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Abstract: 
Underwater target localization has always been a 

challenging and important research topic in underwater 
acoustic sensing, especially when the underwater target is 
moving. This paper uses three pulse signals for system design: 
continuous wave, linear frequency modulated signal and 
rational orthogonal wavelet signal. We use a geometric 
underwater channel model to generate a database of underwater 
signals with specified geometric parameters of ocean 
environments to simulate the ocean. The received pulses signal 
are converted into feature maps as the ✢✣✤✥✥✦✧✦★✩✪✥ ✦✫✬✭✮. In this 
paper, Short-time Fourier transform, Mel-frequency cepstral 
coefficient, Gammatone frequency cepstral coefficient and 
Perceptual linear prediction coefficient are applied to construct 
different feature maps. The classifier uses a lightweight CNN 
model. Experiments demonstrate the superiority of wavelet 
pulse signals in underwater target localization. The multipath 
effect will also contribute to underwater acoustic sensing. 

Keywords: 
Underwater communication; CNN; Mel frequency cepstral 

coefficient; Gammatone frequency cepstral coefficient; Rational 
orthogonal wavelet 

1. Introduction 

Due to the complexity of the underwater environment 

and the limitation of underwater acoustic equipment, strong 

noise will interfere with the received target signal [1]. In 

recent years, the localization of shallow sea sound sources, 

especially underwater low-frequency broadband sound 

sources, has received much attention from researchers. 

Similar to electromagnetic positioning on land, wireless 

transmission of information underwater is often carried out 

using acoustic waves as the carrier. 

Underwater propagation has high time delays and 

limited available bandwidth [2]. The propagation rate of 

sound waves underwater is low and varies with the water's 

temperature, salinity and pressure. The acoustic bandwidth 

that can be used is much smaller due to the hydroacoustic 

channel. At the same time, underwater propagation multipath 

is a serious phenomenon. Signal transmission energy 

attenuation is high in the underwater channel due to 

absorption, scattering, and reflection losses. Reflections from 

the surface and bottom of the water distort the amplitude and 

phase of the received acoustic signal. Therefore, underwater 

target localization is complicated.  

Similar to speech signals, underwater acoustic signals 

are non-stationary signals. Brown et al. [3] theoretically 

demonstrated the feasibility of using auditory for underwater 

signal analysis. Commonly used auditory-based features are 

the Mel frequency cepstral coefficients (MFCC), Perceptual 

linear predictive coefficients (PLPC), and Gammatone 

frequency cepstral coefficients (GFCC). GFCC algorithm is 

filtered directly in the time domain, which avoids the errors 

caused by the spectral estimation in the MFCC algorithm [4]. 

The gammatone filter has a simple time-domain impulse 

response [5]. 

Wavelets are suitable for the analysis of non-stationary 

signals, such as speech signals, because they have good 

dynamic properties and correspond to the auditory properties 

of the human ear. The orthogonality and good time-frequency 

localization properties of some wavelets provide great 

flexibility in pulse design and form the basis for good noise 

suppression, Doppler robustness and detection performance 

[6]. 

In this paper, we will focus on increasing the 

performance of underwater target localization with the 
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auditory feature extraction method. We will apply rational 

orthogonal wavelet (ROW) as transmit pulses. The rest of this 

paper is organized as follows: Section 2 presents our 

designed broadband underwater environment with the 

ray-tracing model, the construction of the database, and 

feature extraction methods. In Section 3, classification results 

are presented in tables and bar charts. We will discuss the 

findings. Section 4 is the conclusion and future work. 

2. Methodology 

Classical ray tracing (geometric acoustics) is used to 

simulate the received echoes generated in a simple 

horizontally stratified three-layer acoustic environment. We 

will only consider plane waves. Next, three different signals 

are regarded as emitting pulse signals for comparison. 

2.1. Underwater channel simulation 

We use a ray-tracing model to simulate broadband 

underwater acoustic channels. Our channel model refers to 

the channel model in [7], which also considers multipath 

fading. We use the number of quartets nq to measure the 

extent of multipath. A larger value of nq means a larger 

number of eigenpaths are included. Figure 1 shows the 

simulation of underwater environment with receiver and 

target parameters. For target moving directions, we consider 

270o, 90o and 0o to illustrate West, East and North.  

 

FIGURE 1. Underwater environment simulation. 

2.2. Transmitted pulses 

The available transmitted pulse types are CW 

(Continuous Wave), LFM (Linear frequency modulation) and 

ROW pulses. CW is a narrow-band signal with a carrier 

frequency of 20 kHz. LFM and ROW are broadband signals. 

