
Accurate Estimation of Primary User Traffic
Based on Periodic Spectrum Sensing

Ahmed Al-Tahmeesschi∗, Miguel López-Benı́tez∗, Janne Lehtomäki† and Kenta Umebayashi‡
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Abstract—An accurate estimation of the primary statistics
is essential for Cognitive Radio (CR) systems. This knowledge
can be exploited to enhance CR performance and reduce the
interference with the primary users. In this work, we propose a
method based on the Method of Moments (MoM) to improve
the distribution estimation. A Modified Method of Moments
(MMoM) with a correction factor is proposed to improve the
estimation of moments and thus the resulting primary distri-
bution. The simulation and experimental results show that the
MMoM approach is notably more accurate. Finally, we study the
importance of having a sufficiently large sample space and the
effect of sample size on the moments and the primary distribution
estimation.

Keywords— Cognitive radio, spectrum sensing, primary
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I. INTRODUCTION

Cognitive Radios (CR) are proposed as a solution for the

spectrum scarcity problem by allowing secondary users (SU)

to access primary users (PU) channel (spectrum holes) in an

opportunistic and non-interfering manner. Spectrum sensing is

essential to reduce the interference [1, 2].

CR have to work in a fast and accurate manner to identify

empty slots in the spectrum. In order to improve the perfor-

mance of CR, the knowledge of previous spectrum occupancy

pattern (distribution) can be exploited to improve the system

performance [3]. Statistical information such as the duration of

past busy/idle periods, duty-cycle, their minimum, mean and

variance, or the underlying distribution can be used to access

the spectrum more effectively by selecting the most appropri-

ate channel for transmission [4] and enhancing the forecasting

of PU occupancy pattern to minimize the interference [5].

The activity statistics of the primary channels are initially

unknown to the CR users and are estimated using spectrum

sensing decisions. CR users sense the channel state periodi-

cally and in every sensing event a binary decision (idle/busy)

is made based on an appropriate spectrum sensing (signal

detection) algorithm [6]. While the main purpose of spectrum

sensing is the detection of transmission opportunities [7], the

sequence of spectrum sensing decisions can also be used to

estimate the durations of the idle and busy periods and their

statistics. In this case the spectrum sensing function is divided

into two layers: the first layer is in charge of detecting the

instantaneous on/off state and the second layer is in charge of

spectrum awareness and the estimation of PU activity [8].

The estimation of primary activity statistics by means of

periodic channel observations is impaired by several practical

limitations that determine the accuracy to which such statistics

can be known by the CR system. Firstly and most importantly,

the use of a finite sensing period imposes a fundamental

limit on the temporal resolution to which the duration of

idle and busy periods can be measured. Secondly, channel

statistics need to be inferred based on a limited number of

channel observations (samples). The objective of this work is

to improve the estimation of PU activity statistics (focusing

on the distribution of PU activity busy/idle periods). A novel

method is proposed based on the Method of Moments (MoM)

to improve the PU distribution estimation under spectrum

sensing impairments. The impact of sensing errors (i.e., false

alarms and missed detections) is out of the scope of this work

and hence a high signal-to-noise ratio (SNR) scenario with

no sensing errors is considered. The low SNR scenario with

spectrum sensing errors will be considered in future work.

The contribution of this work is threefold:

1) A novel method to palliate the effects of spectrum sensing

on the distribution estimation is proposed.

2) The effects of sample size on the estimation of moments

at the SU side is studied.

3) Experimental results are provided to validate the proposed

method and simulations.

The remainder of this paper is organized as follows. First,

Section II describes the system model considered in this work.

The effect of sensing period on the moments estimation is

analysed in Section III. Section IV presents the proposed dis-

tribution estimation methods. The simulation and experimental

results of the proposed methods are analysed thoroughly in

Section V. Finally, Section VI concludes the paper.

II. SYSTEM MODEL

In this paper, a single SU is considered to detect PU activity.

