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Abstract—The performance of energy detection under fading
channels has been evaluated in terms of the average probability
of detection as a function of the average Signal-to-Noise Ratio
(SNR) and the channel fading parameters, assuming that the
decision threshold is set to achieve a constant false alarm rate.
However, the signal sample size, which is an important design
parameter in the configuration of an energy detector and has a
significant impact on its performance, has received no attention
in the context of fading channels. The mathematical expressions
available in the literature to calculate the sample size required to
achieve desired target performance are valid for Additive White
Gaussian Noise (AWGN) channels only, and the impact of fading
on the required sample size remains unknown. In this context,
this work fills the existing gap by providing analytical results that
establish a direct relation between the channel fading parameters
and the required sample size. The results are provided for a broad
variety of fading models (Rayleigh, Nakagami-m, Nakagami-
q/Hoyt, Nakagami-n/Rice, η–µ and κ–µ) in terms of elementary
functions, which enables highly efficient numerical evaluations.

Index Terms—Cognitive radio, dynamic spectrum access, spec-
trum sensing, energy detection, fading channels.

I. INTRODUCTION

One of the most (if not the most) important requirements
for Dynamic Spectrum Access / Cognitive Radio (DSA/CR)
systems is to prevent harmful interference to licensed systems
[1, 2]. To this end, DSA/CR systems are required to periodi-
cally monitor the idle/busy state of the licensed channel before
attempting a transmission and vacate it as soon as the presence
of a licensed signal is detected. A large variety of methods for
signal detection, referred to as spectrum sensing in the context
of DSA/CR, have been proposed in the literature [3–5]. While
different sensing methods provide different trade-offs between
detection performance and complexity, energy detection [6, 7]
is typically preferred due to its low complexity and general
applicability. Energy detection is the most popular sensing
method in DSA/CR and is also employed in other systems
where some form of signal detection is required [8].

Energy detection decides the presence or absence of a signal
by comparing the energy of a finite set of signal samples to a
predefined decision threshold. Thus, the decision threshold and
the signal sample size are the two main design parameters that
can be configured in an energy detector to achieve a desired
target performance, which is typically expressed in terms of
the probability of false alarm (probability to incorrectly declare
an idle channel as busy) and the probability of detection

(probability to correctly detect a busy channel as such). While
the decision threshold can be set based on various criteria (e.g.,
see [9]), a common design criterion is to set the threshold so
as to achieve a predefined probability of false alarm, which
only requires the noise power to be known, and then set the
sample size to guarantee a minimum probability of detection
for a given minimum Signal-to-Noise Ratio (SNR).

While the design of the decision threshold has been exten-
sively investigated (e.g., see [9]), the design of the sample size
for the energy detector has not received sufficient attention.
The sample size required by an energy detector to achieve
a predefined target performance has been analysed under the
Additive White Gaussian Noise (AWGN) channel model and
closed-form expressions have been derived for such channel
model. However, to the best of the authors’ knowledge, no
equivalent analytical results are available in the literature
for fading channels. The analysis of energy detection under
fading channels has focused on the evaluation of the average
probability of detection as a function of the average SNR and
the fading parameters, which has been extensively investigated
for a wide variety of fading models and diversity reception
techniques [10–15]. However, the sample size required by
an energy detector to achieve a given target performance
in the presence of fading does not appear to have been
investigated to the date since the analytical results available
in the literature are only valid for the AWGN channel model.
Real-world wireless links are affected by fading and this
has a significant impact on the performance of any wireless
communication system, including DSA/CR systems and the
signal detection (spectrum sensing) process itself. Taking into
account that the sample size is an important design parameter
in the configuration of an energy detector, the importance of
having analytical results that can establish an explicit closed-
form relation between the channel fading parameters and the
required sample size becomes thus evident. This work fills the
existing gap by providing such results for a broad variety of
fading models, including Rayleigh, Nakagami-m, Nakagami-
q (Hoyt), Nakagami-n (Rice), η–µ and κ–µ fading channels.
Results are provided in terms of elementary functions, which
allows for computationally efficient numerical evaluations.

The rest of this work is organised as follows. First, Section
II presents the proposed evaluation approach, which relies on
the derivation of expressions for the distribution of the sample



size, which are provided in Section III. Numerical results are
provided in Section IV. Finally, Section V concludes this work.

