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Abstract—The statistical characteristics of the frequency spec-
trum play a key role in decision making in smart spectrum
sharing systems. In such systems, the activity of the licensed users
changes differentially over both time and frequency, hence, their
statistical information changes accordingly. The performance of
spectrum sharing systems is directly affected by the estimated
channel activity statistics, therefore low spectrum utilisation may
result from inaccurate estimation of these statistical parameters.
In this context, this work presents a prototype design for
real-time estimation of channel activity statistics based on a
Software Defined Radio (SDR) platform using USRP. A detailed
explanation of both hardware and software implementations is
provided (with free open source code). The developed platform
will enable a spectrum sharing system adapt its parameters
smartly and instantaneously in accordance with the estimated
channel statistics in real-time. Moreover, this prototype will
serve researchers and engineers to conduct and validate further
research developments in statistics estimation methods and algo-
rithms for spectrum sharing systems through experiments and
proof-of-concept.

Index Terms—Spectrum sharing, dynamic spectrum access,
spectrum sensing, primary channel activity statistics, Software
Defined Radio (SDR), USRP.

I. INTRODUCTION

Maximising spectral utilisation efficiency is one of the on-
going challenges in modern wireless communications that has
been of interest in the recent research campaigns. Studying the
statistical information of the spectrum utilisation patterns can
play a key role in decisions making in various wireless com-
munication systems, in particular spectrum sharing systems
such as Dynamic Spectrum Access (DSA) [1]. In DSA, the
(unlicensed) Secondary Users (SUs) are allowed to exploit the
frequency bands that the (licensed) Primary Users (PUs) have
priority to access, without causing any harmful interference.
Spectrum sensing, using Energy Detection (ED) algorithm [2],
[3], enables a SU to autonomously sense the state of the
frequency channels, find unused spectrum, and access (without
prior negotiation with the primary system or PU). Since PU
activity varies over both time and frequency, it is very critical
and inefficient for a SU to access the spectrum without having
a proper knowledge about the activity patterns of the channel.
Such knowledge can be acquired from exploiting the statistical
information of the spectrum usage. These statistics can help
SUs predict the future activity trends in the spectrum [4], [5],
select the most opportunistic (underutilised) channel [6]–[8],
and reduce the interference between SUs and PUs [9], [10].

Channel activity statistics can be obtained from spec-
trum sensing observations [11]. Although spectrum sensing
is mainly used to sense the presence of the PU signal in
the channel, its outcomes can also be exploited to provide an
estimation of the channel activity statistics. In the literature,
channel activity statistics estimation has been studied widely
based on Perfect Spectrum Sensing (PSS) [11]–[13] and
Imperfect Spectrum Sensing (ISS) [14]–[17]. However, the
majority of the existing studies are conducted theoretically
and validated by means of simulations. Few works such as
[11], [14] have adopted the Prototype for the Estimation
of Channel Activity Statistics (PECAS) proposed in [18] to
validate the mathematical analyses of the channel activity
statistics experimentally. PECAS model [18], however, has
several hardware limitations in its transmitter and receiver.
The PECAS transmitter (which acts as a PU with a particular
activity pattern) is based on a Raspberry Pi with an ON-
OFF Keying (OOK) modulator connected to it. The used
OOK modulator can only operate at a central frequency of
433.92 MHz, thus limiting the experiments to such frequency
band and making it impossible to conduct a wider range of
experiments for different research purposes. In addition, the
maximum modulation frequency supported by the modulator
is 10 kHz, which limits the time resolution of the generated
(PU activity) idle/busy periods to 0.1 ms. This limited time
resolution is inconvenient since a reliable study requires the
transmission and reception of a sufficiently large number of
idle/busy periods, which may take unreasonably long times
for many experiments under such limited time resolution.
The PECAS receiver, on the other hand, (which acts as a
SU) is based on the RTL-SDR platform, which supports a
limited frequency range of 24 MHz–1766 MHz. Therefore,
experiments on a higher frequency channel (e.g., 2.5 GHz and
5 GHz of the WLAN frequency bands) are not possible. In
addition, the maximum sample rate that RTL-SDR can provide
is 3.2 MS/s, which might not be sufficient when fast spectrum
sensing is required.