The pulse duration is set at 0.001s for each pulse type. For 

LFM signals, the frequency bandwidth is from 15 kHz to 20 

kHz. All sampling rate is 100 kHz. Detailed formulations for 

CW and LFM are illustrated in [8]. 

The ROW pulse we will consider is the superposition of 

four sub-pulses, forming the ROW pulse with frequency 

shifts and designed in the frequency domain [9]. The pulse 

duration is also set as 0.001s. For ROW pulses, various 

dilation factors of rational orthogonal wavelets are 

investigated in our experiment. In this paper, we consider 

dilation factors q=2, 4, 8, and a much higher number q=50. 

For dilation factor q=50, we increased the sampling rate to 20 

kHz. Figure 2 illustrates the time response and frequency 

spectrum of three different pulses. 

 

(a) 

 

(b) 

 

(c) 

FIGURE 2. Three different pulses and their frequency spectrum: (a) CW; (b) 

LFM; (c) ROW. 

2.3. Underwater database construction 

All noise data were obtained from the underwater sound 

recording database [10]. We selected various ambient noises, 

whale calls, fish noises, boat noises and AWGN to simulate 

the ocean noise. Different signal-to-noise ratios are used to 

generate the database. Our SNR setting is from -45 dB to -5 

dB with a step of 5 dB, indicating the extent of signals 

distorted by noise. 

In our experiments, we divided received signals into 

some frames and then extracted features of each frame with 

different feature extraction methods. Our investigation 



 

chooses 13 features and their first and second derivation so 

that there are 39 features in one frame. The derivation 

features are used to demonstrate the dynamic characteristics 

of signals. Feature map size is 39*F, where F is the number of 

frames. Therefore, we converted one-dimension signals into 

two-dimension images as input of the classifier. Firstly, we 

consider Short-time Fourier transform (STFT), MFCC, 

GFCC and PLPC. Figure 3 demonstrates the flowcharts of 

each of the four feature extraction methods, which makes it 

easy to see the differences. For target localization, we will 

consider three criteria: target depth and distance between the 

target and receiver. For the multipath measure, we choose 

nq=4, a medium value. 

Secondly, we will investigate the effect of multipath on 

target localization by varying the number of quartets. We will 

study 6 values of nq, nq=1, 2, 3, 4, 6 and 8. In addition, we 

will use different dilation factors for the ROW pulse signals. 

For the pre-processing method, we use the classical STFT. 

Therefore, a database of different orientations is also created. 

 

FIGURE 3. Underwater environment simulation. 

3. Underwater target classification 

Each situation has five classes to classify. We will 

introduce six pulses (CW, LFM, ROW q=2, ROW q=4, ROW 

q=8, ROW q=50) and four pre-processing methods (STFT, 

MFCC, GFCC, PLPC). We consider a 3-convolution-layer 

CNN; the structure is shown in [8]. The input of CNN is a 

39*F*1 feature map. For each classification situation, we 

selected the average of the results of 10 CNN classifications 

as the final result for comparison.  

3.1. Target depth 

For the target depth, we chose the direction of motion to 

be 90o because when the target is moved in a 90o direction, its 

depth does not change, as shown in Figure 1. The target depth 

is from 10 m to 50 m with a step of 10m. Other parameters 

are fixed, such as the velocity of the target and the distance 

between the receiver and the target. Since all pre-processing 

methods achieve 100% accuracy after the SNR is raised 

above 0 dB, Table 1 demonstrates the case of SNR = -45 dB 

to -25 dB. Figure 4 shows the classification results for six 

pulses under four pre-processing methods with SNR = -25 dB 

to -5 dB. 

In Table 1, the conventional STFT method is far inferior 

to other feature extraction methods when the signal is heavily 

affected by noise, i.e., when the SNR is less than -25 dB. In 

addition, ROW q=50 pulse gives the best results when 

compared within the same SNR value. As the SNR increases, 

the STFT method shows its superiority, as shown in Figure 4. 

On the contrary, the MFCC method is the least effective, as 

the results under the MFCC method are not stable among the 

10 CNN results, which is related to the value of the features 

extracted by MFCC. This is because CNN is a numerical 

calculation of the values in feature maps. The GFCC and 

PLPC methods give good results when the noise is very 

influential. In this case, GFCC results are the most stable; 

although they are affected by different pulses, they can 

always maintain an accuracy rate of about 60%. 

