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Abstract—With the rapid development of intelligent trans-
portation systems, vehicular devices are getting connected with
each other. However, this leads to the problem of spectrum
scarcity. Dynamic spectrum access (DSA)/cognitive radio (CR)
has emerged as an effective solution to solve the problem of
inefficient spectrum utilization. Spectrum sensing is the key
in DSA/CR system. In cognitive vehicular networks (CVNs),
spectrum sensing becomes more complex and challenging and
that often leads to a loss in performance detection. Due to the
effect of channel fading/shadowing and due to secondary user
(SU) mobility, individual SUs may not be able to detect the
existence of primary user (PU). In this paper, we propose a
weighted cooperative spectrum sensing (weighted-CSS) frame-
work for accurate detection of PU in CVNs. The weights are
calculated from the probability of PU being inside the SU’s
sensing range and SU being outside the PU’s protection range
(inside probability). The calculated weight for SU indicates the
reliability in the signal received by SU. The framework contains
two stages. In the first stage, inside probability is calculated at
each SU and the inside probability and the energy signal received
from PU are sent to a base station (BS). In the second stage, BS
assigns a weight to each SU based on the inside probability and
makes a decision by combining the information received from
SUs. Numerical results indicate that, on an average, the proposed
framework performs ≈ 15% better than the conventional local
spectrum sensing.

Index Terms—Cognitive vehicular networks, weighted cooper-
ative spectrum sensing, secondary user mobility.

I. INTRODUCTION

The intelligent transportation system (ITS) is an important
part to revolutionize the traditional vehicle into the digital
automated vehicle. Numerous vehicles are getting connected
to the internet through vehicle-to-anything (V2X) communi-
cation technologies [1]. As communication technologies are
getting integrated with vehicular networks it will improve the
transportation safety and traffic management system.

With rapid development of ITS and its applications, vehic-
ular networks are facing severe spectrum scarcity [2] and it
becomes important to solve the problem efficiently. The U.S
Federal Communication Commission has allocated 75MHz
spectrum bandwidth at 5.9-GHz for dedicated short-range
communication. This spectrum is only used for vehicle-to-
vehicle (V2V) and vehicle-to-infrastructure (V2I) communi-
cation. However, recent studies indicate that in dense traffic
scenario, allocated spectrum can get exhausted [3], which may
result in congestion for vehicular communications.

Dynamic spectrum access / cognitive radio (DSA/CR) has
been introduced as a revolutionary solution to the problem of
spectrum scarcity. DSA/CR aims at better utilization of spec-
trum by allocating frequency spectrum dynamically instead
of static allocation. Spectrum sensing is the key in DSA/CR
systems. If the primary user (PU) is idle, then DSA/CR
system allows the secondary users (SUs) to temporarily access
the frequency channels of PUs without creating any harmful
interference to PUs [4].

In literature, various spectrum sensing methods and tech-
niques have been proposed. However, most of them assume
SU to be stationary or with low mobility. In [5], [6], authors
investigated the impact of SU mobility on the spectrum sensing
performance. In [7], the authors have proposed an improved
energy detection algorithm to study the impact of SU mobil-
ity on detection performance in cognitive vehicular network
(CVN). In [8]–[10] authors have analysed the performance
of energy detection considering arbitrarily correlated dual an-
tenna receiver and correlated multi-antenna receiver for mobile
cognitive user. While, other relevant works can be found
in [11], [12]. However, all the previous works considered
a single user scenario. While, in case of CVN, due to the
effect of multipath fading and shadowing, spectrum sensing
becomes more complex and challenging and thus decision
taken by individual SU can not be reliable. To overcome this,
cooperative spectrum sensing approach has been adapted in the
literature which exploits the benefit of spatial diversity among
SUs [13]–[16].

However, using only cooperative spectrum sensing will not
solve the problem because SU will only be able to correctly
receive the signal transmitted by PU if the PU is inside
the sensing range of SU. Moreover, as SUs are mobile, the
distance between PU and SU will be time varying. As a result,
PU may fall inside the sensing range of SU at one instance and
outside at another instance. Thus, if at any instance PU falls
outside the sensing range of SU, then, SU is unable to notice
the existence of PU and, irrespective of the signal transmitted
by PU, SU will only receive noise. To overcome this, we
devise an approach where each SU is assigned a weight which
indicates the reliability of the information provided by the
SU. These weights are calculated from the probability that the
PU is inside the sensing range of SU and SU is outside the
protection range of PU (inside probability).

