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Abstract—In limited space scenarios, the antennas in the
multiantenna cognitive radio (CR) system are closely spaced
and often experience correlation among them. In this work,
the secrecy performance of correlated multiantenna CR receiver
over Nakagami-< fading channels with imperfect channel state
information is studied and analyzed. We consider the underlay CR
paradigm wherein Alice in the secondary network communicates
with Bob while Eve tries to overhear the communication. We
also consider that the antennas at Bob and Eve are closely
spaced and thus uniformly correlated. To this extent, we derive
the analytical expressions for the first and second order secrecy
measures like secrecy outage probability, average secrecy outage
rate & average secrecy outage duration, respectively for the
CR receiver. Moreover, in order to gain insights at high SNR,
asymptotic analysis of secrecy outage probability is derived, thus
obtaining the secrecy diversity gain of order !� (i.e., the number
of antennas at Bob). Monte Carlo simulations are carried out to
validate the proposed analytical framework.

Index Terms—Physical layer security, multiantenna, secrecy
outage probability, and average secrecy outage rate.

I. INTRODUCTION

Due to the broadcasting nature of wireless medium, commu-
nication systems are often susceptible to eavesdropping. Thus,
secured communications have always been of major concern
[1]. Conventional cryptography techniques implemented at the
higher OSI layers are robust and efficient [2]. However, for net-
work architectures where the devices are of low complexities,
for instance in fifth-generation (5G) and beyond wireless net-
works, issues of key management or computational complexity
make the use of data encryption difficult [3]. In such scenarios,
physical layer security (PLS) has been considered as a promis-
ing approach to better realize the secured communications [4].

Owing to the fact that 5G and beyond wireless networks pose
significant demand on limited spectrum resource, cognitive
radio (CR) communications has emerged as a potential solution
that opportunistically utilizes the idle licensed spectrum bands
[5]. CR users often use diversity branches to combat the effect
of fading. However, due to multiple wireless links, multiantenna
CR systems are prone to interception by an eavesdropper [6].
There have been a plethora of works in literature that have
analysed the PLS for multiantenna CR systems, for instance
in [7]–[10]. However, the aforementioned works have assumed
the antennas to be spaced apart and thus spatially uncorrelated.

As the diversity branches in the multiantenna system in-
creases, and due to space limitation in specific scenarios, for
instance, in vehicular applications, antennas become closely
spaced. In such scenarios, inter-branch correlation among them
cannot be neglected [11], [12]. Few works in the literature have
studied the effect of antenna correlation on the secrecy perfor-
mance, for instance in [13]–[16]. However, the above works
were mainly concerned with non CR multiantenna systems.

All the aforementioned work in the literature considered the
legitimate transmitter, receiver and eavesdropper to be static.
The key secrecy measures presented in the literature for such
system are primarily the secrecy outage probability (SOP) and
secrecy capacity (�B), also known as first order statistics [17].
Recently, there have been few works, for instance [18]- [19],
that have analysed PLS for vehicular networks. However, to
gain better insights on the performance of such systems, the
second order statistics like average secrecy outage rate (ASOR)
and average secrecy outage duration (ASOD) are more useful
[17]. Although SOP provides the idea about the secured link
level connection where the channel can support a certain rate, it
fails to provide the idea about the average length (realizations)
over which a secured communication cannot be established.
Moreover, when the user nodes are mobile, the second order
secrecy measures like ASOR and ASOD helps to gain better
insights into the system design [20]. To the best of the authors’
knowledge, the analysis of impact of correlation among closely
spaced multiantenna CR receiver from the first order (SOP) and
second order secrecy measures (ASOR and ASOD) viewpoint
is yet to be reported in literature. The contributions of our work
are threefold and can be summarized as:
• First, a comprehensive analysis of first order secrecy mea-

sures like SOP is presented for the uniformly correlated.
CR antennas at Bob and Eve. Additionally, the effect of
imperfect CSI is also taken into account.

