. Simulation results
demonstrated high potential of DNNs to learn from previous
spectrum usage and accurately predict the spectrum usage
especially when adding multiple input features and hence
increasing the prediction time scale ()2).

ACKNOWLEDGEMENT

This work was supported by the European Commission
in the framework of the H2020-EUJ-02-2018 project 5G-
Enhance (Grant agreement no. 815056) and the Ministry

7

TABLE III
ACCURACY OF PREDICTIONS,)2 IS GIVEN IN MSEC.

Tc DC DC + Var DC + Slope DC + Last All
MLP LSTM C-LSTM MLP LSTM C-LSTM MLP LSTM C-LSTM MLP LSTM C-LSTM MLP LSTM C-LSTM

0.5 0.992 0.992 0.995 0.992 0.992 0.995 0.997 0.997 0.998 0.996 0.997 0.997 0.997 0.997 0.997
1 0.96 0.962 0.966 0.96 0.962 0.968 0.986 9885 0.989 0.987 0.987 0.991 0.989 0.99 0.993
3 0.777 0.785 0.786 0.807 0.791 0.827 0.797 0.788 0.828 0.922 0.924 0.928 0.938 0.934 0.939
5 0.634 0.643 0.650 0.668 0.650 0.678 0.783 0.781 0.788 0.848 0.844 0.847 0.871 0.858 0.881
8 0.347 0.329 0.351 0.4 0.351 0.453 0.499 0.517 0.526 0.723 0.714 0.731 0.749 0.734 0.749
10 0.263 0.241 0.267 0.309 0.231 0.323 0.411 0.369 0.418 0.653 0.588 0.667 0.684 0.665 0.697

0 50 100 150 200 250
Time in seconds

0.3

0.4

0.5

0.6

0.7

0.8

0.9

DC

All features inputs, predictions vs actual for Tc = 5 sec
Actual
LSTM
MLP
CNN-LSTM

Fig. 9. Accuracy for)2 = 5 sec and all input features.

0.15 0.10 0.05 0.00 0.05 0.10 0.15 0.20
Residuals

0

2

4

6

8

10

12

PD
F

All features inputs residulas for Tc = 5 sec
MLP
LSTM
CNN-LSTM

Fig. 10. Residuals density for)2 = 5 sec and all input features.

of Internal Affairs and Communications (MIC) Japan. The
work of M. López-Benítez was supported by British Council
under UKIERI DST Thematic Partnerships 2016-17 (ref. DST-
198/2017). The work of J. Lehtomäki was supported by the
Academy of Finland 6Genesis Flagship (grant no. 318927).

REFERENCES

[1] C. H. Liu, P. Pawelczak, and D. Cabric, “Primary user traffic classifica-
tion in dynamic spectrum access networks,” IEEE Journal on Selected
Areas in Comms., vol. 32, no. 11, pp. 2237–2251, November 2014.

[2] I. F. Akyildiz, W.-Y. Lee, M. C. Vuran, and S. Mohanty, “Next
generation/dynamic spectrum access/cognitive radio wireless networks:
A survey,” Comput. Netw., vol. 50, no. 13, pp. 2127–2159, Sep. 2006.

[3] T. Fujii and K. Umebayashi, “Smart spectrum for future wireless world,”
IEICE Transactions on Communications, vol. E100B, no. 9, pp. 1661–
1673, Sep. 2017.

[4] X. Xing, T. Jing, Y. Huo, H. Li, and X. Cheng, “Channel quality
prediction based on bayesian inference in cognitive radio networks,”
in 2013 Proceedings IEEE INFOCOM, April 2013, pp. 1465–1473.

[5] P. Zuo, X. Wang, W. Linghu, R. Sun, T. Peng, and W. Wang, “Prediction-
based spectrum access optimization in cognitive radio networks,” in 2018
IEEE 29th Annual International Symposium on Personal, Indoor and
Mobile Radio Communications (PIMRC), Sep. 2018, pp. 1–7.

[6] K. E. Baddour, A. Ghasemi, and H. Rutagemwa, “Spectrum occupancy
prediction for land mobile radio bands using a recommender system,”
in 2018 IEEE 88th Vehicular Technology Conference (VTC-Fall), Aug
2018, pp. 1–6.