In this context, we propose a weighted cooperative spectrum



sensing (weighted-CSS) framework for CVNs in a centralized
environment. For simplicity, we consider the interweave spec-
trum sharing paradigm. The framework is divided into two
stages. In the first stage, the inside probability is calculated
for each SU. There are two methods for calculating the
inside probability: 1) using the distribution of the distance
between PU and SU, and 2) using the coordinates of the
SU. The detailed analyses for both methods are given. In the
second stage, the received signal from PU, along with inside
probability, will be sent to the base station (BS) by each SU
using dedicated channel in an orthogonal manner. At BS, a
weight for each SU is calculated using the inside probability.
To take the effect of SU mobility into account, the sensing
information from a SU that has higher inside probability is
assigned with a higher weight. In decision making at BS, the
contribution of the sensing information of the SUs having low
inside probability will be negligible. By combining all the
information received from SUs, BS reaches a decision and
informs all the SUs about it.

The main contributions of this paper are threefold and can
be summarized as follows:

• Firstly, distance distribution based and coordinates based
method for calculating inside probability are analyzed.

• Secondly, an algorithm for assigning weights to each SU
at BS is proposed. The assigned weight indicates the
reliability of sensing information received from that SU.

• Lastly, performance analysis is carried out to analyze
false alarm and miss detection probabilities for the pro-
posed weighted-CSS framework and verified by simu-
lations. Numerical results indicate that, on an average,
the proposed framework performs ≈ 15% better than the
conventional local spectrum sensing.

The remainder of this paper is organized as follows. In
Section II network model is defined. Section III contains
the proposed weighted cooperative spectrum sensing frame-
work and its analysis. Numerical and simulation results are
explained in Section IV. Finally, concluding remarks are
presented in Section V.

II. NETWORK MODEL

The network model considered for modelling SU mobility is
illustrated in Fig. 1. M mobile SUs are considered where Si is
the sensing range of ith SU, vi is the velocity for i = 1 . . .M
and one stationary PU with protection range (R). To avoid any
harmful interference, the sensing range of SU is considered to
be greater than or equal the to protection range of the PU. The
initial distance between PU and SUi is Di

0 and after some time
t, SUi moves distance vit and at that time the distance between
PU and SUi changes to Di

t.
For any SU to detect a PU, it is necessary that the PU is

within the sensing range of SU otherwise SU will not be able
to notice the existence of PU. It is also important to note that
the PU has a protection range where SUs are not allowed to
access bands at any cost [4]. Thus, spectrum sharing is only
possible when PU is inside the sensing range of SU and SU is
outside the protection range of PU. The time varying distance
Di

t between PU and any SUi at any time moment determines

Fig. 1: Considered Network Model

whether the SU will be able to notice the PU and correctly
receive the transmitted signal energy. In this context, we define
following two events:

• EVENT “I”: PU being inside the sensing range of SU and
SU being outside the protection range of PU

• EVENT “O”: PU being outside the sensing range of SU

Note that, at any time, if the SU is inside the protection
range of PU (Di

t ≤ R) then, SU will be able to detect the
PU. But in this case even if PU is idle, SU is not allowed to
access PU band at any cost [4]. That is why for event “I”, we
are only considering the area in which SU can detect PU and
transmit if channel is free.

From the perspective of the SU, the channel alternates
between two states: idle (no activity) and busy (occupied).
The PU channel activity can be modeled by two state birth-
death process [7]. Thus, for spectrum sensing we define binary
hypothesis for Event “I” as follows:

yI(t) =

{
n(t), H0

h(t)x(t) + n(t), H1
(1)

For Event “O” SU only receives noise regardless of the state
of PU. In this scenario the hypothesis turns into following
scenario:

yO(t) = n(t), H0, H1 (2)

where yI(t) is the signal that SU receives given Event “I”.
x(t) denotes the transmitted PU signal, n(t) is the additive
white Gaussian noise (AWGN), h(t) represents channel gain,
yO(t) is the signal that SU receives given Event “O”.

III. PROPOSED WEIGHTED COOPERATIVE SPECTRUM
SENSING

A. Inside probability analysis

In this section, the inside probability for each SU (Pri(I)) is
derived using distance distribution and using SU’s coordinates.
Detailed analysis of methods is presented below:



1) Distance distribution method: The inside probability can
be derived using the cumulative distribution function of the
distance Di between stationary PU and mobile SUi. Now
according to [6] the cumulative distribution function of the
distance between static PU and mobile SU can be assumed as
log-normal distribution i.e.