The SU performs spectrum sensing decisions with periodicity

Ts time units (t.u.) to detect the presence/absence of PU signal

on a specific frequency band. The results of the decisions

are introduced as a binary alternating state: busy when the

PU signal is present at the SU and idle when the PU signal

is absent at the SU. The computed elapsed time (at SU)

between two PU state changes is considered as an estimation

T̂i of the real period duration Ti (i = 0 for idle periods and

i = 1 for busy periods) as illustrated in Fig. 1, where the

estimation of the duration of a busy is shown (idle periods can

be estimated using the same method). The estimated period

durations are integer multiples of Ts (i.e., {T̂i,n}
Ns

n=1 = kTs,

with k, n,Ns ∈ N+, where k represents the number of sensing
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Fig. 1. Considered model. Ts, T1, T̂1 represent the sensing period, original
busy period and estimated busy period, respectively. Tx

e and T
y
e are the errors

in period estimation.

events within the estimated period, n represents the period

index such that more recent periods have higher index values

and Ns is the number of transmitted periods). A similar model

was considered in [9, 10].

Primary activity statistics can be estimated based on the

observed idle/busy period durations. To this end, CR users

sense the channel with a specific periodicity duration of Ts

(assumed to be lower than or equal to the minimum PU

activity duration). Based on these channel states observations

at specific sensing instants, CR makes an estimation T̂i of the

real period duration Ti, which can be modelled as T̂i = Ti+Te,

where Te represents the error component in the estimation of

Ti as a result of spectrum sensing. Te is represented by the

sum of two error components (i.e., Te = T y
e − T x

e ), where

both of T x
e and T y

e can take values within the interval [0, Ts].
Hence they can be assumed to be uniformly distributed random

variables (i.e., T x
e and T y

e ∼ U(0, Ts)) independent of each

other (a similar assumption can be found in [10, 11]). Since

T x
e and T y

e are assumed independent of each other, then the

pdf of the combined error Te (which is the sum of T y
e and

−T x
e ) can be obtained as the convolution of the distributions

of T y
e ∼ U(0, Ts) and −T x

e ∼ U(−Ts, 0) [12], which leads

to a symmetric triangular distribution with a width of 2Ts.

To account for the discrete feature of the estimated periods,

a second model is here considered. It can be shown that the

estimated periods can also be expressed as:

T̂i =

(⌊
Ti

Ts

⌋
+ ξ

)
Ts (1)

where ⌊·⌋ denotes the floor operator and ξ ∈ {0, 1} is a

Bernoulli random variable introduced to reflect the fact that

the same original period Ti can lead to two possible estimated

periods, either T̂i = kTs or T̂i = (k+1)Ts, depending on the

relative (random) position of the sensing events with respect

to the beginning/end of Ti.

III. ESTIMATION OF THE MINIMUM, MEAN, VARIANCE

AND DUTY CYCLE

A. Estimation of the Minimum Period Duration

As mentioned earlier, CR systems estimate the PU activ-

ity pattern based on the discrete observation periods τ̂i =
{T̂i,n}

Ns

n=1, where Ns represents the number of observed peri-

ods (sample size of τ̂i). In order to have accurate estimations

of the distribution, the sample size Ns has to be sufficiently

large. The minimum activity duration was simulated in [9],

nevertheless we provide a closed form expression for the

estimation of minimum PU activity time (µ̂i) and link it to

the sensing period (Ts). The proposed expression is based on

the second probabilistic model described in Section II:

µ̂i = min(τ̂i) ≈ min(T̂i) = min

[(⌊
Ti

Ts

⌋
+ ξ

)
Ts

]

=

⌊
µi

Ts

⌋
Ts

(2)

Note that the minimum value in (2) corresponds to min(Ti) =
µi and min(ξ) = 0.

B. Estimation of the Mean and Variance of Period Durations

Given a set of Ns discrete periods τ̂i = {T̂i,n}
Ns

n=1, the

mean E(T̂i) and variance V(T̂i) of the provided durations can

be estimated based on the corresponding sample moments:

E(T̂i) =
1

Ns

Ns∑

n=1

T̂i,n (3)

V(T̂i) =
1

Ns − 1

Ns∑

n=1

(T̂i,n − E(T̂i))
2 (4)

The impact of Ts on the estimated moments (first and second)

can be determined as follows:

E(T̂i) = E(Ti) + E(Te) = E(Ti) (5)

V(T̂i) = V(Ti) + V(Te) = V(Ti) +
T 2
s

6
(6)

where Ti and Te are assumed to be independent of each other,

and E(T̂e) and V(T̂e) have been replaced with the mean and

variance of the triangular distribution described in Section II.