• Secondly, in order to gain insights at high SNR, asymptotic
analysis of SOP is carried out, thus obtaining the secrecy
diversity gain of order !� .

• Thirdly, the performance analysis of second order secrecy
measures like ASOR and ASOD is carried out for the
considered system model. These expressions are useful to
draw insights for the multiantenna CR enabled vehicles.

The rest of this paper is organized as follows: Section II
describes the system and channel models. Section III describes
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Fig. 1: The system model

the analysis of SOP over correlated Nakagami-< channels
followed by its asymptotic analysis. Secrecy analysis of second
order statistics is performed in Section IV. Numerical results are
discussed in Section V. Finally, Section VI concludes the paper.

II. SYSTEM AND CHANNEL MODELS

The considered system model is shown in Fig. 1. An underlay
CR network is considered which consists of a primary user
(%), a secondary user transmitter (referred to as Alice (())
communicating with a legitimate secondary receiver (referred
to as Bob (�)) under the malicious intention of an eavesdropper
(referred to as Eve (�)). % and ( are assumed to be equipped
with single antennas while Bob and Eve are equipped with !�
and !� antennas, respectively and employing maximal ratio
combining (MRC) diversity reception scheme. Furthermore,
antennas mounted on Bob and Eve are assumed to be closely
spaced and thus uniformly correlated. However, Bob and Eve
are assumed to be sufficiently spaced apart and thus the main
link ((−�) and the eavesdropper link ((−�) are independent
of each other. We consider that both primary and secondary
networks experience quasi static Nakagami-< fading channel.
Due to rapid channel variations, the imperfect channel fading
coefficient (ℎ: ) between ( and : is given as [21]

ℎ: = k: ℎ̂: +
√

1−k2
:
Y, (1)

where : ∈ (�,�), ℎ̂: is the Nakagami-< fading channel
between ( and : , k: ∈ [0,1] is the magnitude of imperfect
coefficient between ℎ: and ℎ̂: with k: = 1 referring to perfect
channel state information (CSI), and Y is the channel estimation
error modelled as complex valued Gaussian random variable
with zero mean and unit variance, independent of ℎ̂: .

III. PERFORMANCE ANALYSIS OF SECRECY OUTAGE

A. Preliminaries of Distribution of the Instantaneous SNR

The instantaneous signal to noise ratio (SNR) at receiving
node ‘:’ can be expressed as [21]

W: =

!:∑
8=1
W:8 =

(
%(

f2

)
.: , (2)

where W8 stands for instantaneous SNR per antenna, !: is the
number of antennas, %B is the transmission power at (, f2 is

the noise variance and .: =
∑!:
8=1 |ℎ

:
8
|2 are the channel gains of

uniformly correlated ! antennas at : . The probability density
function (PDF) of .: can be written as [11]

5.: (H) =
�:

�:
H!:<−14−�: H1�1 (<, !:<;�: H), (3)

where �: =
(
<
Ŵ:

)!:<
, �: = <

Ŵ: (1−d: ) , �: =
!:<d:

Ŵ: (1−d: ) (1−d:+!:d: ) ,

�: = (1− d: )<(!:−1) (1− d: + !: d: )<Γ(!:<), d: is the uni-
form correlation coefficient for closely spaced !: antennas,
Ŵ: is the average SNR under imperfect CSI, and 1�1 (·, ·; ·)
is the confluent hypergeometric function [22, Eq. (9.210.1)].
Furthermore, 1�1 (·, ·; ·) can be represented as

1�1 (01, 11;G) = Γ(11)
Γ(01)

∞∑
==0

Γ(01 +=)G=
Γ(11 +=)=!

, (4)

where Γ(·) indicates the Gamma function [22, Eq. (8.310.1)].
On integrating (3) as per the definition of cumulative distribu-
tion function (CDF), we obtain

�.: (H) =
�:

�:

Γ(!:<)
Γ(<)

∞∑
==0

Γ(< +=)�=
:
�
−!:<−=
:

Γ(!:< +=)=!

