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Abstract—Spectrum awareness is an essential aspect of wireless
communication technology. Wireless communication systems can
obtain spectrum awareness information by monitoring the spec-
trum usage in the frequency and time domains and representing
this information as a time-frequency matrix. In many practical
cases it is useful to determine the subsets of elements of such
matrix where a signal is present (i.e., the signal area). Several
signal area (SA) estimation methods with varying performance
have been proposed in the literature. However, there is a lack
of comparative research that shows how the configuration of
such methods affects their relative performance. In this context,
this work investigates the impact of two essential configuration
aspects for any SA method, namely the threshold used to decide
whether each element of the time/frequency grid contains a
signal component or just noise, and the frequency/time resolution
of the measurements carried out to obtain such data matrix.
Several popular threshold decision criteria and a broad range of
measurement resolutions are investigated, showing that these two
particular aspects play a key role in the optimum configuration
and performance of SA estimation methods. Several useful
findings and design guidelines are provided as well.

Index Terms—Spectrum awareness, signal area estimation,
signal detection

I. INTRODUCTION

Wireless communication relies on spectrum awareness sys-
tems (SAS) to allocate spectrum to users. The introduction
of dynamic spectrum access (DSA) has helped secondary
users (SU) be assigned the spectrum without interfering with
the primary users (PU). Besides, the utilized spectrum by
paid users leave significant white space (WS), which can
be assigned to secondary users [1]. According to [2], it is
necessary to have spectrum usage detection methods that can
attain high accuracy, low cost, and low latency, to achieve the
smart spectrum assignment to SU. Spectrum usage detection
can be useful in other application scenarios such as compliance
verification and enforcement of spectrum regulations as well
as network planning and optimization. Thus, there is a need to
implement techniques that ensure high performance in SAS.

Signal Area (SA) estimation is an essential process in SAS
and it entails determining the subsets of elements of a time-

frequency matrix where a signal is present (i.e., the signal
area). Several SA estimation methods with varying perfor-
mance have been proposed in the literature. According to [3],
spectrum usage detection processes include Fast Fourier trans-
form (FFT), Energy detection (ED), and the SA estimation.
Since FFT and ED have been researched in [4] and the best
methods proposed, the focus of this research shall be on SA
estimation. Research done by [2] shows that the application of
SA estimation methods has enabled the reduction of cost and
attainment of high accuracy. However, the challenges affecting
the techniques include practical limitations and inaccuracies
such as false alarms and missed detection [3]. This research
shall concentrate on a comparative study of the performance of
SA methods under different configuration parameters because
several SA estimation methods with varying performance have
been proposed but there is a lack of comparative research
to show how the configuration of such methods affects their
relative performance.

SA can be detected based on several methods. The methods
include ED techniques such as the Fourier transform energy
detection or the simple signal area estimation (SSA) algorithm
described in [2], [3], [5]. Besides, the contour tracing SA
(CT-SA) estimation algorithm [6] can be applied. The three
methods have been proposed in previous studies [7]. However,
there is no comparative study to evaluate the performance of
the three methods under different configuration parameters.
Such a comparative study would aid in establishing the most
appropriate SA estimation method and provide useful insights
into the optimum design and configuration of SA estimation
methods in practical deployments.

Configuration parameters that have been proposed in previ-
ous studies include varying the threshold for energy decisions
and the frequency/time resolution of spectrum measurements
[2], [8]. Threshold selection is affected by calculations such as
the Time of Arrival (TOA) and the signal to noise ratio (SNR).
Besides, a study in [7] has proposed a method of a threshold
estimation technique that accounts for SNR, intending to adapt
a normalized threshold [9]. However, frequency/time resolu-



tion depends on other parameters that shall be discussed in this
research. Thus, this study entails an evaluation of the impact of
these parameters and their corresponding significance in SA
estimation techniques. The main contributions of this study
include:

• A comparative study on the three main methods of SA
estimation that have been proposed in the literature,
including ED, CT-SA and SSA.

• Evaluation of the impact of the threshold selection
method on the performance of SA methods under various
operational parameters.

• Evaluation of the impact of frequency/time resolution on
the estimated SA under various operational parameters.

• Establishment of the most appropriate configuration for
SA estimation methods and gaining of some useful in-
sights into the optimum design and configuration of SA
estimation methods.