The triangular distribution in this case has a mean value of

zero (i.e., E(Te) = 0), which means that the duration of Ts

does not affect the calculation of the mean value. On the other

hand, the calculation of the variance is affected by a factor of

T 2
s /6. Based on (6), the effect of Ts can be minimized by

applying to (4) the appropriate correction factor:

V(T̃i) = V(T̂i)−
T 2
s

6
(7)

where V(T̃i) is the observed variance after correction. This

approach eliminates the impairments imposed by sensing

operation with duration of Ts in the estimated moments and

is able to provide an accurate estimation of the real moments

of Ti, based on the estimated period durations τ̂i, as long as

the sample size Ns is sufficiently large.

C. Estimation of the Duty Cycle

One of the important statistics of PU activity to represent

the channel usage is the average duty cycle (Ψ). Assuming a

large sample size is observed, then the average duty cycle can

be estimated as:

Ψ̂ =
E(T̂1)

E(T̂0) + E(T̂1)
(8)

As the value of the mean of the estimated periods is

unchanged as explained in Section III.B, then the estimated

Ψ̂ will be the same as the real one (i.e., Ψ̂ ≈ Ψ). It is worth

noting that Ψ̂ is not affected by the sensing period Ts.
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Fig. 2. Distribution estimation methods : (a) Direct estimation, (b) Method of Moments (MoM), (c) Modified Metod of Moments MMoM.

IV. ESTIMATION OF THE DISTRIBUTION

Three methods are considered to estimate the distribution.

A. Direct Estimation

The direct estimation method is based on the calculation of

the empirical cumulative distribution function (ecdf function

in MATLAB). The ecdf function calculates the Kaplan-Meier

estimate of the provided samples [13]. The flowchart of this

proposed strategy is illustrated in Fig. 2(a).The main drawback

of this method is that the estimated distribution is discrete as

the values of the estimated periods are integer multiples of the

sensing period (i.e., T̂i = kTs, k = 1, 2, 3, . . .). Moreover, it is

not possible to apply any correction factors to this estimation

method, which affects its accuracy.

B. Method of Moments (MoM) Estimation

To overcome the first drawback of the direct estimation

method, a solution based on MoM is proposed. Instead of

estimating the distribution of the PU activity periods directly

from the periods themselves, which produces a discrete dis-

tribution, this method computes first the moments (mean and

variance of the PU activity periods) and then estimates the

parameters of the distribution based on the MoM assuming

a certain distribution model. The flowchart of this proposed

strategy is illustrated in Fig. 2(b). The sample moments are

equated to the distribution moments and then by solving the

resulting equations the distribution parameters are obtained. As

opposed to the previous method, the resulting distribution with

this approach is continuous instead of discrete, thus offering

the possibility to minimize the impact of sensing period.

Various methods have been proposed to estimate the distri-

bution parameters besides MoM such as, Maximum likelihood

Estimation (MLE) and Least Squares Estimation (LSE). In this

work, we only consider MoM-based solutions. Even though

other methods might provide a better distribution parameters

fit, they require the complete history of past observed period

durations while with MoM the distribution moments can be

estimated from sample moments, which can be computed

recursively based on last samples. As a result, the practical

implementation of MoM-based solutions would result in sig-

nificantly lower computation and memory cost for CR devices.