×
∫ H

0
G!:<+=−14−�: G3G.

(5)

On solving (5) with the aid of [22, Eq.(8.350.1)] yields the
CDF of .: as

�.: (H) =
�:

�:

Γ(!:<)
Γ(<)

∞∑
==0

Γ(< +=)�=
:

Γ(!:< +=)=!
�
−!:<−=
:

×6(!:< +=, �: H),
(6)

where 6(·, ·) denotes the lower incomplete Gamma function
[22, Eq. (8.350.1)]. Moreover, the imperfect CSI at : , repre-
sented as Ŵ: , can be expressed as [21]

Ŵ: =
k2
:
W̄:

W̄: (1−k2
:
) +1

. (7)

It can be noted that when k: = 1, perfect CSI is obtained
and thus Ŵ: = W̄: , the average SNR along !: . Substituting
�: , �: ,�: and �: in (3) and (6) results in the distributions
of instantaneous SNR of uniformly correlated antennas at : ,
performing MRC under imperfect CSI.

For underlay CRNs, the transmission power at ( is %( =
<8=

(
%<0G ,

�%
-

)
, where %<0G is the maximum transmit power

at (, �% is the peak interference power at % and - = |ℎ% |2 is
the channel gain between ( and %. The PDF and CDF of -
can be written as

5- (H) =
H<%−1

Γ(<%)

(
<%

Ω%

)<%
4

(
−<%
Ω%

)
H
, (8)

�- (H) = 1− 1
Γ(<%)

�

(
<% ,

<%

Ω%
H

)
, (9)

respectively, where <? is the fading parameter, Ω% is the
average channel power gain and � (·, ·) is the upper incomplete
Gamma function [22, Eq. (8.350.2)].



B. Secrecy Outage Probability

SOP is defined as the probability that the instantaneous
secrecy capacity falls below a target rate ‘'B’ i.e., %A (�B < 'B).
Secrecy capacity can be written as [3]

�B (W� , W� ) = C� −C� =max {ln(1+W�) − ln(1+W� ),0} , (10)

where C� = ln(1+W�) and C� = ln(1+W� ) are channel capac-
ities of Bob and Eve, respectively. The SOP for underlay CRN
depends on %B and can be defined as [8],

SOP = %A {�B (W� , W� ) ≤ 'B} =%A {�B (W� , W� ) ≤ 'B , %( = %<0G}︸                                         ︷︷                                         ︸
≡%1

+%A
{
�B (W� , W� ) ≤ 'B , %( =

�%

-

}
.︸                                       ︷︷                                       ︸

≡%2
(11)

Probabilities %1 and %2 can be further analyzed as follows:

%1 = %A

{
.� ≤ \.� +

\ −1
U

}
%A

{
- ≤ �%

%<0G

}
=

∫ ∞

0
�.�

(
\H + \ −1

U

)
5.� (H) dH︸                                     ︷︷                                     ︸

�1

%A

{
- ≤ �%

%<0G

}
,︸                 ︷︷                 ︸

�2

(12)

where U = %<0G
f2 and \ = 4'B . For detailed derivation of Integral

�1, kindly refer to appendix. Moreover, with the aid of (9), �2
can be rewritten as

�2 = %A

{
- ≤ �%

%<0G

}
= 1− 1

Γ(<)�
(
<,

<�%

Ω%%<0G

)
. (13)

On substituting (31) and (13) in (12), %1 can be obtained.
Further, %2 can be written as

%2 = %A

{
�B (W� , W� ) ≤ 'B , %( =

�%

-

}
= %A

{
.� ≤ \.� +

(\ −1)-
V

, - >
�%

%<0G

}
=

∫ ∞

�%
%<0G

∫ ∞

0
�.�

(
\H + (\ −1)G

V

)
5.� (H) dH︸                                         ︷︷                                         ︸

� (G)

5- (G) dG,

(14)

where V = �%
f2 . � (G), the inner integral in (14) is simplified in

similar lines with (31) and obtained as

� (G) = ��

��

Γ(!�<)
Γ(<)

∞∑
=3=0

Γ(< +=3)�=3
�
�
−!�<−=3
�

Γ(!�< +=3)=3!
��

��

× Γ(!�<)
Γ(<)

∞∑
=4=0

Γ(< +=4)�=4
�

Γ(!�< +=4)=4!