While PECAS prototype is suitable for low-cost experi-
ments on channel activity statistics, it might not be applicable
on a wider range and sophisticated experiments. In addition, it
has no capability of monitoring the channel activity statistics
while the experiment is running in real-time (it only provides
the statistical information after the execution of the experi-
ment). In this context, this work overcomes the aforementioned



Fig. 1: Block diagram of the proposed prototype.

limitations of the PECAS prototype [18] by proposing a
new sophisticated prototype based on the Universal Software
Radio Peripheral (USRP). USRP is a readily available and
widely used platform in the community, which enables other
researchers and engineers to easily implement and reproduce
our proposed system and benefit from its advantages (we
provide free open source code in [19]). The contribution of
this work, therefore, can be highlighted as follows:

1) A USRP-based prototype is developed to support a wide
range of (sophisticated) experiments that help validating
the theoretical analyses of the channel activity statistics
under real-world conditions. In addition, it provides a
real-time estimation of the channel activity statistics,
which can be plotted instantaneously according to the
PU’s activity within the channel along with plotting the
energy of the existing signals in the spectrum.

2) The proposed prototype’s transmitter and receiver pro-
vide a high sample rate of at least 56 MS/s (and higher in
some USRP models), which enables a better time reso-
lution for generating idle/busy periods at the transmitter
(with 17.8 ns compared to 0.1 ms for PECAS) and a
faster spectrum sensing at the receiver (30 times faster
than PECAS).

3) The proposed prototype can operate in a wide frequency
range of 70 MHz – 6 GHz (or even larger for some
USRP models), which supports a wide range of exper-
iments such as those in 5G wireless communications.
Meanwhile, PECAS prototype is restricted to the exper-
iments at a central frequency of 433.92 MHz, which
can be useful for proof-of-concept validations but is not
suitable for more realistic experimental validations.

4) A Graphical User Interface (GUI) is developed for both
transmitter and receiver in order to ease the configuration
of the USRP used in this prototype, which will help
researchers to conduct various experiments without the
need to modify the source code.

The rest of the paper is organised as follows. Section II
presents a general overview for the proposed prototype. Then
the hardware and software implementations of the transmitter
and receiver are explained in details in Sections III and IV,
respectively. The performance of the proposed prototype is
examined through an illustrative experiment shown in Section
V. Finally, the paper is concluded in Section VI.

II. PROTOTYPE OVERVIEW

The proposed prototype consists of a transmitter and a
receiver. For each, a host computer (PC) and a USRP are used
as illustrated in Fig. 1. The transmitter acts as a PU, which
transmits a sequence of idle/busy periods (with known statis-
tical parameters) in a particular frequency channel in order
to generate a PU channel activity. The receiver, on the other
hand, acts as a SU, which performs spectrum sensing (using
ED algorithm) in the same channel with a periodic sensing
time Ts. The energy of each sensing event is compared with a
threshod to decide whether the channel is idle or busy. Sensing
decisions can then be used to calculate the durations of the PU
idle/busy periods and based on these durations PU activity
statistics can be estimated. By comparing the statistics of the
generated periods at the transmitter (PU) with the estimated
ones at the receiver (SU), it is possible to validate the accuracy
of the estimation methods and algorithms, including those used
in the literature to estimate channel activity statistics [11]–[17],
under a realistic conditions of wireless channel impairments
(i.e., noise, path loss, shadowing and fading) and hardware
limitations of the transmitter and receiver.