II. PROPOSED EVALUATION APPROACH

The sample size N required by an energy detector to achieve
a probability of false alarm Pfa and a probability of detection
Pd in an AWGN channel as a function of the instantaneous
SNR per symbol γ is given by [16, eq. (9)]:

N =

[
Q−1(Pfa)−Q−1(Pd)(1 + γ)

γ

]2
(1)

where Q−1(·) denotes the inverse of the Gaussian Q-function
Q(·), defined in [17, eq. (26.2.3)].

One may attempt to evaluate the average sample size under
fading by integrating (1) over the Probability Density Function
(PDF) of the instantaneous SNR for the considered fading
model, which is essentially the same approach commonly used
in the literature to evaluate the average probability of detection
under fading (e.g., see [10–15]). Unfortunately, this approach
does not work in this case because the resulting integrals do
not converge as a result of the infinite limit of (1) as γ → 0.

This limitation is overcome in this work by means of a novel
approach composed of two steps. The first step is to calculate
the Cumulative Distribution Function (CDF) of the sample
size, denoted as FN (N). Notice that in fading scenarios the
instantaneous SNR γ will vary randomly according to a certain
distribution given by the considered fading model. Thus, N in
(1) can be seen as a function of the random variable γ and
the definition of CDF can then be used to obtain FN (N) as:

FN (N) = P

([
Q−1(Pfa)−Q−1(Pd)(1 + γ)

γ

]2
≤ N

)

= P
(
γ ≥ ζ(N)

)
=

∫ ∞
ζ(N)

fγ(γ)dγ (2)

where fγ(γ) is the PDF of the instantaneous SNR per symbol
for the considered channel fading model and ζ(N) is obtained
after solving the inner inequality for γ, which yields:

ζ(N) =
Q−1(Pfa)−Q−1(Pd)√

N +Q−1(Pd)
(3)

It is worth mentioning that the lower integration limit of (2)
implies ζ(N) ≥ 0, which is true given that the numerator and
denominator of (3) are both positive. It can be shown that the
probability of detection of an energy detector is lower bounded
by its probability of false alarm (e.g., see [7, eq. (7)] and its
limit as γ → 0); hence Pfa ≤ Pd and the numerator of (3) is
positive. The denominator will be positive if N ≥ [Q−1(Pd)]

2,
which is also true as it can be verified from (1):

Nmin = min(N) = lim
γ→∞

N = [Q−1(Pd)]
2 (4)

This is the lower bound of the domain over which FN (N)
is defined. Thus, the expressions obtained from evaluating (2)
are valid for N ≥ Nmin, and FN (N) = 0 for N ≤ Nmin.

The second step of the proposed approach is to exploit the
CDF obtained from (2) to evaluate the desired statistics. Since

the CDF provides a complete characterisation of a random
variable, it can be used to obtain a wide range of statistics.
The moments can be obtained from the CDF as:

E[Nk] = k

∫ ∞
Nmin

Nk−1 [1− FN (N)] dN (5)

a particular case of which is the mean sample size N̄ :

N̄ = E[N ] =

∫ ∞
Nmin

[1− FN (N)] dN (6)

Moreover, it is straightforward to derive the maximum number
of samples required for a given percentile 0 < ε < 1 as:

N (ε)
max = F−1N (ε) (7)

where F−1N (·) denotes the inverse of FN (·). If ε = 1/2, then
(7) provides the median sample size, Ñ = F−1N (1/2). The
median is more robust to outliers than the mean (e.g., a few
large values may significantly bias the mean of a set) and may
therefore be better suited to characterise the central tendency
of skewed distributions, which is the case of FN (N).

While the integral in (2) can be solved analytically for
various fading models as it will be shown in Section III, the
resulting expressions are in general too complex to enable an
analytical evaluation of (5)–(7), except for some particular
cases (e.g., Rayleigh and Nakagami-m). Therefore, in most
cases (5)–(7) will have to be evaluated numerically based
on the analytical result obtained from (2). A full numerical
evaluation of the expressions involved in the two proposed
steps would be possible as well, however this would have
some notable disadvantages in terms of computational cost
and required computation time. In particular, a numerical
evaluation of (2) would in fact involve multiple numerical
integrations, one for each value of N over which FN (N)
needs to be evaluated (e.g., if the range of values of interest
of N is represented by 103 points, then (2) would need to be
evaluated 103 times). Therefore, the proposed approach based
on the analytical resolution of (2) and the numerical evaluation
of (5)–(7) can reduce dramatically the total computation time.