TABLE 1. Accuracy results for different pulses under lower SNR 

 SNR -45 -40 -35 -30 -25 

STFT CW 22.806 30.306 57.029 61.223 85.666 

LFM 18.166 22.472 35.056 56.667 66.694 

q=2 18.722 20.472 29.138 36.972 59.168 

q=4 18.194 22.862 17.222 48.61 62.111 

q=8 19.583 19.944 26.25 57.806 65.642 

q=50 34.917 40.002 56.805 64.305 81.111 

MFCC CW 48.861 47.055 56.668 59.36 57.666 

LFM 56.138 53.501 57.361 58.055 58.195 

q=2 36.278 47.194 47.751 57.584 40.695 

q=4 54.668 51.585 55.362 58.417 52.64 

q=8 60.14 62.415 57.941 59.723 58.001 

q=50 58.335 60.501 59.612 57.612 58.861 

GFCC CW 61.639 63.416 59.194 64.527 66.917 

LFM 58.861 59.11 61.972 63.22 62.361 

q=2 61.389 62.111 63.999 60.75 63.972 

q=4 59.084 63.722 59.167 65.971 71.89 

q=8 58.499 60.306 62.054 58.446 64.112 

q=50 58.029 61.695 64.389 62.251 60.028 

PLPC CW 61.027 55.389 60.694 59.499 67.472 

LFM 62.305 56.748 59.695 61.833 64.695 

q=2 61.778 58.53 57.332 59.973 59.222 

q=4 61.054 60.333 59.638 58.389 70.584 

q=8 60.083 57.943 57.75 58.583 58.833 

q=50 59.973 61.498 61.138 61.667 71.527 



 

 

FIGURE 4. Target depth classification results under higher SNR. 

3.2. Distance between receiver and target 

For the horizontal distance between the target and the 

receiver, we also choose the ✂✓✆✠✁✂✗✜ ✑✞✆✁☞✂✞☎✟ ☎✎ ✛☎✂✞☎✟ to be 

0o, as the target moves in the 0o direction and the initial 

distance to the receiver does not change, as shown in Figure 1. 

The distance setting is from 1000 m to 1400 m with a step of 

100 m. Other parameters, such as velocity and depth, are 

fixed. Figure 5 shows the classification results for six pulses 

under four different distance pre-processing methods. Since 

all pre-processing methods achieve 100% accuracy after the 

SNR is raised above 0 dB, we also draw the case of SNR = 

-45 dB to -5 dB. 

 

FIGURE 5. Target distance classification 

From Figure 5, the GFCC has an advantage in the 

classification of distances, especially when the signals are 

heavily disturbed by noise. MFCC is only better at lower 

SNRs and always worse at higher SNRs. For distance 

classification, however, the PLPC results are even slightly 

better than the GFCC results. Compared with traditional 

MFCC, GFCC has higher robustness to low SNR situations. 

This characteristic lead GFCC to have good noise immunity. 

The ROW pulse signal with a higher dilation factor has a 

slight advantage when SNR increases. However, CW pulses 

can also achieve such results under other pre-processing 

methods. Again, ROW q=8 is slightly better than the other 

dilation factors.  

3.3. Different nq values for target depth 

For the effect of multipath, we considered different 

values of nq, from a small multipath effect nq=1 to a severe 

multipath effect nq=8 so that there are a total of 6 nq values 

(nq=1, 2, 3, 4, 6, 8). The signals emitted were selected from 

the ROW pulse signals with different dilation factors. The 

settings for the target depth are the same as in Section 3.1. 

Figure 6 illustrates the accuracies of varying nq values with 

four dilation factors ROW pulse signals. For the convenience 

of comparison, we selected STFT as the pre-processing 

method. Because under the STFT method, the result of the 

signal affected by the noise is very different, it is convenient 

for us to study the influence caused by different nq values 

and dilation factors. 

 

FIGURE 6. Target depth classification with different q and nq values 

The ROW pulse signal with dilation factor q=50 

undoubtedly occupies a great advantage, especially when 

noise seriously affects the signal. The blue bar representing 

q=50 almost exceeds the other colours by a large margin. The 

reason is that when q=50 is selected, we increase the 

sampling frequency, and the extracted frequency features are 

better. Theoretically, self-interference may occur between the 

various paths of signal propagation. The increase in the signal 

propagation path will significantly impact the received signal, 



 

which is an important cause of fading. The orthogonal 

rational wavelet we adopt can resist the interference produced 

by multipath. In this way, multipath can even increase the 

amount of signal information, helping us better locate 

underwater targets. This can also be seen in Figure 6. It is not 

that the lower the nq value, the higher the classification 

accuracy. When the signal is affected by noise in different 

degrees, the result of nq=1 is almost the worst. However, the 

results of nq=8 are not the best, indicating that the negative 

impact of multipath is also great. When the SNR is very low, 

the classification accuracy of nq=3 is the highest. This 

demonstrates that multipath will contribute to target depth 

classification. 