III. HARDWARE IMPLEMENTATION

The hardware implementation of the proposed prototype
comprises a USRP and a host PC at both sides of the system
(transmitter and receiver). USRP is a Software Defined Radio
(SDR) platform that is widely used to implement and prototype
sophisticated radio communication systems. In this prototype,
we adopt USRP B200mini Series [21], which is a small form
factor and easily portable USB-powered USRP with 1 Tx and
1 Rx front ends as shown in its block diagram in Fig. 2. This
USRP supports a wide frequency range from 70 MHz to 6
GHz, which enables a wide range of experiments (e.g., FM and
TV broadcast, cellular, Wi-Fi and etc.). The USRP front end
filter has an adjustable bandwidth of 200 kHz - 56 MHz and an
available gain up to 89.8 dB (for the transmit front end) and 76
dB (for the receive front end). In addition, the ADC/DAC of
this USRP can provide a maximum sample rate (master clock)
of 61.44 MS/s (note that rates above 56 MS/s are possible, but
not recommended). The I/Q samples of the USRP are streamed
to/from a host computer PC for additional processing through a
high-speed USB 3.0 bus (which has a transmission speed of up
to 5 Gbit/s). Meanwhile, the host PC adopted in this prototype
has the following specifications: Ubuntu 18.04.3 LTS operating



Fig. 2: USRP B200mini block diagram [21].

system, Intel Core i5-6500 CPU processor @ 3.20GHz and
8 GB memory. This host PC provides enough computational
power to run a broad range of complex experiments in real-
time with the developed software implementation, which is
described in the following section.

IV. SOFTWARE IMPLEMENTATION

A. Transmitter software

The software of the transmitter aims to configure the USRP
in order to operate as a PU. A program is developed using C
language on the host PC to communicate with the USRP. First,
the USRP Hardware Driver (UHD) is required to be installed
on the PC in order to provide all the necessary controls
and libraries used to transport I/Q samples to/from USRP
hardware. Then the USRP-transmitter is programmed such that
it generates a sequence of idle/busy periods in a frequency
channel to represent PU activity. The busy period durations
T1 can be generated by letting the USRP transmit a signal
for a desired duration of time T1. Any modulation scheme
can be used for the transmitted signal since signal modulation
is irrelevant when energy detection method is used at the
SU [2] (the purpose of this signal is to generate an energy
activity in the channel rather than to transmit data). However,
for simplicity, ON-OFF Keying (OOK) modulation is used by
streaming a binary 1 data (i.e., I=1 and Q=0) for a duration of
T1. The code implementation allows to easily add sequences
of random bits and more sophisticated modulations if desired.
The maximum sample rate (56 MS/s) of USRP B200mini
allows representing continuous values of busy periods with
a time resolution of 17.8 ns (which significantly improves the
accuracy of the generated periods using PECAS prototype [18]
where the time resolution was 0.1 ms). The idle periods T0,
on the other hand, are produced by halting the transmission
of the USRP for a duration of time T0 using nanosleep
function in C, in which an idle duration with nano seconds
resolution is used to hold up the transmission before the next
busy period.

The duration values of the idle/busy periods that are wanted
to be transmitted can either be imported from a plain text file or
generated by the transmitter program (in both cases the number
of periods can be specified). If the later was selected, the
program will generate random durations of idle/busy periods
based on a distribution selected from a list of distributions that

(a) Transmitter GUI (b) Receiver GUI

Fig. 3: Designed GUI for the proposed USRP-based prototype.

provide an accurate representation for the empirical data in a
real system [22]. This list includes exponential, generalised
exponential, Pareto, generalised Pareto, log-normal, gamma
and Weibull distributions as shown in [22, Table I]. Note
that a random value from any distribution can be obtained
(based on the inversion method in [23, p. 28]) using uniform
random number generator (e.g., rand function in C) and the
inverse CDF [18]. A test mode is also included in the list of
distributions to transmit a test sequence of 1 second idle and 1
second busy periods. Finally, a Graphical User Interface (GUI)
is designed as shown in Fig. 3a to ease the configuration of
the USRP transmitter and the created PU activity without the
need to modify the original source code. Also, it will help
other researchers to easily conduct relevant experiments on
such platform for different research purposes.