III. DISTRIBUTION OF THE SAMPLE SIZE UNDER FADING

This section presents analytical results for (2) under various
channel fading models. The analytical results are initially
obtained in terms of mathematical functions that are de-
fined as integrals and therefore require the use of numerical
methods for their evaluation. To overcome this, alternative
computationally efficient expressions in terms of elementary
functions are provided as well. As discussed in Section II,
the results presented in this section for FN (N) are valid for
N ≥ Nmin = [Q−1(Pd)]

2, while FN (N) = 0 for N ≤ Nmin.

A. Rayleigh Fading

Under Rayleigh fading, the instantaneous SNR per symbol
is distributed according to [18, eq. (2.7)]:

fγ(γ) =
1

γ̄
exp

(
−γ
γ̄

)
(8)



where γ̄ is the average SNR. Introducing (8) in (2) yields the
following expression for the distribution of the sample size:

FN (N) = exp

(
− 1

γ̄
ζ(N)

)
(9)

Notice that the expression in (9) can be evaluated much more
efficiently than the corresponding numerical integration of (2).

B. Nakagami-m Fading

Under Nakagami-m fading, the instantaneous SNR per
symbol is distributed according to [18, eq. (2.21)]:

fγ(γ) =
mmγm−1

γ̄mΓ(m)
exp

(
−mγ

γ̄

)
(10)

where γ̄ is the average SNR, m ≥ 1/2 is the Nakagami-
m fading parameter and Γ(·) is the gamma function [17, eq
(6.1.1)]. Introducing (10) in (2) leads to the following sample
size distribution:

FN (N) = 1− P
(
m,

m

γ̄
ζ(N)

)
(11)

where P (·, ·) represents the regularised lower incomplete gam-
ma function [17, eq. (6.5.1)].

Notice that P (·, ·) is defined as a quotient of integrals and
most commercial software packages evaluate this function by
numerical methods. Some efficiency gains in computation time
can be achieved by deriving an alternative closed-form expres-
sion in terms of elementary functions as follows. Introducing
(10) into (2) leads to the following integral:

FN (N) =
mm

γ̄mΓ(m)

∫ ∞
ζ(N)

γm−1 exp

(
−mγ

γ̄

)
dγ (12)

The solution to the integral in (12) can be expressed in terms
of the exponential integral function [17, eq. (5.1.4)], which
is also defined as an integral and therefore would provide no
advantage with respect to (11) in terms of computation effi-
ciency. A computationally efficient expression can be obtained
by solving the integral in (12) for integer values of m based
on [17, eq (4.2.55)], which yields:

FN (N) = exp

(
−m
γ̄
ζ(N)

)m−1∑
k=0

1

k!

(
m

γ̄
ζ(N)

)k
(13)

The expression in (13) is based on elementary functions and
can be evaluated efficiently, however it is valid only for integer
values of m (m ≥ 1). For non-integer values of m, (11) must
be used at the expense of an increased computation time.

C. Nakagami-q (Hoyt) Fading

Under Nakagami-q (Hoyt) fading, the instantaneous SNR
per symbol is distributed according to [18, eq. (2.11)]:

fγ(γ) =
1 + q2

2qγ̄
exp

(
− (1 + q2)2

4q2
γ

γ̄

)
I0

(
1− q4

4q2
γ

γ̄

)
(14)

where q ∈ [0, 1] is the Nakagami-q fading parameter and Iν(·)
is the νth-order modified Bessel function of the first kind [17,

eq. (9.6.20)]. The associated CDF can be expressed as shown
in [19, eq. (8)], which leads to the following result for (2):

FN (N) = 1−Q

(
α(q)

√
ζ(N)

γ̄
, β(q)

√
ζ(N)

γ̄

)

+Q

(
β(q)

√
ζ(N)

γ̄
, α(q)

√
ζ(N)

γ̄

)
(15)

where Q(·, ·) is the first-order Marcum Q-function [18, eq.
(4.34)], and α(q) and β(q) are given by1:

α(q) =

√
1− q4
2q

√
1 + q

1− q
(16)

β(q) =

√
1− q4
2q

√
1− q
1 + q

= α(q)
1− q
1 + q

(17)

Since the Marcum Q-function is defined as an integral, the
evaluation of the result in (15) can be inefficient when the
number of points of N is large, which motivates the deriva-
tion of a more computationally efficient expression based on
elementary functions as follows. Using [17, eq. (9.6.10)] and
taking into account that Γ(k + 1) = k!, the Bessel function
I0 (·) can be written as:

I0(x) =

∞∑
k=0

(
1
2x
)2k

(k!)
2 (18)

Introducing (18) in (14) and then in (2) leads to:

FN (N) =
1 + q2

2qγ̄

∞∑
k=0

1

(k!)
2

(
1− q4

8q2γ̄

)2k

×
∫ ∞
ζ(N)

γ2k exp

(
− (1 + q2)2

4q2
γ

γ̄

)
dγ (19)

which can be solved using [17, eq (4.2.55)] to yield:

FN (N) =
2q

1 + q2

∞∑
k=0

(
1

2

1− q4

(1 + q2)2

)2k

(20)

× e
− (1+q2)2

4q2
ζ(N)
γ̄

2k∑
j=0

(2k)!

j!(k!)2

(
(1 + q2)2

4q2
ζ(N)

γ̄

)j
Notice that the result in (20) is based on elementary functions.
Moreover, it is valid for any value of the parameter q.

D. Nakagami-n (Rice) Fading

Under Nakagami-n (Rice) fading, the instantaneous SNR
per symbol is distributed according to [18, eq. (2.16)]:

fγ(γ) =
(1 +K)e−K

γ̄
exp

(
−(1 +K)

γ

γ̄

)
× I0

(
2

√
K(1 +K)

γ

γ̄

)
(21)

where K = n2 is the Rician K factor and n ≥ 0 is the
Nakagami-n fading parameter. The associated SNR CDF can

1The expressions provided in [19, eq. (8)] for α(q) and β(q) are incorrect.
The correct expressions are provided in the erratum published in [20].



be expressed in terms of the first-order Marcum Q-function
[21, eq. (8)], which leads to the following result for (2):

FN (N) = Q

(
√

2K,

√
2(1 +K)

ζ(N)

γ̄

)
(22)

A more computationally efficient expression can be obtained
by introducing (18) in (21) and then in (2), which leads to:

FN (N) = e−K
∞∑
k=0

Kk

(k!)2

(
1 +K

γ̄

)k+1

×
∫ ∞
ζ(N)

γk exp

(
−(1 +K)

γ

γ̄

)
dγ (23)

This integral can be solved using [17, eq (4.2.55)] to yield:

FN (N) = e−K
∞∑
k=0

Kk

× e−(1+K)
ζ(N)
γ̄

k∑
j=0

1

j!k!

(
(1 +K)

ζ(N)

γ̄

)j
(24)

Notice that the result in (24) is based on elementary functions.
Moreover, it is valid for any value of the parameter K = n2.

E. η-µ Fading

Under η-µ fading, the instantaneous SNR per symbol is
distributed according to [22, eq. (26)]:

fγ(γ) =
2
√
πµµ+

1
2hµ

Γ(µ)Hµ− 1
2

γµ−
1
2

γ̄µ+
1
2

exp

(
−2µh

γ

γ̄

)
Iµ− 1

2

(
2µH

γ

γ̄

)
(25)

where η and µ are the fading parameters, and h and H are
functions of η (see [22] for details). The CDF can be derived
from [22, eq. (19)], which leads to the following result for (2):

FN (N) = Yµ

(
H

h
,

√
2hµ

ζ(N)

γ̄

)
(26)

where Yv(·, ·) is given by [22, eq. (20)]. The function Yv(·, ·) is
defined as an integral and its evaluation can be expected to be
inefficient as a result. A computationally efficient expression
can be obtained by introducing into (25) the following equality
[17, eq. (9.6.10)]:

Iν(x) =

∞∑
k=0

(
1
2x
)ν+2k

k!Γ(ν + k + 1)
(27)

and then the resulting expression into (2), which yields:

FN (N) = 2
√
π

∞∑
k=0

µ2µ+2khµH2k

Γ(µ)Γ(µ+ k + 1
2 )γ̄2µ+2k

1

k!

×
∫ ∞
ζ(N)

γ2µ+2k−1 exp

(
−2µh

γ

γ̄

)
dγ (28)

Since µ represents half the number of multipath clusters, 2µ
takes integer values and so does 2µ+2k−1 (µ > 0). Based on

[17, eq (4.2.55)], the integral in (28) can be solved for integer
values of 2µ+ 2k − 1, which yields the following result:

FN (N) =
√
π
∞∑
k=0

H2k

Γ(µ)Γ(µ+ k + 1
2 )22µ+2k−1hµ+2k

(29)

× e−2µh
ζ(N)
γ̄

2µ+2k−1∑
j=0

(2µ+ 2k − 1)!

j!k!