[7] G. Ding, Y. Jiao, J. Wang, Y. Zou, Q. Wu, Y. Yao, and L. Hanzo,
“Spectrum inference in cognitive radio networks: Algorithms and appli-
cations,” IEEE Communications Surveys Tutorials, vol. 20, no. 1, pp.
150–182, Firstquarter 2018.

[8] Z. Wang and S. Salous, “Spectrum occupancy statistics and time series
models for cognitive radio,” Journal of Signal Processing Systems,
vol. 62, no. 2, pp. 145–155, Feb 2011.

[9] Y. Wang, M. Liu, J. Yang, and G. Gui, “Data-driven deep learning for
automatic modulation recognition in cognitive radios,” IEEE Transac-
tions on Vehicular Technology, vol. 68, no. 4, pp. 4074–4077, Apr 2019.

[10] S. Liu, R. Y. Chang, and F. Chien, “Analysis and visualization of deep
neural networks in device-free wi-fi indoor localization,” IEEE Access,
vol. 7, pp. 69 379–69 392, 2019.

[11] H. F. Ates, S. M. Hashir, T. Baykas, and B. K. Gunturk, “Path loss
exponent and shadowing factor prediction from satellite images using
deep learning,” IEEE Access, vol. 7, pp. 101 366–101 375, 2019.

[12] Q. Mao, F. Hu, and Q. Hao, “Deep learning for intelligent wireless
networks: A comprehensive survey,” IEEE Communications Surveys
Tutorials, vol. 20, no. 4, pp. 2595–2621, Fourthquarter 2018.

[13] T. O’Shea and J. Hoydis, “An introduction to deep learning for the
physical layer,” IEEE Transactions on Cognitive Communications and
Networking, vol. 3, no. 4, pp. 563–575, Dec 2017.

[14] Lixing Yu, Qianlong Wang, Yifan Guo, and Pan Li, “Spectrum availabil-
ity prediction in cognitive aerospace communications: A deep learning
perspective,” in 2017 Cognitive Communications for Aerospace Appli-
cations Workshop (CCAA), June 2017, pp. 1–4.

[15] L. Yu, J. Chen, G. Ding, Y. Tu, J. Yang, and J. Sun, “Spectrum prediction
based on taguchi method in deep learning with long short-term memory,”
IEEE Access, vol. 6, pp. 45 923–45 933, 2018.

[16] H. Iwata, K. Umebayashi, J. Lehtomäki, M. López-Benítez, and S. Nar-
ieda, “Development of a smart spectrum access prototype,” in 26th
European Conference on Networks and Communications (EuCNC 2017),
Jul 2017, pp. 1–2.

[17] J. Schmidhuber, “Deep learning in neural networks: An overview,”
Neural Networks, vol. 61, pp. 85 – 117, 2015.

[18] X. Glorot, A. Bordes, and Y. Bengio, “Deep sparse rectifier neural
networks,” in Proceedings of the Fourteenth International Conference
on Artificial Intelligence and Statistics, ser. Proceedings of Machine
Learning Research, G. Gordon, D. Dunson, and M. Dudík, Eds., vol. 15.
Fort Lauderdale, FL, USA: PMLR, 11–13 Apr 2011, pp. 315–323.

[19] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
computation, vol. 9, pp. 1735–80, 12 1997.

[20] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,
2016, http://www.deeplearningbook.org.

[21] A. C. Cameron and F. A. Windmeijer, “An r-squared measure of
goodness of fit for some common nonlinear regression models,” Journal
of Econometrics, vol. 77, no. 2, pp. 329 – 342, 1997.

[22] A. Tahmassebi, A. H. Gandomi, S. Fong, A. Meyer-Baese, and S. Y.
Foo, “Multi-stage optimization of a deep model: A case study on ground
motion modeling,” PLOS ONE, vol. 13, no. 9, pp. 1–23, 09 2018.

[23] W. Enders, Applied econometric time series. Wiley, 2015.
[24] F. Chollet et al., “Keras,” https://github.com/fchollet/keras, 2015.
[25] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, and

et al., “TensorFlow: Large-scale machine learning on heterogeneous
systems,” 2015, software available from tensorflow.org.