=4+!�<−1∑
:2=0

(
G(1− \)
V\

):2

× \−!�<−=4+:2

(
=4 + !�<−1

:2

) (
4
��

(
(\−1)G
V\

) )
×
∞∑
E=0

Γ(!�< +=3)�!�<+=3+E
�

Γ(!�< +=3 + E +1)

Γ

(
Θ,

(
(\−1)G
U

) (
�� + ��\

))
(
�� + ��\

)Θ .

(15)

On utilizing the definition of upper incomplete Gamma function
and on further substituting (8) and (15) in (14) and evaluating
the integral, %2 can be obtained as

%2 =
��

��

Γ(!�<)
Γ(<)

∞∑
=3=0

Γ(< +=3)�=3
�
�
−!�<−=3
�

Γ(!�< +=3)=3!
��

��

Γ(!�<)
Γ(<)

×
∞∑
=4=0

Γ(< +=4)�=4
�

Γ(!�< +=4)=4!

(<
Ω

)< 1
Γ(<)

=4+!�<−1∑
:2=0

(
1− \
V\

):2

× \−!�<−=4+:2

(
=4 + !�<−1

:2

) ∞∑
E=0

Γ(!�< +=3) ×�!�<+=3+E
�

Γ(!�< +=3 + E +1)
(
�� + ��\

)Θ
×
Θ−1∑
A=0

((
�� +

��

\

) (
\ −1
V

))A (Θ−1)!
A!

×
Γ

(
:2 +< + A,

�?
%<0G

×
{
<
Ω
−s + a

})[
<
Ω
−s + a

] :2+<+A
,

(16)

where s =
�� (\−1)
V\

, a =
(
\−1
V

) (
�� + ��\

)
and Θ = !�< +=3 +

!�<+=4+E− :2. The analytical expression of SOP is obtained
by substituting the simplified (12) and (16) in (11). Note that
although the final expression of SOP contains an infinite series
term, it converges quickly due to the monotonically decreasing
upper incomplete Gamma function, demonstrated further in the
numerical results section.

C. Asymptotic Analysis of Secrecy Outage Probability

To gain further insights of the system performance at high
SNR, asymptotic analysis of SOP is carried out converting
to the form ($%∞ ≈ �2 Ŵ�3: , where �2 is the secrecy array
gain and �3 is the secrecy diversity gain. For simplicity, we
bifurcate the analysis in two cases:

Case 1- Ŵ� →∞ and Ŵ� is fixed: From the expression of
SOP in (11) and (12), we can notice that for the considered
case, only integrals �1 and %2 will be influenced. On rewriting
�1, we have

�1,∞ =

∫ ∞

0
�.� ,∞

(
\H + \ −1

U

)
5.� (H) dH. (17)

In order to solve the above expression, we analyze (6) at
high SNR. From (6), it follows that the dominating term
is obtained for = = 0. Furthermore, using the approximation
limG→∞ 6(B, G) = Γ(B) in (6), �.� ,∞ can be simplified as,

�.� ,∞

(
\H + \ −1

U

)
=
��

��
�
−!�<
�

Γ(!�<). (18)

On substituting (18) and (3) in (17) and on further simplifica-
tion, �1,∞ can be obtained as

�1,∞ =
��

��

��

��
�
−!�<
�

Γ(!�<)

×
∫ ∞

0
H!�<−14−�� H1�1 (<, !�<;�� H) dH.

(19)



With the aid of [22, Eq. (7.621.4)], the above expression can
be rewritten as

�1,∞ =
��

��

��

��
�
−!�<
�

Γ(!�<)Γ(!�<)�−!�<�

×�
(
�� , !�<, !�<,

��

��

)
,

(20)

where � (·) is the hypergeometric function. Similarly, on solv-
ing %2 in (11) in a similar fashion as above and on comparing
with ($%∞, the secrecy diversity gain obtained is of order !� .