(
2µh

ζ(N)

γ̄

)j
Notice that (29) is valid for integer values of 2µ. The µ fading
parameter is intended to be the real extension of half the
number of multipath clusters, which in theory should be an
integer multiple of 1/2 but in practice may not be for several
reasons [22]. For non-integer values of 2µ, (26) must be used.

F. κ-µ Fading

Under κ-µ fading, the instantaneous SNR per symbol is
distributed according to [22, eq. (10)]:

fγ(γ) =
µ(1 + κ)

µ+1
2

κ
µ−1

2 exp(µκ)

γ
µ−1

2

γ̄
µ+1

2

(30)

× exp

(
−µ(1 + κ)

γ

γ̄

)
Iµ−1

(
2µ

√
κ(1 + κ)

γ

γ̄

)
where κ, µ > 0 are fading parameters (see [22] for details).
The corresponding CDF can be derived from [22, eq. (3)],
which leads to the following result for (2):

FN (N) = Qµ

(√
2κµ,

√
2(1 + κ)µ

ζ(N)

γ̄

)
(31)

whereQm(·, ·) represents the generalised (mth-order) Marcum
Q-function [18, eq. (4.60)]. A more computationally efficient
expression can be obtained by introducing (27) in (30) and
then in (2), which leads to the following integral:

FN (N) =

∞∑
k=0

µµ+2kκk(1 + κ)µ+k

exp (µκ) γ̄µ+k
1

k!(µ+ k − 1)!

×
∫ ∞
ζ(N)

γµ+k−1 exp

(
−µ(1 + κ)

γ

γ̄

)
dγ (32)

Since µ represents the number of multipath clusters, µ takes
integer values and so does µ+k−1 (µ > 0). Based on [17, eq
(4.2.55)], the integral in (32) can be solved for integer values
of µ+ k − 1, which leads to the following result:

FN (N) =

∞∑
k=0

(µκ)ke−µκ (33)

× e−µ(1+κ)
ζ(N)
γ̄

µ+k−1∑
j=0

1

j!k!

(
µ(1 + κ)

ζ(N)

γ̄

)j
Notice that (33) is valid for integer values of µ. The µ fading
parameter is intended to be the real extension of the number
of multipath clusters, which in theory should be an integer
number but in practice may be non-integer for various reasons
[22]. For non-integer values of µ, (31) must be used.



IV. NUMERICAL RESULTS

This section follows the evaluation approach proposed in
Section II along with the analytical results obtained in Section
III to explore the impact of fading on the sample size that
an energy detector requires to achieve a predefined target
performance. The required sample size is here characterised by
its median value. For random variables that take values within
finite intervals, such as the probability of detection Pd ∈ [0, 1],
the mean may be a representative statistical average. However,
for the sample size, which can take any value in the semi-
infinite interval [Nmin,∞), the mean may be severely biased
by very large (and unlikely) values. As discussed in Section
II, the median is more robust to outliers than the mean and is
thus better suited to describe the central tendency of skewed
distributions, which is indeed the case for the sample size. For
this reason, the median sample size is here considered.

Figs. 1 and 2 show the median sample size required by an
energy detector to achieve Pfa = 0.1 and Pd = 0.9 under the
considered fading models. As appreciated, the overall effect of
fading is an increase in the required sample size with respect
to the AWGN channel, which in some fading scenarios can
be as large as ten times greater. This means that the well-
known expression in (1) commonly considered in the literature
would underestimate the required sample size and would thus
lead to an under-performance of energy detection in real-
world wireless communication channels. The results provided
in this work can be used to estimate more accurately the actual
sample size required in a broad range of fading channels.

The specific impact of fading for each channel fading model
can be explained based on its parameters. In the Nakagami-
m model, m quantifies the severity of fading. Fading is most
severe for m = 1/2 (one-sided Gaussian model, i.e., the worst-
case fading), equivalent to Rayleigh for m = 1, and converges
to a non-fading AWGN channel as m→∞. This explains why
the largest sample size under Nakagami-m fading is observed
for m = 1/2 and decreases (converges to the AWGN curve) as
m increases. The Nakagami-q (Hoyt) model spans the range
from one-sided Gaussian fading (q = 0) to Rayleigh fading
(q = 1), which explains the observed increase in the required
sample size as q decreases. In the Nakagami-n (Rice) model,
the parameter K (Rician factor) represents the ratio between
the power in the direct Line-of-Sight (LoS) path and the power
in the other (scattered) paths. K = 0 corresponds to a non-
LoS scenario where all signal components are received through
non-LoS scattered paths, which is indeed a Rayleigh fading
scenario, equivalent to Nakagami-q (Hoyt) with q = 1. As
the Rician factor increases (K → ∞), the LoS component
becomes predominant and converges to a constant-amplitude,
non-fading AWGN scenario. This explains the reduction of
the required sample size in Nakagami-n (Rice) fading as K
increases. Fig. 2 shows that the η–µ (non-LoS) scenario in
general requires a higher sample size than the κ–µ (LoS)
counterpart, which can be explained by the fact that signal
detection is more challenging under non-LoS conditions, thus
requiring a larger sample size for the same detection perfor-
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Fig. 1. Sample size required by an energy detector in Rayleigh, Nakagami-m,
Nakagami-q (Hoyt) and Nakagami-n (Rice) fading.
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Fig. 2. Sample size required by an energy detector in η–µ and κ–µ fading.