B. Receiver software

Receiver software aims to configure the USRP in order to
operate as a SU. Similar to the transmitter, a C program is
developed on the receiver PC to control on the USRP via
UHD library. The USRP-receiver is programmed such that it
senses the activity of a frequency channel periodically every
Ts sensing time (using ED algorithm); and then make a binary
decision on whether the channel is idle or busy. At every
sensing event a set of samples are captured from the desired
channel for a time slot of τ as shown in Fig. 4. Note that τ
must significantly be shorter than Ts such that the remaining
time of Ts − τ would be reasonable to exploit in spectrum
sharing systems (when the channel is idle). The number of
samples N that can be captured during τ time slot depends
on the sample rate of the USRP hardware and it is given by
N = dτfse, where fs is the sample rate configured for the
USRP. Using the USRP’s maximum sample rate of 56 MS/s
enables capturing 1000 samples in τ = 17.8 µs time (whereas
PECAS model would require a time of τ = 312.5 µs to
capture the same number of samples, which slows down the
process of spectrum sensing and thus the whole experiment,
in particular when a large number of idle/busy periods is



Fig. 4: Spectrum sensing decisions [18].

required). The energy of these samples is then calculated and
compared with a predefined threshold as:

Ex =

N∑
n=1

|x[n]|2
H1

≷
H0

λ (1)

If the energy of the N samples is greater than the threshold λ a
binary decision of H1 is made to indicate the channel is busy,
otherwise H0 is made to indicate the channel is idle. Selecting
threshold value will determine the operation of the system.
The prototype can operate under PSS by selecting a threshold
energy midway between idle and busy energies after adjusting
the gain of the receiver to be sufficiently high in order to easily
differentiate the energy between the two states without causing
any sensing error. On the other hand, under ISS scenario,
threshold value λ is selected to meet a predefined probability
of false alarm Pfa, where only receiver’s noise need to be
known [3]. This threshold can be selected by configuring the
program to save the energy of sensing events (when there is
no signal in the channel but only noise, i.e., transmitter is off)
to a file for post-processing. Energy values are then used to
select a threshold that would cause a false decision with a
probability Pfa for which the experiment wanted to be tested
under ISS.

After obtaining the sensing decisions, they can be further
exploited to provide statistical information of the channel ac-
tivity as discussed in Section I. The program first estimates the
durations of the idle/busy periods observed in the channel by
computing the time difference between any two changes in the
decision of sensing as shown in Fig. 4. The estimated periods
can then be printed on the terminal window of the program
in real-time (while the experiment is running) such that their
accuracy can be examined instantaneously in comparison with
the transmitted periods. They can also be saved into a text file
for post-processing. Subsequently, the statistical parameters of
the detected periods can then be calculated to find, for exam-
ple, the minimum/maximum period, the mean and variance of
periods, duty cycle and distribution of periods. These statistics
are valuable information to enhance the performance of smart
spectrum sharing systems. Receiver program is developed such
that it can provide a real-time graphical illustration for the
detected energy of the idle/busy periods as well as a real-time
estimation for the statistical parameters of the channel activity.

Every time the program detects a new period it updates the
estimation of the statistics instantaneously. In addition, a user-
friendly GUI is also designed for the receiver as shown in Fig.
3b to ease the configuration of the USRP that is performing
spectrum sensing and processing the sensing decisions.

By comparing the estimated statistics in the receiver with
the statistics used to generate the idle/busy periods in the
transmitter, it is possible to evaluate the accuracy of the
estimation methods and algorithms (such as those used in the
literature [11]–[17]) under realistic conditions of wireless com-
munication system imposed by channel impairments (noise,
path loss, shadowing and fading) and hardware limitations of
transmitter and receiver. In addition, the impact of the em-
ployed parameters of spectrum sensing (which include sensing
period Ts, sensing time slot τ , probability of sensing errors
and sample size N ) on the estimation of the channel activity
statistics can easily be examined using such prototype in real-
time and under realistic conditions. Therefore, it provides an
experimental platform to support future works on the channel
activity statistics estimation.

V. ILLUSTRATIVE EXPERIMENT AND RESULTS

In this section we demonstrate the operation of the proposed
prototype by carrying out an illustrative experiment to show
the whole process which involves generating PU activity
in a frequency channel (i.e., transmitting idle/busy periods),
detecting the energy of the channel activity (i.e., spectrum
sensing), estimating the idle/busy periods durations, and finally
estimating their statistical information. All these operations
take place in real-time while the experiment is running.

