SPECTRAL OCCUPANCY MEASUREMENTS IN URBAN AREAS AND THEIR APPLICABILITY TO THE BLIND STANDARD RECOGNITION SENSOR CONCEPT

Miguel López-Benítez1, Fernando Casadevall1, Anna Umbert1, Rachid Hachemani2, Jacques Palicot2, Christophe Moy2

1Department of Signal Theory and Communications
Universitat Politècnica de Catalunya
Barcelona, Spain
email: [miguel.lopez, ferranc, annau]@tsc.upc.edu

2SUPELEC/IETR
Avenue de la Boulaie CS 47601 F-35576 Cesson-Sévigné, France
email: [rachid.hachemani, jacques.palicot, christophe.moy]@supelec.fr

ABSTRACT
Cognitive Radio (CR) has been paid much attention in both academic and industrial domains during the last years for its potential capability to solve to the so-called spectrum scarcity problem. The CR concept arose as a result of the current spectrum underutilization, which was demonstrated in a number of spectrum measurement campaigns. The main objective of such measurements was to evaluate spectrum occupancy, and hence empirical data were employed mainly to determine whether spectral bands were occupied or not. Empirical spectrum measurements can find however further practical applications. In this context, this paper presents some spectrum measurements that have been performed in the framework of a broadband spectrum measurement campaign and presents the Blind Standard Recognition Sensor (BSRS) concept, which can be validated with such measurements. The BSRS is a sensor embedded in a CR equipment to permit the identification of many commercial wireless standards without the need to connect to any network.

1. INTRODUCTION
Cognitive Radio (CR) has been identified as a promising solution to the existing conflicts between spectrum demand growth and spectrum underutilization [1]. The basic idea of this paradigm is to allow unlicensed users to access in an opportunistic and non-interfering manner some licensed bands temporarily unoccupied by licensed users.

The CR concept relies on the premise that spectrum is currently underutilized, which has been demonstrated in several spectrum measurement campaigns covering both wide frequency ranges [2]–[4] as well as some specific licensed bands [5]–[9] in diverse locations and scenarios. The main objective of such measurement campaigns was to quantitatively evaluate spectral occupancy in order to determine the degree to which allocated spectrum bands were occupied in real wireless communication systems. Hence, the data digitized during these studies were employed mainly to determine whether certain spectrum bands were occupied or not during a given measurement period.

Nevertheless, besides evaluating actual spectrum usage, empirical spectrum measurements can find further practical applications such as evaluation of CR techniques (e.g., [9][10]) or modeling of spectral activity (e.g., [11]). Furthermore, empirical data may be useful to extract some signal information that can be used not only to determine whether a spectrum band is occupied or not, but also to infer the system and standard being detected. This information may be exploited by a CR network to properly adapt to the operating environment and hence to improve the overall spectrum utilization and system performance.

In this context, this paper presents some spectrum measurements that have been performed in the framework of a broadband spectrum measurement campaign [12] and presents the Blind Standard Recognition Sensor (BSRS) concept [13], whose feasibility can be demonstrated and validated with empirical measurements. The BSRS is a sensor embedded in a CR equipment to permit the identification of many commercial wireless standards without the need to connect to any network. It combines (by a fusion process) information provided by several other sensors using signal processing algorithms such as radial basis neural network, Wigner-Ville transform, cyclostationarity detection, etc.

The rest of this paper is organized as follows. First, Section 2 describes the equipment employed to perform the measurements reported in this paper, its configuration and the considered measurement methodology. The obtained occupancy results are presented and discussed in Section 3. The BSRS is presented in section 4. Finally, Section 5 summarizes and concludes the paper.

