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Abstract—Signal area estimation is a critical component of
spectrum aware systems. It entails determining the subsets of
elements of a time-frequency matrix where a signal is present.
This study proposes and assesses the potential of a minesweeper
algorithm in estimating accurately the signal area. The proposed
method can be employed in two ways: as a standalone signal area
estimation technique and also as a pre/post-processing technique
in combination with other signal area estimation methods in
order to correct signal detection errors before applying the other
estimation method (pre-processing) and/or errors introduced
by the other estimation method itself (post-processing). The
performance of the proposed minesweeper algorithm in both
application approaches is evaluated by means of software simula-
tions. The obtained results show that, when used as a standalone
method, it can provide similar or even better accuracy than
other methods at a much lower computational cost. However, the
best performance is obtained when used as a pre/post-processing
technique in combination with other existing methods, without
increasing significantly the total computation time.

Index Terms—Minesweeper algorithm, signal area estimation,
spectrum awareness systems, smart spectrum systems.

I. INTRODUCTION

Wireless communication relies on spectrum awareness sys-
tems (SAS) to allocate spectrum to users. The introduction of
dynamic spectrum access (DSA) has helped secondary users
(SU) be assigned the spectrum without interfering with the
primary users (PU). Additionally, paid users’ utilised spectrum
leaves significant white space (WS), which can be assigned to
secondary users [1]. It is necessary to have spectrum usage
detection (SUD) methods that can attain high accuracy, low
cost, and low latency to achieve an smart spectrum assignment
to the SU [2], [3]. The idea of SUD can be useful in other
application scenarios such as compliance verification and en-
forcement of spectrum regulations, and network planning and
optimisation. Thus, there is a need to implement techniques
that ensure high performance in SAS.

In this context, signal area (SA) estimation is an essential
process in SAS. It entails determining the subsets of elements
of a time-frequency matrix where a signal is present, where
each element of such matrix corresponds to a measured
frequency bin and time slot. A SA is a rectangularly-shaped
cluster of tiles detected as occupied (i.e., where a signal
component is present). Several SA estimation methods with

varying performance have been proposed in the existing liter-
ature. As an illustration, [4] identifies fast Fourier transform
(FFT) based energy detection (ED) and signal area estimation
(SAE) as the standard SUD techniques. A previous study
in [5] investigated FFT and ED’s concepts, proposing their
associated best methods. In contrast, this work focuses on
the SAE approach. The study in [2] reveals that the SAE
mechanism’s application is associated with reduced costs and
increased efficiency. However, [4] points out that the tech-
nique’s potential in determining SA is jeopardised by practical
limitations such as false alarms and signal missed detections.

The detection of the SA can be undertaken using several
methods. FFT-ED techniques [2], [4], contour tracing SA
(CT-SA) estimation methods [6] or the simple signal area
(SSA) algorithm proposed in [7] are some of the existing
SA detection procedures. The three methods (ED, CT-SA and
SSA) have been discussed in [8] and their performances under
different configuration parameters are investigated in [9].

In this work, a novel SA estimation technique based on
a minesweeper algorithm (MA) is proposed to improve the
performance of existing SAE methods. The proposed method
processes each tile in the time-frequency matrix where the
SA is to be detected to determine the most likely state
(busy/idle) based on the number of busy tiles around it. This
MA approach can be applied as a standalone SAE method but
the best performance is obtained when combined with other
SAE methods such as CT-SA and SSA. The proposed MA
method has a low complexity and therefore does not increase
significantly the computational cost of existing SAE methods
while providing noticeable accuracy improvements.

The rest of the paper is organised into four sections. First,
Section II provides a formal description of the signal area
estimation problem considered in this work along with an
overview of SA estimation techniques proposed in the existing
literature and a description of the MA-based SAE method
proposed in this work. Section III describes the current study’s
methodological framework for assessing the performance of
the proposed MA under various parameter configurations and
operational conditions. The analysed research findings are
presented and discussed under Section IV. Lastly, Section V
summarises and concludes the study.