The rest of this paper is organised as follows. First, Section
II provides a formal description of the SA estimation problem
considered in this work and an overview of the main SA esti-
mation methods proposed to the date. Section III describes the
methodology employed in this work to assess and compare the
performance of the considered SA estimation methods under
several parameter configurations and operation conditions. The
obtained results are analysed and discussed in Section IV.
Finally, Section V summarises and concludes the paper.

II. SIGNAL AREA ESTIMATION

A. Problem description and formulation

SA estimation emanates from spectrum measurements,
which are based on two-dimensional time/frequency grids.
The grids are composed of tiles where every element of the
grid corresponds to a single time/frequency tile [8]. When
a set of contiguous adjacent tiles are detected as occupied
by a signal, a rectangular shaped area is detected, which is
referred to as the SA. In this case, the detection distinguishes
between two types of tile sets, namely H0 (not occupied) and
H1 (occupied). The concept of SA refers to a rectangular set
of tiles observed in the occupied (H1) state. The problem of
detecting a SA has some similarity to the classical problem
of signal detection or spectrum sensing, however there are
important differences. First, the focus is not on deciding the
instantaneous busy/idle state of a channel but on knowing
how spectrum is exploited by its users in order to understand
their usage patterns in the time and frequency domains. As
a result, an accurate detection of the H0/H1 state of every
individual tile is in general irrelevant as long as the whole
detected SA (i.e., set of tiles) is an accurate representation
of the original time/frequency grid actually occupied by the
signal (even though some of the individual tiles may be
incorrect). Moreover, the detection of H0/H1 states in real
time is not relevant in SA estimation (as it is in spectrum
sensing) since this information is usually not useful in the
short term but in the longer term in order to optimise spectrum
and radio resource management decisions or, if it is the case,

for spectrum regulatory purposes, network optimisation or
any other application scenario where this information may
be useful. However, SA estimation methods rely on spectrum
sensing decisions and as such are affected by the same two
types of errors in the signal detection process, namely missed
detections (busy tiles detected as idle) and false alarms (idle
tiles detected as busy) [2]. These two errors will affect the
particular shapes of the estimated SAs and therefore the
performance of the employed SA estimation methods.

The performance of SA is determined by several parameters,
which can affect the accuracy and performance. Applying SA
will involve sampling the spectrum into a set of observed
power levels in the frequency and time domains [8]. The
outcome is a set of power levels corresponding to each
frequency and time bin or tile in the grid. Then, the power
levels are compared to a predefined threshold value, which
produces a binary matrix indicating the H0 or H1 states of
every tile. This binary matrix of busy/idle tiles is the input
information provided to the SA estimation method in order to
extract the rectangular sets of tiles where one or more SAs are
detected in the time/frequency grid. Notice that SA estimation
methods are expected to identify perfectly rectangular sets
of busy tiles in the time/frequency grid, which can be a
challenging task given the corruption introduced by sensing
errors in individual tiles.

The process of SA estimation is affected by the employed
energy decision threshold as well as the time/frequency res-
olutions of the data grid. In this case, the resolution in the
time domain can be adjusted by modifying the sensing period
while the resolution in the frequency domain can be adjusted
by modifying the employed FFT size [7]. Therefore, threshold
selection and resolution are the main parameters that affect
the performance and accuracy of SA techniques and these
constitute the focus of this work.

B. Threshold selection methods

The performance of threshold selection can be quantified
based on the probability of false alarm (Pfa) and the proba-
bility of detection (Pd) as shown below [4]:

Pd(λ) = Q

(
λ
σ2
w
−N (1 + γ)
√
N (1 + γ)

)
(1)

Pfa(λ) = Q

(
λ
σ2
w
−N
√
N

)
(2)

where λ represents the threshold, σ2
w is the noise power, N is

the number of signal samples, γ is the SNR and Q(·) is the
Gaussian tail probability Q-function [10].

Threshold selection methods that have been studied in [4]
including the Constant False Alarm Rate (CFAR), Constant
Signal Detection Rate (CSDR), and Minimum Sensing Error
Rate (MSER), which are discussed below. These are the most
commonly used methods in the literature and ones that will
be considered in this work as well.



1) Constant False Alarm Rate (CFAR): The CFAR method
is based on a target probability of false alarm value (P ∗

fa). In
this case, equation (2) is solved for the desired false alarm
probability to obtain the optimum threshold λ∗ as shown
below:

λ∗ =
(
Q−1(P ∗

fa)
√
N +N

)
σ2
w (3)

Notice that this method only requires noise power (σ2
w) to be

estimated in order to calculate the optimum threshold.