Case 2- Ŵ� →∞ and Ŵ� is fixed: In this case, since Ŵ� →
∞, the secrecy diversity order obtained is zero and thus the
probability of successful eavesdropping is approaching one.

IV. PERFORMANCE ANALYSIS OF SECRECY OUTAGE RATE
AND SECRECY OUTAGE DURATION

In this section, the performance analysis of second order
statistics like ASOR and ASOD is carried out.
A. Average Secrecy Outage Rate

The ASOR quantifies the expected number of downward
crossings of the �B per second at a certain threshold. It can
be defined as the average secrecy level crossing rate of the
instantaneous �B at a certain threshold level [20]. Based on the
definition of �B , when %B = %<0G , the event ℜ1 is equivalent

to
[
A1 =

ℎSD√
#0
≤

√
4'B (1+UW� )−1

%<0G

]
. Similarly, when %B =

�%
-

, the

event ℜ2 is equivalent to
[
A2 =

ℎSD√
#0
≤

√
4'B (1+VW� )−1

�%

]
. Here, A1

and A2 are the instantaneous fading amplitudes of the uniformly
correlated Nakagami-< fading channels. Since underlay CRN
is considered, two terms are obtained in accordance with (11).

Furthermore, ?
A1

, the PDF of A1 can be written with the aid
of (3) as

?
A1
=
��

��
2A!�<−1

1 4−��A
2
1 1�1 (<, !�<;��A2

1). (21)

Note that when the correlation is assumed zero by sub-
stituting d� = 0 in the subsequent values of �� , �� , �� ,

and �� , as defined below (6), the PDF of instantaneous
fading amplitude is obtained as [20, Eq. (6)], thus showing
the backward mathematical compatibility. Moreover, ? ¤A1 ( ¤A1),
the PDF of time derivative of A1 is independent of amplitude.
With the aid of [23, Eq. (13)], it can be expressed as

? ¤A1 ( ¤A1) =
1

√
2 c fSD

exp

(
− ¤A1

2

2 f2
SD

)
, (22)

where f2
SD
= c2 5 2

<0G (Ω�/<), 5<0G is the maximum Doppler
frequency, and Ω� is the average channel power gain at �.

Based on the general formula provided in [24], the ASOR
for the multiantenna CRN can thus be formulated as

ℜ('B) = ℜ1 ('B)PA
(
- ≤

�?

%<0G

)
+ℜ2 ('B)PA

(
- >

�?

%<0G

)
(23)

where,

ℜ1 ('B) =
∫ ∞

0

∫ ∞

0
¤A1 ?A1 (ACℎ1) ? ¤A1 ( ¤A1) ?WE

(H) d ¤A1 dH, (24)

ℜ2 ('B) =
∫ ∞

0

∫ ∞

0
¤A2 ?A2 (ACℎ2) ? ¤A2 ( ¤A2) ?WE

(H) d ¤A2 dH. (25)

Note that ?
A1

, ? ¤A1 , ?
A2

and ? ¤A2 are the PDFs of A1, ¤A1, A2 and
¤A2 respectively. On substituting ? ¤A1 from (22) to (24), and on
further simplifying with the aid of [23], we obtain

ℜ1 ('B) =
fSD√
2 c

∫ ∞

0
?
A1
(ACℎ1) ?WE

(H) dH. (26)