II. SIGNAL AREA ESTIMATION

A. Problem Description and Formulation

SA estimation originates from spectrum measurements
based on two-dimensional time/frequency grids, which [10]
notes are composed of tiles where every element of the grid
corresponds to a single time/frequency tile. A rectangular-
shaped area referred to as the SA is detected when a set of
contiguous adjacent tiles are detected as occupied by a signal.
Accordingly, the detection distinguishes between two types of
tile sets: (a) H0 (not occupied) and (b) H1 (occupied). Thus,
the concept of SA refers to a rectangular set of tiles observed
in the occupied (H1) state. The challenge of detecting a SA is
similar to the classical problem of signal detection or spectrum
sensing. However, there are considerable differences. First,
the focus is not on deciding the instantaneous busy/idle state
of a channel but on knowing how its users exploit spectrum
to understand their usage patterns in the time and frequency
domains. Consequently, accurate detection of the H0/H1 state
of every individual tile is in general not relevant. The fact holds
as long as the whole detected SA (the set of tiles) is an accurate
representation of the original time/frequency grid occupied by
the signal (even though some of the individual tiles may be
incorrect). Moreover, the detection of H0/H1 states in real-
time is not relevant in SA estimation, as it is in spectrum
sensing. This is because the outcome information is usually
not useful in the short term, but in the longer-term to optimise
spectrum and radio resource management decisions.

However, SAE methods depend on spectrum sensing deci-
sions. Consequently, they are significantly affected by the same
two types of errors in the signal detection process described
by [2] as missed detection (busy tiles detected as idle) and
false alarms (idle tiles seen as busy). The two errors affect the
specific shapes of the estimated SAs, consequently degrading
the performance of the adopted estimation techniques.

The SAE’s performance is determined using several parame-
ters, which can impact its accuracy and functioning. Therefore,
[10] observes that the application of SAE methods involves
sampling the spectrum into a set of observed power levels in
the frequency and time domains. The outcome is a set of power
levels corresponding to each frequency and time bin or tile in
the grid. The power levels are then compared to a predefined
threshold value, which produces a binary matrix indicating the
H0 or H1 states of every tile. This binary matrix of busy/idle
tiles is the input information provided to the SA estimation
method to extract the tiles’ rectangular sets where one or more
SAs are detected in the time/frequency grid. The overarching
purpose of the SA estimation approach is to identify perfectly
rectangular sets of busy tiles in the time/frequency grid, which
can be a challenging task given the corruption introduced by
sensing errors in individual tiles.

Furthermore, the procedure of SAE is affected by the
employed energy decision threshold and the time/frequency
resolutions of the data grid. Accordingly, [8] posits that the
time domain’s resolution can be adjusted by modifying the
sensing period. Additionally, the resolution in the frequency

domain can be adjusted by altering the employed FFT size.
Therefore, threshold selection and resolution are important
parameters that affect SA estimation techniques’ performance
and accuracy and their effects have been investigated in [9].

B. Existing SA Estimation Methods

Various SA estimation approaches have been proposed in
the existing literature. An example is a simple tile-by-tile ED
in which the individual idle/busy state of each tile in the
time/frequency grid is determined. In this case, the idle/busy
decisions of ED are taken without further processing and
therefore there is no estimation of rectangular SA within the
grid. This procedure provides a reference benchmark for the
present study. Additionally, this work also considers the CT-
SA estimation method from [6], in which a rectangular SA is
approximated based on contour tracing techniques. Further,
this study considers as well the SSA estimation method
described in [2], [4], [7], which is a more sophisticated method
that estimates every SA present in the time/frequency grid by
following a multi-step procedure. First, it performs a raster
scan to find the first corner of a potential SA, then undertakes
a horizontal (frequency) scan using a unit-width window with
height ∆t to estimate the SA’s width. Next, a coarse estimation
of the SA height (in the time domain) is carried out with a
window of the same width as approximated for the SA and
height ∆T . Finally, a fine height estimation is carried out to
obtain an accurate approximation of the SA’s width and height.
Further details about this procedure are provided in [7].

C. Proposed Minesweeper Algorithm

As mentioned earlier, the performance of existing SAE
methods can be severely degraded by the presence of signal
detection errors (false alarms and missed detections). For
instance, false alarms can lead the SSA method to detect
SAs where they do not exist, which motivated the false alarm
cancellation variant FC-SSA proposed in [2]. In many cases
these errors are uncorrelated and occur in isolated random
tiles rather than in clusters of tiles (e.g., false alarms are
uncorrelated as they are typically caused by increased noise,
which is essentially an uncorrelated random process). As a
result, many false alarms tend to occur in isolated (busy) tiles
surrounded by several idle tiles while many missed detections
tend to occur in isolated (idle) tiles surrounded by several
busy tiles. Therefore, the state of neighbouring tiles can be
used as an indication to infer the potential occurrence of errors
in certain tiles and take corrective actions. This is the main
principle exploited by the proposed MA method.