2) Constant Signal Detection Rate (CSDR): The CSDR
method entails selecting the decision threshold so that a certain
target probability of detection (P ∗

d ) can be attained. In this
case, solving (1) leads to the result below:

λ∗ =
(
Q−1(P ∗

d )
√
N +N

)
(1 + γ)σ2

w (4)

This method requires not only the noise power (σ2
w) but also

the SNR γ = σ2
x/σ

2
w to be estimated.

3) Minimum Sensing Error Rate (MSER): The MSER
method relies on the sensing error function below:

Pe(λ) = Pfa(λ) + Pmd(λ) (5)

and selects the decision threshold so as to minimise such
sensing error function:

λ∗ = arg min
λ
Pe(λ) (6)

Thus, the optimum threshold can be calculated by solving
dPe(λ)/dλ = 0 for λ and is given by:

λ∗ =

(
1 +

√
1 +

2

N
(γ + 2)

γ
ln (1 + γ)

)
γ + 1

γ + 2
Nσ2

w (7)

Thus, the MSER method also requires both SNR and noise
power to be estimated in order to calculate the threshold.

C. SA estimation methods

Three different approaches for SA estimation are considered
in this work. The first one is a simple tile-by-tile ED, where
the individual idle/busy state of each tile in the time/frequency
grid is considered. In this case there is no actual estimation
of rectangular subsets within the grid associated with any
particular SA, in other words, the outcome of the idle/busy
decisions of an ED are taken without further processing. This
is included in the study simply as a reference benchmark. The
CT-SA estimation method proposed in [6] is also considered,
where a rectangular SA is estimated based on contour tracing
techniques. Finally, the SSA estimation method described in
[2], [3], [5] is also included in this study. The latter is a more
sophisticated method that estimates every SA present in the
time/frequency grid by following several steps. First, a raster
scan is performed to find the first corner of a prospective SA.
Then, using a unit-width window with height ∆t, a horizontal
scan is performed to estimate the width of the SA. Afterwards,
a coarse estimation of the SA height is carried out with a
window with the same width as estimated for the SA and

height ∆T . Finally, a fine height estimation is performed to
provide an accurate estimation of the width and height of the
SA. The details of this method can be found in [5].

III. METHODOLOGY

A. Simulation procedure

This work adopts a simulation-based evaluation approach.
The simulation process aims at testing signal areas under de-
fined transmission constraints. Several random time/frequency
test grids are simulated for low, medium and high fre-
quency/time resolutions. These grids include channelized SAs
with occupancies randomly generated under well-defined con-
straints. The generated test grids are then corrupted by adding
noise before being fed to the evaluated SA estimation methods,
which will operate under different configuration parameters.
Finally, the signal area shall be detected based on the three
considered methods, namely ED, CT-SA, and SSA. A more
detailed description of each simulation step is provided below.

Step 1. Create clean time/frequency test grids: A rectan-
gular time/frequency grid is randomly generated based on a
predefined resolution level. The width (number of elements in
the horizontal dimension) of the test grid is determined by the
considered frequency resolution, while its height (number of
elements in the vertical dimension) is determined by the con-
sidered time resolution. Three resolution categories are con-
sidered, with several resolution levels (in number of tiles for
each dimension): low resolution (10×5, 20×10 and 50×25),
medium resolution (100×50, 200×100 and 500×250), and
high resolution (1000×500, 2000×1000 and 5000×2500).
The resolutions of the test grids are specified in the format
horizontal × vertical resolutions in number of tiles.

Channelized signal areas are then generated in the test grid
based on specified transmission constraints. In this case, a
known number of channels is set in the frequency domain and
random on/off transmission durations are generated in the time
domain from exponential distributions with rate parameters
λon/λoff until the total height of the grid is completed for
every channel. Furthermore, minimum on/off durations are
specified as well as guard bands between channels (i.e., idle
tiles in the sides of each channel) as a fraction of the channel
width. Fig. 1a shows an example of a randomly generated test
grid with five channels, with rate parameters λon/λoff = 0.5
time units (t.u.), minimum on/off durations of 20 and 10 t.u.,
respectively, and guard bands of 5% of the channel bandwidth.