In this work, we assume the state holding times of PU

(T0 and T1) follow a Generalized Pareto (GP) distribution,

which was proven to give best accuracy fit with a reasonable

complexity in comparison with other more complex distribu-

tions [14]. The busy and idle durations are also assumed to

be independent of each other [15]. The probability density

function (pdf) and cumulative distribution function (cdf) for

the GP distribution are given, respectively, as [16]:

fTi
(t) =




0 t < µi

1
λi

[
1 + αi(t−µi)

λi

]
−(1/αi+1)

t ≥ µi

(9)

FTi
(t) =




0 t < µi

1−
[
1 + αi(t−µi)

λi

]
−1/αi

t ≥ µi

(10)

where αi and λi are the shape and scale of the GP distribution

respectively, and µi is the location (also the minimum PU

activity duration). Moreover, Ti ≥ µi, αi ≥ 0, λi ≥ 0. The

mean and variance of the GP distribution are expressed as:

E(Ti) = µi +
λi

1− αi
(11)

V(Ti) =
λ2
i

(1− αi)2(1− 2αi)
(12)

The expressions needed to estimate the parameters of the GP

distribution from the sample moments can be obtained by

solving (11) and (12) for such parameters, which yields:

µ̂i = min(T̂i) (13)



α̂i =
1

2

(
1−

(E(T̂i)− µ̂i)
2

V(T̂i)

)
(14)

λ̂i =
1

2

(
1 +

(E(T̂i)− µ̂i)
2

V(T̂i)

)(
E(T̂i)− µ̂i

)
(15)

where λ̂i and α̂i are the estimated values of original λi and

αi. Introducing the MoM estimates provided by (13), (14) and

(15) into (9) and (10) provides a continuous estimation of the

distribution of PU activity periods.

Notice that the location parameter µi can be estimated as

shown in (13) since it corresponds to the minimum period

duration. However, such estimation will be affected by the

employed sensing period Ts. In many cases SU may be able

to have a perfect knowledge of this parameter, for example in

the case of primary systems that use some form of regional

beacon signals with real-time information [17] or when the

radio technology of the primary system is standardised and

known (e.g., the slot duration of GSM).

C. Modified Method of Moments (MMoM) Estimation

The MoM solution discussed in the previous section solves

the problem of the estimation error introduced by the discrete

distribution resulting from the direct estimation method. How-

ever, as shown in the analysis of Section III, the estimated

moments may have an error component resulting from the use

of a finite sensing period Ts. This motivates the introduction

of a Modified Method of Moments (MMoM) solution. The

flowchart of this proposed strategy is illustrated in Fig. 2(c).

The main difference with respect to the MoM method is the

correction of the estimated moments, which is shaded in Fig.

2(c)

Based on (7), the new distribution parameters can be esti-

mated as follows:

α̃i =
1

2

(
1−

(E(T̂i)− µ̂i)
2

V(T̃i)

)
(16)

λ̃i =
1

2

(
1 +

(E(T̂i)− µ̂i)
2

V(T̃i)

)(
E(T̂i)− µ̂i

)
(17)

Notice that (16) and (17) are similar to their counterparts

in (14) and (15), respectively, but are based on a corrected

version of the moments. In particular, the corrected variance

V(T̃i) is used instead of the sample variance V(T̂i), while the

sample mean does not need correction as inferred from (5).

V. NUMERICAL AND EXPERIMENTAL RESULTS

This study assumes that the sensing period is lower than

or equal to the minimum PU activity time (Ts ≤ µi). This is

required to ensure that no PU activity periods are missed in the

sensing process (the shortest detectable period is Ts), which

would otherwise lead to significant estimation errors. Notice

that this consideration implicitly assumes that the minimum

activity time of the PU, µi, is known to the SU so that the value

of Ts can be configured not to exceed µi. This assumption is

realistic as discussed above.

0 0.1 0.2 0.3 0.4 0.5

0

0.2

0.4

0.6

0.8

1

Fig. 3. Relative error of the estimated minimum period µ̂i.
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Fig. 4. Relative error of the calculated variance using (6) and (7).