F i
D(di) =

1

2

[
1 + erf

(
di − µi

d

σi
d

√
2

)]
(3)

where, erf(·) denotes the error function, µi
d and σi

d denote the
mean and standard deviation of distance between static PU
and mobile SUi. Similarly, cumulative distribution function
for sensing range of SUi and protection range of PU can be
defined. As discussed earlier, SU will be only able to detect
PU and transmit (if possible), when the distance Di, between
the SUi and PU, is between PU’s protection range (R) and
SUi’s sensing range (Si). Thus, we can write probability of
event “I” for SUi as [7]:

Pri(I) = Pr(R < Di ≤ Si)

= Pr
(
R < Di

0 + vit ≤ S
)

= Pr

(
R−Di

0

vi
< t ≤ Si −Di

0

vi

) (4)

According to [17], SU velocity can assumed to be Gaussian
distributed. The distance between PU and SU is assumed to
be log-normal distributed, using theory of random variable,
distribution of time can be derived as log-normal distribution
[7]. Using this, the above equation can be written as:

Pri(I) = F i
T

(
Si −Di

0

vi

)
− F i

T

(
R−Di

0

vi

)

=
1

2

erf
 Si−Di

0

vi
− µi

t

σi
t

√
2

− erf

 R−Di
0

vi
− µi

t

σi
t

√
2


(5)

where Di
0 is the initial distance between PU and SU, µi

t and
σi
t are the mean and standard deviation of time distribution,
Si is the SU’s sensing range, R is the PU’s protection range,
vi is the SU’s velocity.

2) Coordinates method: The probability of Event “I” can
be also calculated for each SU using the coordinates of
the mobile SU. Here, SU coordinates are generated using
random way-point mobility model, in which SU can move
randomly in a fixed square area with its velocity and it
is assumed that PU is fixed at center. A sufficiently large
(≈ 106) number of SU coordinates are generated. Now, for
each SU coordinates, the Euclidean distance from PU1 is
calculated. From this distance and using the definition of inside
probability (R < Di < Si), we can calculate the inside
probability. Assuming we have total K coordinates for SUi

and those are denoted by [(x1, y1), (x2, y2), ..., (xk, yk)], the
PU coordinates are denoted as (x, y), then using Algorithm 1,
the inside probability for SUi can be calculated.

1The position of PU can be estimated using channel state information which
may be available in CVN over control and broadcast channels.

Algorithm 1: Inside Probability
Input: PU protection range (R),

SU sensing range (Si),
PU coordinates (x, y),
SU coordinates [(x1, y1), (x2, y2), ..., (xk, yk)]

1 for z ← 1 to K do
2 distance[z]=

√
(xz − x)2 + (yz − y)2

3 if R ≤ distance[z] ≤ Si then
4 count(Event “I”)=count(Event “I”)+1
5 end
6 end
7 Pri(I)=count(Event “I”)/K

B. Decision making at BS

In this section, we explain how BS makes a final decision
about channel status. First a weight assignment algorithm
(see Algorithm 2) is introduced which assigns weight to
each SU based on its inside probability. The basic idea
behind the proposed weight assignment algorithm is that
the higher the inside probability, the higher the confidence
we have on the sensing information received from that SU.

Algorithm 2: Proposed weight assignment algorithm

Input: Pri(I) for i =1,...M
1 for i← 1 to M do
2 wi = Pri(I)/

∑M
k=1 Pr

k(I)
3 end

Here wi is the calculated weight for each SU, the output
signal received at BS is Y =

∑M
i=1 wi · yi. The final decision

is made by comparing Y to a threshold. Here yi is the energy
signal sent by SUi. As yi are assumed to be i.i.d. Gaussian
random variable and wi is constant, we can say that Y also
follows Gaussian distribution i.e.

Y ∼

 N
(∑M

i=1 wi · E(yi|H0),
∑M

i=1 w
2
i ·Var(yi|H0)

)
H0

N
(∑M

i=1 wi · E(yi|H1),
∑M

i=1 w
2
i ·Var(yi|H1)

)
H1

(6)

C. Performance of the proposed scheme

Now, the false alarm probability (Pf ) of the proposed
weighted-CSS scheme can be derived as:

Pf = Pr (Y > Th|H0)

= Q

(
Th− E (Y |H0)√

Var (Y |H0)

)
(7)

where, E(Y |H0) =
∑M

i=1 wi ·E(yi|H0) and Var(Y |H0) =∑M
i=1 w

2
i · Var(yi|H0) are conditional mean and variance of

Y respectively and Th represents decision threshold.
Similarly, the miss detection probability (Pmd) of the pro-

posed weighted-CSS scheme can be derived as:

Pmd = Pr (Y ≤ Th|H1)

= 1−Q

(
Th− E (Y |H1)√

Var (Y |H1)

)
(8)
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0=200m)
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where, E(Y |H1) =
∑M

i=1 wi ·E(yi|H1) and Var(Y |H1) =∑M
i=1 w

2
i · Var(yi|H1) are conditional mean and variance of

Y respectively.