mance. For the η–µ model, Format II is here considered, where
η represents the correlation between the powers of the in-
phase and quadrature scattered waves in each multipath cluster.
Fig. 2 indicates that an increase in this correlation leads to an
increase in the required sample size, which is compatible with
the notion that for higher correlation among signal samples
it is necessary to increase the sample size in order to have
the same amount of uncorrelated observations of the fading
process and achieve the same detection performance. In the
κ–µ model, κ represents the ratio between the total power of
the dominant components and the total power of the scattered
waves. Similar to the case of Nakagami-n (Rice) fading,
as the value of this ratio increases, the LoS components
become predominant and the model converges to a constant-
amplitude, non-fading AWGN scenario, where lower sample
sizes are required. In both η–µ and κ–µ fading models, µ is
related to the number of multipath clusters and an increase
in its value implies a larger number of independent signal
components at the receiver, which facilitates the detection of



TABLE I
COMPUTATION TIMES AVERAGED OVER 1000 ITERATIONS, WHEN N

CONTAINS 1000 POINTS (AVERAGE SNR 10 log10 γ̄ = 0 dB).

Fading model Params. Num. int. Integral Series
of (2) form form

Nakagami-m m = 1 4.56 s (11) 0.21 ms (13) 0.07 ms

Nakagami-q
q = 1/2 38.00 s (15) 15.29 ms (20) 1.63 ms(Hoyt)

Nakagami-n
K = 1 48.51 s (22) 8.01 ms (24) 0.73 ms(Rice)

η–µ η = 0.5 48.80 s (26) 210.28 s (29) 8.10 ms
µ = 1.5

κ–µ κ = 0.5 62.62 s (31) 8.85 ms (33) 3.98 ms
µ = 3

the received signal and reduces the required sample size. From
the discussion above, it becomes apparent that the evaluation
approach proposed in this work can be used to gain some
insights on how the required sample size is affected by the
fading process under different channel fading models.

Table I compares, for different fading models, the computa-
tion times required for the numerical integration of (2) and the
evaluation of the analytical results obtained in this work, both
in integral and series forms. For the series form, the minimum
number of terms in the infinite sum that provides accurate
results is considered (typically 5–10 terms). The results were
obtained in Matlab with an Intel i7-2600 processor by averag-
ing the computation times of 1000 repetitions when FN (N)
is evaluated over 1000 values of N . As it can be appreciated,
the numerical evaluation of (2) is highly inefficient since
the integral needs to be solved numerically for every single
value of N over which FN (N) is evaluated. The analytical
results proposed in this work can reduce dramatically the
required computation times, in particular the expressions in
series form, which only involve elementary functions and are
extremely efficient to evaluate. It is worth noting that the
computation time for (26) is significantly higher than for the
rest of counterparts in integral form. This is due to the need
to implement Yv(·, ·) [22, eq. (20)], while the rest of functions
(Bessel, Marcum-Q and incomplete gamma functions) are
built in Matlab and therefore evaluated much more efficiently.
Thus, the analytical results obtained in this work not only
allow the calculation of the sample size required by an energy
detector under fading but do so in a highly efficient manner.

V. CONCLUSIONS

The sample size required by an energy detector in order to
achieve a predefined target performance is a key parameter
in the design and configuration of energy detection. The
analytical results available in the literature to the date are only
valid for the AWGN channel model and no results are known
for fading scenarios. In this context, this work has investigated
how the required sample size is affected by the presence
of fading. The proposed evaluation approach and analytical
results provided in this work can be used to estimate accurately
and efficiently the required sample size for a broad range of
channel fading models and therefore constitute a valuable tool

in the design of the energy detector in real-world practical
deployments. The impact of noise uncertainty has not been
considered in this study but will be analysed in future work.
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