The hardware experiments are conducted with a Prototype

for the Estimation of Channel Activity Statistics (PECAS)

[18]. The transmitter (primary user) sends a sequence of

GP-distributed idle/busy periods utilising an ON-OFF Keying

(OOK) modulator with an output power of 2 dBm and the

operating frequency is 433 MHz. The receiver (secondary user

DSA/CR) uses a Software-Defined Radio (SDR) with a gain

of 20 dB to monitor the transmitter activity (busy/idle) at 433

MHz every Ts seconds. To ensure a high power reception the

transmitter and receiver are separated by 1 metre distance. At

every sensing event, signal samples are captured at a sample

rate of 106 samples per second, which are processed to decide

the channel activity state using energy detection. The outcomes

of the energy detection decisions are used to estimate the

durations of the observed idle/busy periods and compute the

primary activity statistics.

First, the effect of desynchronized spectrum sensing on

the observed minimum period will be discussed. In order to

quantify this effect, the relative error (Re) metric is utilized

and calculated as Re = (|µ̂i − µi|) /µi. Fig. 3 shows the

relative error between the minimum sensed period µ̂i versus

the original minimum µi as a function of the sensing period.

As it can be appreciated from Fig. 3, the analytical expression
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Fig. 5. The KS distance using direct estimation, MoM and MMoM.

provides a perfect agreement with the simulation results. The

estimated value of µ̂i depends on Ts and the relative error

shows an oscillating pattern with zeros at Ts values that are

integer sub-multiples of the original µi.

Fig. 4 shows the relative error of the calculated variance

with (4) and (7). As appreciated, the variance estimated using

(4) is accurate only for low values of the sensing period Ts,

while the estimation obtained using (7) is accurate regardless

of the value of Ts, which proves that the correction factor in (7)

can reduce significantly the estimation error of the variance.

These results are verified experimentally using PECAS with a

nearly perfect match with the simulation results.

To measure the similarity between the estimated and origi-

nal distributions, the Kolmogorov-Smirnov (KS) distance [19]

is utilized. The KS distance is defined as:

DKS = sup
t

∣∣∣FTi
(t)− FT̂i

(t)
∣∣∣ (18)

where FTi
(t) and FT̂i

(t) are the cdfs of the original and

observed periods, respectively.

Fig. 5 shows the KS distance as a function of the sensing

period for the considered distribution estimation methods. Two

cases are shown for the MoM and MMoM methods, one where

the value of the location parameter is estimated from spectrum

sensing observations as indicated in (13) (labelled as ’with µ̂i’)

and another where the true value of the location parameter is

assumed to be known by the SU (labelled as ’with µi’).

First thing to notice in Fig. 5 is that the direct estimation

method results in a significantly higher estimation error than

the MoM and MMoM methods. In fact, the direct estimation

method can provide an accurate estimation of the distribution

of PU activity periods only if the employed sensing period

is very short. The MoM and MMoM methods can provide in

general more accurate estimations over the whole range of Ts

values. The results obtained for the MoM and MMoM methods

indicate that the estimation error is zero when the employed

sensing period Ts is an integer sub-multiple of the true

minimum PU activity time µi. Notice that the same behaviour

is observed for the relative error of the estimated minimum

µ̂i in Fig. 3, which suggests that an accurate estimation (or

perfect knowledge) of the value of µi can improve significantly

the accuracy of the estimated distribution. To corroborate this

observation, the accuracy of the MoM and MMoM methods

is shown in Fig. 5 for the cases where the minimum PU

activity time is known by the SU (’with µi’), and when it

is estimated as indicated in (13) and is therefore not perfectly

accurate (’with µ̂i’). As it can be observed, the distribution

can be estimated more accurately when the minimum PU

activity time µi is known accurately. However, for the MoM

method this is not enough to provide a sufficient level of

accuracy as seen in Fig. 5 since the effect of the finite sensing

period Ts has not been removed. Only the MMoM method,

which corrects and overcomes the impact of the finite sensing

period Ts on the estimation of the moments (in particular, the

variance) can provide a nearly zero estimation error. These

results demonstrate that only the proposed MMoM method

can provide a nearly perfect estimation of the distribution of

PU activity periods from spectrum sensing observations under

realistic operation conditions.