2. MEASUREMENT SETUP AND METHODOLOGY
The measurement configuration used to conduct this study consisted of a broadband discone antenna AOR DN753 (vertically polarized with omni-directional receiving pattern in the horizontal plane) specified for the frequency range 75 MHz – 3 GHz, connected with a 10-meter low loss coaxial cable RG-58A/U to a high performance handheld spectrum analyzer Anritsu Spectrum Master MS2721B.
During the measurements the antenna was placed on a building roof in Barcelona (latitude: 41º 23’ 20” north; longitude: 2º 6’ 43” east; altitude: 175 meters). The selected place is a strategic location with direct line-of-sight to several transmitting stations located a few tens or hundreds of meters away from the antenna and without buildings blocking the radio propagation. This strategic location enabled us to accurately measure the spectral activity of, among others, a TV repeater, a FM broadcast station, several nearby base stations for cellular mobile communications and a military headquarters as well as some potential maritime and aeronautical transmitters due to the relative proximity to the Barcelona’s harbor and the Barcelona’s airport.

The main configuration parameters used for the spectrum analyzer are shown in TABLE I. The measured frequency range was divided into six consecutive 500 MHz blocks. Each block was measured during a continuous period of 48 hours and more than 10000 traces were obtained for each block. The measured traces were saved in an external storage device and post-processed off-line using MATLAB.

3. MEASUREMENT RESULTS AND ANALYSIS

3.1 Occupancy Metrics

The obtained measurement results are shown in Figures 1 and 2. Each figure is composed of three graphs, each one corresponding to a specific occupancy metric. The upper graph shows the minimum, maximum and average Power Spectral Density (PSD) measured for each 500 MHz spectrum block. The middle graph shows the temporal evolution of the spectrum occupancy during the whole 48 hour measurement period. A black dot indicates that the corresponding frequency point was measured as occupied at that time instant, while the white color means that the frequency point was measured as idle. To determine whether a given frequency is occupied or not, energy detection is assumed. Different sensing methods have been proposed in the literature to detect whether a frequency band is being used by a licensed signal. The average duty cycle over the whole frequency range considered in this study is 22.57%, which indicates the existence of a significant amount of unused spectrum that could potentially be exploited by future CR networks.

3.2 Overview of Spectrum Occupancy

The occupancy results shown in Figures 1 and 2 indicate that spectrum experiences a relatively high use below 1 GHz while remains mostly underutilized between 1 and 3 GHz, with some exceptions such as the DCS 1800 system (1710-1755 MHz and 1805-1880 MHz) and the UMTS system (1930-1980 MHz and 2110-2170 MHz). The obtained numerical occupancy results are summarized in TABLE II. As can be appreciated, while the average duty cycle between 75 and 1000 MHz is 58.65%, the value for this parameter between 1000 and 3000 MHz is only 5.89%. The overall average duty cycle over the whole frequency range considered in this study is 58.65%, which value for this parameter between 1000 and 3000 MHz is only 5.89%. The overall average duty cycle over the whole frequency range considered in this study is 22.57%, which indicates the existence of a significant amount of unused spectrum that could potentially be exploited by future CR networks.

Although these results indicate low spectrum utilization, they do not provide an idea of how spectrum is used in different bands allocated to different specific services. Looking into Figures 1 and 2 in more detail, it can be observed that spectrum bands below 235 MHz, assigned to FM broadcasting (87.5-108 MHz), maritime and aeronautical radionavigation (108-174 MHz), audio broadcasting (174-223 MHz) and Private/Professional Mobile Radio (PMR) systems (223-235 MHz), show an intensive usage with average duty cycles between 90% and 100%.

TABLE I. SPECTRUM ANALYZER CONFIGURATION.

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Center frequency</td>
<td>Block 1: 250 MHz Block 2: 750 MHz Block 4: 1750 MHz Block 5: 2250 MHz Block 6: 2750 MHz</td>
</tr>
<tr>
<td>Frequency span</td>
<td>500 MHz</td>
</tr>
<tr>
<td>Resolution/video bandwidth (RBW/VBW)</td>
<td>10 kHz / 10 kHz</td>
</tr>
<tr>
<td>Sweep time</td>
<td>Automatically selected</td>
</tr>
<tr>
<td>Reference level</td>
<td>–20 dBm</td>
</tr>
<tr>
<td>Scale</td>
<td>10 dB/div</td>
</tr>
<tr>
<td>Detection type</td>
<td>RMS detector</td>
</tr>
</tbody>
</table>

TABLE II. AVERAGE DUTY CYCLE STATISTICS.