On further substituting ?
A1

from (21), and ?
W�

from (3) in
(26), and on re-writing, we obtain

ℜ1 ('B) =
fSD√
2 c

2�� ��

�� ��

∫ ∞

0
A
!�<−1
Cℎ1 4−��A

2
Cℎ1

× 1�1 (<, !�<;��A2
Cℎ1) H

!�<−14−�� H1�1 (<, !�<;�� H) dH.
(27)

On substituting the value of A1 in place of ACℎ1 in the above
expression, we obtain

ℜ1 ('B) =
fSD√
c

√
2�� ��

�� ��

∫ ∞

0

(
4'B (1+UH) −1

%<0G

)!�<−1

× exp
(
−��

(
4'B (1+UH) −1

%<0G

))
H!�<−14−�� H

× 1�1

(
<, !�<;��

(
−��

(
4'B (1+UH) −1

%<0G

)))
× 1�1 (<, !�<;�� H) dH.

(28)

On further applying Laguerre theorem with the aid of [25], the
expression of ℜ1 can be simplified as,

ℜ1 ('B) ≈
fSD

√
2����√

c�� ��

#∑
==1

F=

(
4'B (1+UG=) −1

%<0G

)!�<−1

× exp
(
−��

(
4'B (1+UG=) −1

%<0G

))
G!�<−1
= 4−�� G=

× 1�1

(
<, !�<;��

(
−��

(
4'B (1+UG=) −1

%<0G

)))
× 1�1 (<, !�<;��G=),

(29)

where G= and F= are the =Cℎ root and weight of the # Cℎ order
Laguerre polynomial, respectively. On solving ℜ2 in (25) in
similar manner to the above analysis, the final expression of
ℜ2 is obtained.

B. Average Secrecy Outage Duration

The ASOD quantifies the average time duration for which
the system remains in the secrecy outage status. As per the
definition in [24], the ASOD can be expressed as

) ('B) =
SOP('B)
ℜ('B)

. (30)

On substituting the final expressions of SOP and ℜ in the
above equation, the ASOD for multiantenna CRN is obtained.
Note that on substituting 'B = 0, < = 1 and, d = 0, we find that
ASOD depends only on fSD , i.e., on the maximum Doppler
frequency ( 5<0G).
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V. NUMERICAL RESULTS

In this section, we analyze the first and second order secrecy
measures for the considered system model. The simulation
parameters are listed in the Table I.

TABLE I: List of the configured simulation parameters

Parameter MonteCarlo
Trials %<0G 'B # =1, =2, D =3, =4 E

Value 15000 1W 0.1 30 2 4 12

Fig. 2 shows the plot of SOP versus �% for < = 1 and 3,
!� = !� = 3, assuming perfect CSI at Bob and Eve. It can be
observed from the graph that SOP is highest for uncorrelated
case d: = 0 and it decreases as d: increases. To confirm the
result, we investigated the scenarios considering i) the antenna
correlation only at Bob, ii) antenna correlation only at Eve,
and iii) equal correlation at Bob and Eve. We notice that
the effect of antenna correlation is more detrimental at Bob.
Thus, we conclude that the antenna correlation improves the
secrecy performance in a sense that the harm caused due to
correlation at Eve’s channel outperforms the loss introduced
by correlation on Bob’s channel (as also confirmed by other
numerical results not included in this paper due to space
limitations). Furthermore, it can also be observed from the
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result that SOP is low for < = 3 as compared to < = 1. This is
intuitive from the fact that < = 1 represents a Rayleigh fading
scenario and < = 3 represents a better channel condition. Fig. 3
shows the effect of k: on SOP. The upper and lower set of plots
represents the imperfect CSI at Bob and Eve respectively. We
can notice that as the CSI at Bob improves, the SOP decreases.
Furthermore, Eve being an unintended user can be expected
to have more imperfectness in CSI. We notice that as k�
increases, SOP increases. This is due to the fact that increasing
k� improves Eve’s channel estimation and thus increasing the
SOP. Note that when perfect CSI is assumed, our analysis
remains valid for correlated antennas. We can also observe that
SOP floor exists at high �? due to %<0G as per the condition
%( = <8=