First, we configure the USRP of the transmitter and the
receiver (using the designed GUI shown previously) such that
they both operate on the same frequency channel. In this
context, we run the experiment on 2.5 GHz WiFi band using
channel 11 (2.451 GHz - 2.473 GHz) centred at 2.462 GHz.
This was motivated as such experiment would not be possible
to carry out using PECAS [18], which therefore emphasises
the importance of this platform. In addition, we select channel
11 as such was less crowded in the WiFi environment where
our experiment was tested. Selecting the less crowded WiFi
channel (non-overlapping) allows us generate our own PU
traffic with known statistics in order to be compared and
validated with the statistics estimated at the SU. Therefore,
in the GUI of the transmitter and receiver, we set the centre
frequency of the USRPs to 2.462 GHz as shown in Fig. 3.
In addition, the full functionality of the USRP is used to set
the sample rate to its maximum 56 MS/s, which will help
providing high resolution idle/busy periods at the transmitter
and fast energy detection at the receiver. Placing the SU
1 meter apart from the PU and using a gain of 45 dB at
both sides will be sufficient to detect the transmitted signal.
The transmitter is configured to generate and transmit 200
periods (100 idle and 100 busy). These periods are produced
from the Generalised Pareto distribution (which is the best
desecription for the empirical data in real system [22]). This
distribution can be selected from the GUI and its parameters



Fig. 5: Real-time energy detection and statistics estimation
using the proposed prototype.

(for both idle and busy periods) can be configured as: location
µ = 0.2 s, scale λ = 0.24 s, and shape α = 0.2. Based on
which, the generated idle/busy periods will have (statistical
parameters) a minimum period min(T0) = min(T1) = 0.2
s, a mean period E(T0) = E(T1) = 0.5 s, and a duty
cycle Ψ = 0.5. Since these generated periods require 100
seconds to be transmitted, the reception time of the receiver is
adjusted to be sufficiently high to detect the whole transmitted
sequence. For example, a reception time of 200 s (with extra
50 s before starting the transmitter and extra 50 s after)
can be used to guarantee all the periods will be detected
properly. The receiver senses the channel periodically using
a sensing time Ts = 100 ms, where Ts has to be smaller
than the minimum transmitted period which is min(T ) = 0.2
s. Note that the minimum Ts that can be configured by the
proposed prototype using the host PC specified in Section III
(with Intel Core i5 processor) while still maintaining real-time
operation is 0.33 ms (which is 30 times faster than PECAS
[18] where its minimum Ts is 10 ms). At every sensing event
(Ts = 100 ms) a set of samples are captured for a time slot
of τ = 0.1 ms. The number of these samples is found as
N = dτfse = d0.1 ms× 56 MS/se = 5600 samples. Based
on which, the energy of each sensing event can be calculated
and plotted instantaneously as shown in Fig. 5 (top-left), which
shows the real-time energy detection of the idle/busy periods
in the frequency channel 2.462 GHz. Comparing the energy
values with a predefined threshold λ = 0.05 (selected to be
in the middle for PSS operation), binary decisions can be
made about the state of the channel (idle H0 or busy H1).
Based on these decisions, the idle/busy periods durations can
be estimated, which in turn will provide an estimation for the
channel activity statistics such as mean period as shown in Fig.
5 (top-right), duty cycle (bottom-left) and distribution (bottom-
right). These statistics are shown for busy periods, however,
similar tendency can also be observed for the idle periods.
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Fig. 6: Threshold selection from the CDF of the noise energy.

As it can be appreciated from Fig. 5, the larger the number
of periods (sample size) used to estimate the statistics the
closer the estimation approaches the original statistics. This
can help to determine how many periods are required to
provide an accurate estimation for channel activity statistics,
which can therefore validate the analysis conducted in [12],
[24]. Notice that the statistics shown in Fig. 5 are recalculated
and updated in real-time every time a new period is observed.

The prototype can also be configured to operate under ISS
by selecting a threshold value that satisfies a predefined Pfa.
This threshold can be found by first running the receiver to
save a large number of (noise-only) sensing energies (i.e.,
when the transmitter is off), then selecting the point where
the Cumulative Distribution Function (CDF) of these energies
is equal to 1−Pfa, i.e., λ = F−1Ex

(1−Pfa). As shown in Fig.
6, the CDF of the energy values fits well with the Gaussian
CDF, from which a threshold λ = 0.0081 J is found to run
the prototype under ISS with Pfa = 0.1.