Step 2. Add noise to the test grids: Noise is then added to
the test grids generated in the previous step. The noise affects
both types of tiles (idle and busy). In this process, idle tiles
of the test grid may change to busy state with probability
Pfa while busy tiles may change to idle state with probability
1−Pd. The false alarm and missed detection probabilities are
calculated according to one of the three considered threshold
selection methods described in Section II-B. Fig. 1b shows
as an example the test grid of Fig. 1a as detected when the
decision threshold is set based on the CFAR method with a
target false alarm probability of 10% and SNR of –7dB.
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Fig. 1: An example of a randomly generated test grid: (a) Clean
time/frequency test grid, (b) Time/frequency test grid with noise, (c)
SA estimated by the CT-SA method, (d) SA estimated by the SSA
method.

Step 3. Estimate the SA: In this step, one of the SA
detection methods described in Section II-C is applied to the
noisy test grid in order to estimate the SA present in the
original clear test grid. Examples of the SA estimated by CT-
SA and SSA methods based on the test grid of Fig. 1b is
shown in Figs. 1c and 1d, respectively.

Step 4. Assess the accuracy of the estimated SA: The
final step is to assess the accuracy of the estimated SA by
comparing the set of SA estimated by the considered method
with those present in the original test grid. The accuracy is
evaluated based on several performance metrics, which are
explained below.

B. Performance Metrics

The probabilities of detection and false alarm are commonly
used to assess the performance of signal detection methods.
However, these metrics are of little use in the context of
SA estimation since the focus is not the accuracy of the
detection on every individual tile of the time/frequency signal
grid but on the set of SA present, which are the result
of some reconstruction processes where subsets of tiles are
associated and recognised together as a SA. The analysis
of these two probabilities individually does not provide a
complete characterisation of the efficacy of the reconstruction
implemented in a SA estimation method. Therefore, these
probabilities will not be considered individually in this work.
Instead, other metrics that take into account the combined
impact of these metrics will be considered.

The accuracy of the studied SA estimation methods is
assessed in this work by means of two performance metrics.
First, a simple Accuracy (ACC) metric is used defined as
the percentage of tiles (in either state, idle or busy) that are
correctly detected in their real state, which can be obtained

as the sum of true positive and true negative detection rates.
In some test grids, the number of tiles in one of the states
(idle/busy) may be significantly larger than those in the other
state. This motivates the use of the F1 score as our second
performance metric, which considers the possible imbalance
that may exist between the number of tiles in idle and busy
states in the original test grid. The F1 score metric is defined
as shown below [11]:

F1score =
2× TP

2× TP + FP + FN
(8)

where TP, FP and FN represent the number of tiles that are a
true positive, false positive and false negative, respectively. If
the number of idle and busy tiles in the original frequency/time
grid are the same, then the F1 score metric reduces to the ACC
metric defined above.

The computation time of a SA estimation method will affect
the overall performance in a practical system implementation
and is therefore evaluated as part of this study as well. Given
the existence of a direct correlation between computation time
and the overall cost of implementation [7], finding the method
that attains the lowest computation time is preferred.

IV. RESULTS

The results obtained for various thresholding and resolution
simulations shall be discussed in this section. Simulation
results are based on 100 different randomly generated test
grids. For the SSA method, the parameters are configured as
recommended in [3]. Common simulation parameter setting is
shown in Table I.

TABLE I: Simulation parameters

Create clean Add noise The SSA Methodtest grids to the test grids
number of channels 10 SNRfrom -20 dB to 5 dB ∆t min(min on,min off)

min on width/10 N 100 ∆T min(min on,min off/2)
min off min on/2 γstep2 0.1
λon 0.05 γstep3 0.15
λoff 0.05

guard bands 0.05

A. Impact of the decision threshold

Fig. 2 shows the value of the Accuracy (ACC) metric as a
function of the SNR for the considered SA estimation methods
(ED, CT-SA and SSA) when different threshold selection
methods are employed (CFAR, CSDR and MSER). The results
in Fig. 2 were obtained for a grid with a resolution of 100×50
tiles. As it can be appreciated in Fig. 2, the accuracy of
the detected SA degrades as the SNR decreases, however
several combinations of SA estimation and threshold selec-
tion methods show different sensitivity to a reduction in the
experienced SNR. The results shown in Fig. 2 indicate that the
criterion employed to select the decision threshold has a more
significant impact on the resulting accuracy of the estimated
SA than the particular SA estimation method itself. As matter
of fact, it can be noticed that selecting the decision threshold
according to the CSDR method leads to the worst accuracy
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Fig. 2: Accuracy (ACC) as a function of the SNR for the different
SA estimation methods (ED, CT-SA, SSA) combined with different
threshold selection methods (CFAR, CSDR, MSER).