Table I shows the KS distance as a function of the sensing

period for the considered distribution estimation methods

from simulations, versus the experimental KS distance from

PECAS. The first point to note is that the experimental

results match the ones obtained through simulations. The

results shown in Table I prove that the proposed methods

are accurate for CR systems. Moreover, these results have a

significant importance for practical CR system design since

they indicate that the proposed estimation methods allow an

accurate estimation of primary traffic statics even with low-

cost hardware devices as it the case of the PECAS prototype.

Next, the effect of sample size (i.e., number of idle/busy

periods used to estimate the moments and subsequently the

distribution) on the estimation accuracy of both MoM and

MMoM methods is analysed. Fig. 6 shows the maximum

KS distance for both methods versus the sample size for

Ts = 0.2 t.u. and an accurate knowledge of the minimum PU

activity time (this is the case that provides the best possible

accuracy). As it can be observed, the MMoM method requires

a lower sample size. For example, for a target KS distance of

DKS = 0.1, the MoM method requires the observation of 900

periods approximately while the MMoM method only requires

around 300 period samples. Moreover, the MMoM estimation

error decreases monotonically with the sample size, meaning

that it can provide an arbitrarily accurate estimation of the

distribution provided that a sufficiently large sample size is

available, while the MoM method shows a lower bound below

which it is impossible to reduce the estimation error no matter

how large the sample size is.

VI. CONCLUSION

The main focus of this work is to enable SU to obtain an

accurate estimation of the distribution of PU activity periods,

which plays a crucial role in improving the performance

of CR systems and reducing the interference to primary

networks. A modified version of the Method of Moments has

been proposed to improve the primary distribution estimation.

Simulation and experimental results have shown that the pro-

posed method outperforms the conventional approach based

on the direct estimation by means of empirical cdf calculation



TABLE I
KS DISTANCE ESTIMATED USING PECAS (EXPERIMENT) VERSUS SIMULATION.

Ts in

seconds

KS distance

Direct estimation MoM with µ̂i MoM with µi MMoM with µ̂i MMoM with µi

Sim Exp Sim Exp Sim Exp Sim Exp Sim Exp

0.05 0.0431 0.0491 0.0095 0.0020 0.0081 0.0020 0.0094 0.0059 0.0038 0.0021

0.10 0.0934 0.0947 0.0052 0.0018 0.0052 0.0018 0.0053 0.0021 0.0034 0.0021

0.15 0.1086 0.1074 0.0439 0.0428 0.0288 0.0299 0.0431 0.0391 0.0036 0.0021

0.20 0.1403 0.1399 0.0777 0.0723 0.0583 0.0572 0.0761 0.0706 0.0029 0.0022

0.25 0.2079 0.2111 0.0051 0.0021 0.0045 0.0021 0.0042 0.0037 0.0030 0.0008

0.30 0.1979 0.1961 0.1076 0.1055 0.1022 0.1018 0.1030 0.1009 0.0029 0.0024

0.35 0.1825 0.1817 0.0446 0.0419 0.0789 0.0785 0.0462 0.0447 0.0024 0.0018

0.40 0.1851 0.1840 0.0282 0.0270 0.0507 0.0500 0.0330 0.0319 0.0024 0.0015

0.45 0.2714 0.2737 0.0127 0.0108 0.0239 0.0222 0.0159 0.0143 0.0023 0.0018

0.50 0.3609 0.3626 0.0090 0.0079 0.0089 0.0079 0.0015 0.0010 0.0020 0.0010

0 1000 2000 3000 4000 5000
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Fig. 6. KS distance for MoM and MMoM versus the sample size, both of
the methods assumed with perfect µ1 knowledge.

as well as the approach based on the standard Method of

Moments. It has been found out that an accurate estimation

or knowledge of the minimum PU activity time is essential

to achieve an accurate estimation of the distribution of PU

activity periods. Provided that the minimum PU activity time

is known or can be estimated to a sufficient degree of accuracy,

the proposed MMoM method constitutes an ideal solution

to provide an accurate (nearly perfect) estimation of the PU

activity statistics based on spectrum sensing observations for

practical applications.
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[17] M. López-Benı́tez, “Cognitive radio,” in Heterogeneous cellular net-
works: Theory, simulation and deployment. Cambridge University
Press, 2013, ch. 13.
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