<table>
<thead>
<tr>
<th>Block</th>
<th>Frequency range (MHz)</th>
<th>Average duty cycle</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>75 – 500</td>
<td>60.98%</td>
</tr>
<tr>
<td>2</td>
<td>500 – 1000</td>
<td>56.67%</td>
</tr>
<tr>
<td>3</td>
<td>1000 – 1500</td>
<td>2.07%</td>
</tr>
<tr>
<td>4</td>
<td>1500 – 2000</td>
<td>12.08%</td>
</tr>
<tr>
<td>5</td>
<td>2000 – 2500</td>
<td>7.57%</td>
</tr>
<tr>
<td>6</td>
<td>2500 – 3000</td>
<td>1.85%</td>
</tr>
</tbody>
</table>
The spectrum band between 235 and 400 MHz shows some potential opportunities for CR networks in the intervals 235-273 MHz (duty cycle of 18.14%) and 322-390 MHz (duty cycle of 12.89%). However, the whole band from 235 to 400 MHz is exclusively reserved for security services and systems, which in principle precludes the use of such spectrum bands for CR networks. Other bands below 1 GHz with low or moderate levels of activity but narrower available free bandwidths are those assigned to wireless microphones and RFID (862-870 MHz), CT1 cordless phones (870-871 and 915-916 MHz), cellular access rural telephony (874-876 and 919-921 MHz), R-GSM 900 (876-880 and 921-925 MHz) and several fixed and mobile services (400-470 MHz).

The frequency band 470-862 MHz, which is allocated to mobile cellular communication systems shows a moderate to high usage, as it can be inferred from the average duty cycles of 96.20%, 59.75% and 48.38% observed in the downlink directions of E-GSM 900 (925-960 MHz), DCS 1800 (1805-1880 MHz) and UMTS (2110-2170 MHz) respectively. While E-GSM 900 is subject to an intensive usage, lower duty cycles are observed for DCS 1800 (due to a well defined periodic usage pattern, with higher occupancy between 0-12 and 24-36 hours in the middle graph of Figure 2) and also for UMTS (due to the presence of several 5 MHz unoccupied channels).

The usually overcrowded ISM-2450 band (2400-2500 MHz) appears as unused in our measurement location, which could be explained by the fact that is is usually occupied in indoor environments and signals at such frequencies are severely attenuated by walls. The rest of spectrum between 1-3 GHz not discussed in the lines above remains mostly unused, with the exception of some very low duty cycle signals from aeronautical and satellite radio-location/navigation systems (960-1350 and 1610-1710 MHz), DECT cordless phones (1880-1900 MHz) and military radars (2700-2900 MHz).

Figure 1. Occupancy results between 75 and 1000 MHz.

Figure 2. Occupancy results between 1000 and 3000 MHz.
4. BLIND STANDARD RECOGNITION SENSOR

4.1 General Description

As it is described in Figure 3, this sensor analyzes the received signal in three steps. The first step is an iterative process that decreases the signal bandwidth to be analyzed further, so that the band of analysis is reduced to the only non-zero regions. During the second step an analysis is performed thanks to several sensors. Then during the third step, a fusion of all the information given by the analysis phase is performed in order to decide which standard is present.

During the second step, different sensors analyze the bands selected in step one. Many sub-sensors could be used for the recognition of the standard in use as: positioning of the equipment, presence of the telecom signal, detection of the carrier frequency, recognition of the bandwidth of telecom signal, recognition of Frequency Hopping / Direct Sequence (FH/DS) signal, recognition of single/multi-carrier, etc. In our implementation only three sub-sensors are used for the recognition of the standards in the table of the section.