in the estimated SA, while selecting the threshold according
to the CFAR method leads to the best observed accuracy,
for all the considered SA estimation methods. The use of
different SA estimation methods obviously has an impact
on the resulting estimation accuracy, however the criterion
used to select the decision threshold has a more significant
impact as shown in Fig. 2. This can be explained by the
fact that SA estimation methods attempt to detect rectangular
SA in the time/frequency grid based on the idle/busy states
obtained after applying the selected decision threshold. An
inappropriately set decision threshold will lead to a larger
number of errors in the detected idle/busy state for each tile
in the time/frequency grid and this will make it more difficult
for the SA estimation method to correctly identify the existing
SAs in the provided grid. Based on the results shown in Fig.
2, it can be concluded that the CFAR method provides the best
performance for the three SA estimation methods. Notice that
the CFAR method only needs the noise power to be known in
order to set the decision threshold (as opposed to the CSDR
and MSER methods, which also need the signal power or
SNR to be accurately known) and this simplifies the practical
implementation in real scenarios. Moreover, it can be noticed
that the best accuracy over the whole range of SNR values is
in general provided by the SSA method proposed in [5] when
the decision threshold is set according to the CFAR method.

Fig. 3 shows the computation time as a function of the
SNR for each considered SA estimation method (ED, CT-SA
and SSA) and threshold selection method (CFAR, CSDR and
MSER)1. It can be observed that the lowest computation time
is for ED, which is the simplest SA estimation method since
it does not attempt to reconstruct any rectangular SAs and
simply provides the idle/busy state of every tile. Consequently,

1Notice that the computation time in some cases increases slightly around
intermediate values of the SNR. This is because in this region it is more
challenging to distinguish clearly the presence/absence of a signal component,
thus requiring slightly higher computation times for some methods and
configurations.
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Fig. 3: Computation time as a function of the SNR for the different
SA estimation methods (ED, CT-SA, SSA) combined with different
threshold selection methods (CFAR, CSDR, MSER).

its computation time is also constant with the SNR since the
number of calculations performed by ED (i.e., comparing the
power levels to a threshold for each tile) is constant regardless
of the experienced SNR. On the other hand, for the CT-SA
and SSA methods, the computation times are higher since
these methods perform further processing of the tiles in the
time/frequency grid in order to reconstruct rectangular SAs. In
the case of the CT-SA method, the computation time increases
as the SNR decreases as a result of the presence of more
errors in the idle/busy states of the tiles at lower SNR, which
makes it more difficult to correctly detect the SAs and requires
a more computationally expensive processing for the CT-SA
method. This is also corroborated by the computation time
of the CT-SA method for the different threshold selection
methods; notice that the threshold selection methods that
provide a better accuracy for the CT-SA method in Fig. 2
also require a lower computation time, since less errors in
the idle/busy state of the tiles in the grid means that the
CT-SA can reconstruct the SAs not only more accurately
(as shown in Fig. 2) but also more efficiently (as shown in
Fig. 3). Compared to the ED and CT-SA methods, the SSA
method provides an intermediate computation time that shows
the interesting property of remaining approximately constant
over the whole range of SNR values. This is because the SSA
method systematically applies the scanning process described
in Section II-C, whose number of calculations does not depend
on the presence of errors in the idle/busy state of the tiles
in the grid (more errors will decrease the accuracy of the
SSA method as shown in Fig. 2 but will not affect the set
of computations required by the method, as shown in Fig.
3). This observation for the SSA method is also corroborated
by the fact that the computation time of the SSA method is
not significantly affected by the criterion used to select the
decision threshold as it can be observed in Fig. 3.

Taking into account the results shown in Figs. 2 and 3,
the following two observations can be made. When the SNR



is sufficiently high, ED is the preferred approach since it is
straightforward to distinguish idle tiles from busy tiles with a
very high level of accuracy (even with different values of the
decision threshold) and a simple ED approach can provide a
(virtually) perfect SA detection (regardless of the employed
decision threshold) at the lowest computational cost. When
the SNR is moderate to low, the presence of errors in the
idle/busy states of the tiles will require some form of more
sophisticated processing to the detect the SAs and in this case
the SSA method provides overall the best trade-off between
accuracy and computational cost over the whole range of SNR.