(
%<0G ,

�%
-

)
. Moreover, when d: = 0 and k: = 1 is

assumed, our results match with [6] when < = 1, and with [26]
when !� = !� = 1 and %B =

�?
-

is considered. Fig. 4 shows the
plot of SOP versus W̄� for different values of W̄� and !: . We
can infer from the plot that when W̄� increases, SOP increases.
This is due to the fact that high W̄� implies a high SNR in
(( − �) link and thus a higher secrecy outage. Furthermore,
as the number of diversity branches !: increases, the gain in
the SOP improves. The dashed lines indicate the asymptotic



performance. We can notice that slopes of all the asymptotic
lines are the same. This confirms our analysis that the secrecy
diversity gain order is of the order !� . Fig. 5 demonstrates
the plot of ASOR versus W̄� for !� = !� = 2, < = 4, 'B = 0,
d� = d� = 0, and �% = 0 dB for different values of 5<0G and
W̄� . As 5<0G increases, the ASOR increases. This is because the
higher value of 5<0G indicates that the Bob/Eve is moving at
a higher speed. This causes a fast variation in secrecy capacity
and thus increases the ASOR. We also observe from the plot
that a maximum value of ASOR occurs when W̄� = W̄� . This
non monotonic behaviour is expected because as �B becomes
zero, it crosses the zero threshold ('B = 0) maximum times
as compared to the threshold crossings when the difference
between W̄� and W̄� is comparable.

VI. CONCLUSIONS

In this work, the secrecy performance for uniformly corre-
lated CR antennas at Bob and Eve is carried out. In particular,
the first and second order secrecy measures like SOP and
ASOR & ASOD respectively are analysed. The analytical
expressions are verified by the Monte Carlo simulations. This
work considers maximum power constraint along with the
interference power constraint. We conclude that the secrecy out-
age depends on the antenna correlation factor of multiantenna
systems and also on CSI estimates at Bob and Eve. Moreover,
asymptotic analysis of secrecy outage probability reveals the
secrecy diversity gain of order !� . Furthermore, this work
provides a rigorous study and offers a realistic framework on
the first and second order measures that could be useful in the
secrecy analysis of correlated multiantenna CR users for 5G
and beyond networks.

APPENDIX: EVALUATION OF INTEGRAL �1

On transforming the variable and assuming \H + \−1
U
= I to

simplify integral �1, with the aid of (3) and (6), on subsequently

performing the binomial expansion of
(
I
\
− \−1
U\

)=2+!�<−1
after

transforming the variable, and using (G+ H)= =∑=
:=0

(=
:

)
G=−: H=,

we obtain, the intermediate integral �1 in terms of ‘z’. On
further replacing the lower incomplete Gamma function as
6(B, E) = EBΓ(E)4−E∑∞D=0

ED

Γ(B+D+1) , and on simple manipulation,
�1 can be expressed as

�1 =
��

��

Γ(!�<)
Γ(<)

∞∑
=1=0

Γ(< +=1)�=1
�
�
−!�<−=1
�

Γ(!�< +=1)=1!

× ��
��

Γ(!�<)
Γ(<)

∞∑
=2=0

Γ(< +=2)�=2
�

Γ(!�< +=2)=2!

=2+!�<−1∑
:1=0

(
1− \
U\

):1

× \−!�<−=2+:1

(
=2 + !�<−1

:1

) (
4
��

(
\−1
U\

) )
×
∞∑
D=0

Γ(!�< +=1)�!�<+=1+:
�

Γ(!�< +=1 + : +1)

Γ

(
Ξ,

(
\−1
U

) (
�� + ��\

))
(
�� + ��\

)Ξ ,

(31)

where Ξ = !�< +=1 + !�< +=2 +D− :1.
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