4.2 Step 1: Bandwidth Adaptation

The difficulty here relies in the fact that the ratio between the global bandwidth to be analyzed and the smallest bandwidth parameter to be recognized may be very high. Therefore an iterative adaptation of the bandwidth to be analyzed is performed to solve it. Each iteration the process analyzes energy in the band with a conventional periodogram, then filters and decimates the samples around the detected peak of energy.

4.3 Step 2: Analysis with Sensors

We chose three sub-sensors to analyze and identify the received signal according with a list of predetermined standards: the bandwidth recognition, single/multi-carrier detection and FH/DS signal detection. Other sensors could be used to identify other parameters.

4.3.1 The Bandwidth Recognition

In [15] it was claimed that, in the frequency domain, the channel bandwidth (BWc) was a fully discriminating parameter. To find the bandwidth shape on the received signal a choice has been made to perform a PSD on this signal in order to obtain its BWc shape. The empirical spectrum shape is compared with a reference shape as shown in Figure 4.

4.3.2 Single/Multi-Carrier Detection

The overall results presented in [15] shown that the recognition rate between DVB-T and LMDS on the one hand, DAB and DECT on the other hand, was not good enough. Therefore we propose to improve this recognition adding a new sensor that discriminates between single and multi-carrier systems based on Guard Interval (GI) detection.

It is well known that a GI is inserted in multi-carrier systems in order to avoid Inter-Symbol Interference (ISI). There are several possibilities for creating this GI. The simplest and the most usual way is to copy the end of the symbol in the GI. After the computation of the autocorrelation function, the cyclic frequency corresponding to the GI is derived.

4.3.3 FH/DS Signal Detection

The results previously presented with the fusion of the two previous sensors are not sufficient yet. It fails in the discrimination of Bluetooth and IEEE 802.11b at 2.4 GHz in FHSS mode. In this situation, the two standards coexist at the same time in the same frequency band, so the resulting spectrum is the product of the original spectrums and consequently the previous sensor does not run correctly.

Therefore, we need to find another parameter. The detection between FH and DS modes should solve this difficulty. Recently, [16] addresses this particular problem and proposes to use Wigner-Ville Transform (WVT) in order to discriminate between Bluetooth and IEEE802.11b. The results are well adapted to our needs, because the system can discriminate between FH and DS signals. Figure 5 presents the result of the WVT of a FH signal with noise.

4.4 Step 3: Fusion

During the third step, a fusion of all the information given by the analysis phase is performed in order to decide which standard is present. At the end of the analysis step, three indicators are obtained. The simplest way to make the fusion is to...
apply some logical rules on these indicators. This method could be improved by the use of a NN (like a multilayer perceptron). Moreover, as these indicators give information that could be weighted by a reliability factor, a future work will further explore solutions based on Bayesian networks.

5. SUMMARY

Several spectrum measurements campaigns have been performed with the aim of evaluating the degree to which allocated spectrum bands are occupied in real wireless communication systems. However, empirical spectrum measurements can find further practical applications such as evaluation of CR techniques, modeling of spectral activity and validation of new concepts. In this context, this paper presented some spectrum measurements that were performed in the framework of a broadband spectrum measurement campaign and described the Blind Standard Recognition Sensor (BSRS) concept, whose feasibility is demonstrable and verifiable with empirical measurements. In future work we plan to further explore the applicability of such empirical data to the demonstration and validation of the BSRS concept.

ACKNOWLEDGEMENTS

This work was supported by the European Commission in the framework of the FP7 Network of Excellence in Wireless COM munications NEWCOM++ (contract no. 216715). The support from the Spanish Ministry of Science and Innovation (MICINN) under FPU grant AP2006-848 is hereby acknowledged. The authors want to thank Region Bretagne, France, for its support of this work.

REFERENCES