In order to show how this prototype can serve as a proof-
of-concept for the ongoing research on the channel activity
statistics, we consider the theoretical estimation methods pro-
posed in [16] to be validated experimentally under realistic
conditions of wireless channel and hardware limitations. The
work in [16] finds mathematical expressions to accurately
estimate the original statistics (mean and duty cycle) based
on the statistics observed under ISS. Therefore, we run the
prototype under ISS using Pfa = 0.1 (as explained above)
to detect the idle/busy periods and estimate their statistics
(which will be inaccurate due to the sensing errors). Then
we apply [16] expressions to correct the estimation of these
statistics observed experimentally in order to compare their
performance with respect to the theoretical results. As shown
in Fig. 7, there is an evident agreement between the obtained
experimental results (for the mean of busy periods under ISS)
and the theoretical expressions proposed in [16] for different
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proposed in [16].

sensing period Ts, thus providing an experimental validation
for the work conducted in [16].

VI. CONCLUSION

Due to the importance of the channel activity statistics
on the performance of smart spectrum sharing systems, it
is essential to have a sophisticated platform where a wide
range of research-related experiments can be carried out under
actual degrading effects of wireless channel and other practical
limitations of the transmitter and receiver hardware. In this
context, this work has proposed a new USRP-based prototype
for real-time estimation of channel activity statistics. The pro-
posed prototype outperforms the platform used in the literature
in terms of functionality, wide applicability and utilisation
facility. In addition, this prototype provides an important capa-
bility of estimating and illustrating the statistical parameters
of the channel activity in real-time, which helps examining
the accuracy of estimation while detecting channel’s idle/busy
periods in real-time. Moreover, it has been shown, with an
illustrative experiment, how the proposed prototype can serve
as a proof-of-concept for the ongoing research on the channel
activity statistics.
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[3] M. López-Benı́tez and F. Casadevall, “Improved energy detection spec-
trum sensing for cognitive radio,” IET Communications, vol. 6, no. 8,
pp. 785–796, 22 May 2012.

[4] X. Liu, B. Krishnamachari, and H. Liu, “Channel selection in multi-
channel opportunistic spectrum access networks with perfect sensing,”
in Proc. 2010 IEEE Int’l. Symp. Dyn. Spect. Access Networks (DySPAN
2010), Apr. 2010, pp. 1–8.

[5] S. Sengottuvelan, J. Ansari, P. Mähönen, T. G. Venkatesh and M.
Petrova, “Channel Selection Algorithm for Cognitive Radio Networks
with Heavy-Tailed Idle Times,” in IEEE Transactions on Mobile Com-
puting, vol. 16, no. 5, pp. 1258–1271, 1 May 2017.

[6] M. B. Hosen, M. M. H. Mridha and M. A. Hamza, “Secondary User
Channel Selection in Cognitive Radio Network Using Adaptive Method,”
2018 3rd International Conference for Convergence in Technology
(I2CT), Pune, 2018, pp. 1–6.

[7] Y. Chen and H.-S. Oh, “Spectrum measurement modelling and predic-
tion based on wavelets,” IET Communications, vol. 10, no. 16, pp. 2192–
2198, Oct 2016.

[8] G. Ding et al., “Spectrum Inference in Cognitive Radio Networks:
Algorithms and Applications,” in IEEE Communications Surveys &
Tutorials, vol. 20, no. 1, pp. 150–182, Firstquarter 2018.

[9] W. Zhang, C. Wang, X. Ge and Y. Chen, “Enhanced 5G Cognitive Radio
Networks Based on Spectrum Sharing and Spectrum Aggregation,” in
IEEE Trans. on Comms., vol. 66, no. 12, pp. 6304–6316, Dec. 2018.
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[14] O. H. Toma, M. López-Benı́tez, D. K. Patel and K. Umebayashi,
“Estimation of Primary Channel Activity Statistics in Cognitive Radio
Based on Imperfect Spectrum Sensing,” in IEEE Transactions on Com-
munications, vol. 68, no. 4, pp. 2016–2031, April 2020.
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