B. Impact of the time/frequency resolution

The analysis presented above showed that the best accuracy
for each SA estimation method is obtained when the decision
threshold is selected according to the CFAR method. This
threshold selection method will be assumed in this section
for all the SA estimation methods in order to investigate the
impact of the time/frequency resolution on the accuracy of
each SA estimation method.

Fig. 4 shows the performance of the accuracy (ACC) metric
as a function of the SNR and the frequency/time resolution (in
number of tiles for each dimension) of the signal grid. Fig. 5
shows the counterpart of Fig. 4 for the F1 score.

For the ED and CT-SA methods, it can be observed in
both figures that the main factor affecting the accuracy of the
estimated SA is the SNR. Concretely, as the SNR decreases,
the accuracy for the ED and CT-SA methods degrades, as
expected, and modifying the time/frequency resolution in
these two methods does not have a significant impact on the
resulting accuracy. The results shown in Fig. 4 in terms of
the ACC parameter suggest that choosing a lower resolution
might slightly improve the accuracy, however the improvement
observed in Fig. 4 by choosing a lower resolution would be
marginal. In the case of the ED and CT-SA methods, where the
accuracy remains unaffected by the employed grid resolution,
the time/frequency resolution should be decided based on the
computational cost and a low resolution may be preferred.

For the SSA method, it can be observed that the accuracy
of the estimated SA is affected not only by the SNR but
also by the employed grid resolution. A reduction in the
experienced SNR will also degrade the accuracy. However, in
this case, and in contrast with the ED and CT-SA methods, it is
possible to compensate for the degraded detection performance
of the SSA method when the SNR decreases by increasing
the frequency/time resolution. When a low grid resolution is
used with the SSA method, it can be noticed that the SA
estimation accuracy will be very close to 100% when the
SNR is sufficiently high and will start to degrade when the
SNR decreases below about -5 dB. For lower SNR values,
it is possible to improve the accuracy by increasing the grid
resolution. However, one can use this strategy with the SSA
method to a limited extent since simply increasing the grid
resolution will not always be able to keep an accuracy close
to 100%, in particular if the SNR is very low. Moreover,
increasing the resolution beyond certain point will not provide

(a)

(b)

(c)

Fig. 4: Accuracy (ACC) as a function of the SNR and the
time/frequency resolution for the considered SA estimation methods:
(a) ED, (b) CT-SA, and (C) SSA.

an accuracy improvement and, in fact, if the resolution is too
high the accuracy of the SSA method will be significantly
degraded, even at high SNR (this can be explained by the fact
that a higher grid resolution means a higher number of tiles
within the same SA and this will increase the probability that
the scanning and recognition method used by the SSA method
will fall into errors by its own nature). It is interesting to note
that, for the SSA method, exists an optimum time/frequency
resolution for each SNR value, which provides an additional
degree of freedom in the configuration and optimisation of this
method compared to the ED and CT-SA methods, where the
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Fig. 5: F1 score as a function of the SNR and the time/frequency
resolution for the considered SA estimation methods: (a) ED, (b)
CT-SA, and (C) SSA.

variation of the grid resolution has no significant effect.

V. CONCLUSION

This research entailed a comparative study on the impact
of thresholding and resolution on SA estimation methods. The
investigated SA methods include ED, CT-SA, and SSA. These
methods were investigated under threshold selection methods
that include CFAR, CSDR and MSER. The performance under
different time/frequency resolutions was studied as well. The
obtained results indicate that the three considered SA estima-
tion methods achieve their best accuracy when the decision
threshold is selected according to the CFAR method (i.e., set
for a fixed probability of false alarm), which also has the
practical advantage that it only requires the noise power (and
not the signal power or SNR) to be known. The best accuracy

over the whole range of SNR values is provided by the SSA
method with a decision threshold set based on the CFAR
criterion. It has also been observed that the accuracy of the
ED and CT-SA methods is mainly affected by the SNR and
remains unaffected by the employed grid resolution. However,
in the case of the SSA method, the accuracy is also affected
by the grid resolution. Interestingly, for the SSA method, a
degradation in the accuracy of the estimated SA as a result
of a reduced SNR can be compensated (at least to some
extent) by selecting the optimum grid resolution for each SNR
value, which provides an additional degree of freedom in the
configuration and optimisation of the SSA method. Based on
the results obtained in this study, the SSA method with a CFAR
threshold and an optimum SNR-dependent grid resolution is
the preferred approach for SA estimation in spectrum-aware
systems and applications.
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