3.4. Different nq values for target distance 

For the distance between the target and the receiver, the 

parameter settings are consistent with Section 3.3. The SNR 

range was also selected from -45 dB to -5 dB. Table 2 

contains the accuracy results of different nq values and 

dilation factors when SNR = -25 dB to -5 dB. Figure 7 

illustrates the accuracies of 6 nq values with four dilation 

factors ROW pulse signals under lower SNR. 

TABLE 2. Accuracy results for different nq values and dilation factors under 

higher SNR 

 SNR -25 -20 -15 -10 -5 

nq=1 q=2 62.473 59.39 76.444 98.638 100 

q=4 59.805 62.194 73.028 98.055 100 

q=8 58.723 65.944 82.722 99.441 100 

q=50 60.918 67.054 91.667 99.972 100 

nq=2 q=2 59.667 70.14 95.722 100 100 

q=4 61.612 66.305 93.668 99.972 100 

q=8 60.917 63.554 91.973 100 100 

q=50 63.695 88.249 100 100 100 

nq=3 q=2 58.028 70.417 98.084 100 100 

q=4 60.333 71.083 97.196 100 100 

q=8 61.972 67.194 94.611 100 100 

q=50 64.638 89.888 99.944 100 100 

nq=4 q=2 44.361 64.251 79.39 100 100 

q=4 61.195 65.777 81.61 99.72 100 

q=8 44.14 65.361 79.111 99.832 100 

q=50 58.555 79.888 99.972 100 100 

nq=6 q=2 42.695 59.499 71.083 95.778 100 

q=4 61.778 61.166 75.749 93.999 99.972 

q=8 58.89 62.583 72.446 92.916 100 

q=50 61.304 68.029 93.64 100 100 

nq=8 q=2 22.667 54.111 63.249 77.696 98.861 

q=4 29.166 52.473 61.334 75.556 99.028 

q=8 21.89 59.501 58.333 75.804 98.749 

q=50 60.972 64.056 92.25 99.748 100 

 

 

FIGURE 7. Target distance classification with different q and nq values 

under lower SNR. 

Since this experiment is for classifying target and 

receiver distances, we need to consider various distance 

lengths, so the influence of multipath effect will become 

more prominent. It can be seen from Figure 7 that when the 

signal is greatly affected by noise, the situations are similar. 

However, as the SNR increases, the features extracted from 

the signal become more apparent. In most SNR situations, the 

result is the best when nq=3 with dilation factor q = 50. The 

multipath effect can also contribute to underwater acoustic 

sensing, but severe multipath still costs channel loss. A higher 

dilation factor will increase the classification results for each 

degree of the multipath effect. From Table 2, the ROW pulse 

signal with q=50 has the best outcome, especially when the 

multipath effect is burdensome (nq=8). It shows that in the 

case of a sizeable multipath effect, the dilation factor of the 

pulse signal should be increased. There are still some 

drawbacks for q = 50, such as the higher computation 

complexity and computation time cost. 

4. Conclusions 

In this paper, we design underwater pulse signals using 

rational orthogonal wavelets. We also consider four different 

dilation factors, ranging from a smaller value of q = 2 to a 

larger value of q = 50. Based on the underwater channel 

model, we have established a database of underwater acoustic 

received echo signals with different features of the target 

depth and the distance between the target and the receiver, 

including simple CW pulse signals, traditional LFM pulse 

signals, and four ROW pulse signals with different dilation 

factors. Four feature extraction methods, STFT, MFCC, 



 

GFCC and PLPC, are used for pre-processing received 

signals. Experimental results show that, in most cases, the 

results of ROW pulse signals are superior to other pulse 

signals. However, increasing dilation factors do not always 

lead to higher accuracy. When the SNR is very low, MFCC, 

GFCC, and PLPC can get better classification results. 

However, the effect of MFCC improvement is insignificant 

when SNR increases. GFCC has excellent advantages in 

distance classification between targets and receivers, and is 

more suitable in low SNR situations, with an accuracy of 

66% when SNR = -45 dB.  

We also demonstrated that multipath brings not only the 

negative impact of signal interference but also may contribute 

to the primary performance of the target location. It is 

demonstrated that ROW pulses, as the pulse signal 

transmitted by the target, can resolve the interference of 

multipath and preserve the amount of information contained 

in multipath signals. Therefore, the estimation of the 

multipath effect for hydroacoustic channels is necessary 

because we need more information for target localization. 

However, we also need to balance the loss of multipath 

effects with its contribution. After estimating the multipath 

effect, an appropriate dilation factor for ROW pulse signals 

needs to be chosen. A higher dilation factor can perform 

better but will have more computational complexity and 

require more computational time. 
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