IV. NUMERICAL AND SIMULATION RESULTS

In this section, simulation results are presented to corrobo-
rate the proposed spectrum sensing framework. For SU mobil-
ity simulations, random way-point mobility model is used with
PU being fixed at center. Approximately 106 random way-
points are generated. These random way-points are treated
as the coordinates of mobile SU and for each way-point its
distance from PU is obtained. Using this distance, the inside
probability for that SU is calculated. In the same manner,
inside probability is calculated for all SUs.

In Fig. 2, the plot for inside probability as a function of
the sensing range for single SU is shown. Results shown in
Fig. 2 are calculated analytically using (5) and the Monte-
Carlo simulations are performed using the coordinates method.
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We observe that as sensing range is increased from 0m to
2000m, as expected the inside probability increases. We can
also observe that for a particular value of sensing range, inside
probability increases when the velocity of the SU decreases.
This can be understood as with a higher SU velocity, the PU
will be quickly outside the SU’s sensing range and that leads
to decrease in inside probability.

In Fig. 3, the impact of SU mobility on false alarm and
miss detection probabilities is demonstrated. Here, we have
assumed that during one sensing period, SU velocity remains
unchanged. The noise variance is randomly generated with 0
mean and variance of 1. Also, the channel status is set as
Pr(ON)=0.5 and Pr(OFF )=0.5. Here, the comparison be-
tween conventional false alarm and miss detection probability
for single mobile SU and proposed method is given, where



the conventional false alarm and miss detection probability are
calculated using [7, equation (10) and (11)] with SU having
sensing range=[300, 400, 500, 600]m with velocity=[25, 30,
35, 40]m/s and initial distance=[210, 220, 230, 240]m. On
the other hand, false alarm and miss detection are calculated
using proposed method using equation (7) and (8) respectively
with M=4 and for the same sensing range, same velocities and
same initial distance as mentioned above. We can observe that
false alarm error obtained using proposed method is increased
at a cost of significantly reduced probability of miss detection.
However, if we select a decision threshold around 20, then the
best combination of both false alarm and miss detection can
be obtained.

In Fig. 4, the plot of probability of miss detection as
a function of the velocity is illustrated. Here, the com-
parison between conventional miss detection probability for
single mobile SU with the proposed method is demonstrated.
Miss detection for single SU is calculated from [7, equa-
tion (11)] with SU having sensing ranges=[300, 400, 500]m,
initial distance=[200, 220, 240]m with Pr(ON)=0.5 and
Pr(OFF )=0.5. On the other hand, miss detection probability
is calculated using (8) for M=3 with same sensing range
and same initial distance as mentioned above. The operating
threshold is taken such that Pf = Pmd. We can observe
that as SU’s velocity increases, the miss detection probability
increases. This can be understood as with a higher SU velocity,
PU will be quickly outside the SU’s sensing range and that
will lead to SU having a higher chance of missing PU’s
signal. As we can clearly see, the miss detection calculated
using proposed method gives better performance compared to
performance obtained using conventional method for single
SU.

In Fig. 5, the gain obtained in detection probability is shown.
Detection probability is calculated as Pd = 1 − Pmd. Here,
M=1 represents the conventional detection probability calcu-
lated for single SU with S=700m with initial distance=200.
M=3 represents the detection probability calculated using
proposed method for 3 SUs with sensing range=[650, 600,
650]m with initial distance=[210, 200, 210]m. M=5 represents
the detection probability calculated using proposed method for
5 SUs with sensing range=[600, 650, 700, 650, 600]m with
initial distance=[250, 210, 200, 210, 250]m. We can observe
that as we are adding new SUs in the system, though the new
added SUs have low sensing range and high initial distance
compared to the previous one, we are still able to obtain
better detection performance. If we compare the detection
performance for M = 1 and M = 3, an average gain of
13% is obtained. And with M = 5, on average we are able to
obtain gain of 17%.

V. CONCLUSIONS

In this paper, we have proposed a weighted-CSS framework
for CVNs. We use coordinate method to compute the inside
probability of SU, which is usually not considered in the state
of the art schemes. We then propose an algorithm to assign
weights to each SU based on the computed inside probability.
Furthermore, a comprehensive performance analysis is carried

out for the proposed weighted cooperative spectrum scheme.
Our analysis and analytical results were confirmed and val-
idated by the Monte-Carlo simulations. For modelling SU’s
velocity, random way-point mobility model is used. Numerical
results indicate that, on an average, the proposed framework
performs ≈ 15% better than the conventional local spectrum
sensing. Our future work includes the analysis for finding
optimal number of SUs that will take part in spectrum sensing,
and extending to a scenario where both PU and SUs are
mobile.
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