The proposed MA method follows a two-step process. The
first step entails assigning to every tile in the time/frequency
grid a number that equals the number of tiles in the busy
state observed in the group of 3×3 tiles composed by the tile
under evaluation and the eight neighbouring tiles immediately
surrounding such tile as illustrated in Figure 1. Notice that the
state of the tile under evaluation (i.e., the central tile in the
set of 3×3 tiles) is also counted. This counting procedure is
similar to that of the popular minesweeper game, after which
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Fig. 1: An example of a tile and its eight surrounding neighbours.

the proposed method is named. The second step decides the
final idle/busy state of every tile in the time/frequency grid by
comparing the number assigned to each tile in the first step to a
properly set threshold, which can be found by simulation as it
will be shown. Tiles whose values are equal to or greater than
the selected threshold are decided to be in busy state, while
those with lower values are decided to be in idle state. By
following this procedure, the final state of every tile is decided
based on its own state and the state of the neighbouring tiles.
With a properly set threshold, this method should be able to
reduce false alarms and missed detections while leaving most
of the other tiles detected in the correct state unchanged.

It is worth noting that two more complex formulations of
the proposed method were analysed in the context of this
work. The first one was a double threshold approach where
tiles with values below a low threshold are decided as idle
tiles, tiles with values above a high threshold are decided as
busy tiles, and tiles whose values are between both thresholds
are left unchanged (i.e., in their originally detected state).
The second approach was based on an exhaustive analysis
of all possible combinations of 0, 1, 2, . . . 9 busy tiles in a
set of 3×3 tiles and the corresponding most likely idle/busy
state applicable to each case. In both approaches the resulting
accuracy of the estimated SA was below that attained by
the single threshold approach described above and therefore
only the single threshold approach will be considered in the
remainder of this paper, which also has the advantage of
having a more simple formulation and therefore being less
computationally costly in practical implementations.

Notice that the proposed method can be applied as a stan-
dalone SAE method directly applied to the idle/busy outcomes
of ED as well as a pre- and/or post-processing method for
existing SAE methods (e.g., CT-SA and SSA) in order to
correct spectrum sensing errors before applying a SAE method
(pre-processing) and/or errors introduced by the SAE method
itself (post-processing). All these cases will be analysed.

III. METHODOLOGY

A. Simulation Procedure

The current study adopts a simulation-based evaluation
approach aimed at testing SAs under defined transmission
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Fig. 2: Example of a randomly generated time/frequency test grid:
(a) Clean test grid, (b) Test grid with noise (SNR = –8 dB).

constraints. The grids include channelized SAs with occupan-
cies randomly generated under well-defined constraints. The
generated test grids are then corrupted by adding noise before
being fed to the evaluated SA estimation methods (ED, CT-SA
and SSA) in combination with the proposed MA method. The
process is executed in four main steps as follows:

Step 1. Create clean time/frequency test grids: A rect-
angular time/frequency grid is randomly generated with a
resolution of 100×50 tiles, which corresponds to a medium
resolution (see [9] for details). The number of tiles in the test
grid’s horizontal dimension (100) is given by the frequency
resolution (i.e., frequency bins) while the number of tiles in
the vertical dimension (50) is determined by the considered
time resolution. Channelized signal areas are then generated
in the test grid based on specified transmission constraints. A
known number of channels is set in the frequency domain, and
random on/off transmission durations are generated in the time
domain from exponential distributions with rate parameters
λon/λoff until the total height of the grid is completed for
every channel. Furthermore, minimum on/off durations are
specified, and guard bands between channels (i.e., idle tiles
on each channel’s sides) as a fraction of the channel width.
Fig. 2a shows an example of a randomly generated test grid
with three channels, where only the central one is in use, with
rate parameters λon = λoff = 0.5 time units (t.u.), minimum
on/off duration of 10 and 5 t.u., respectively, and guard bands
of 5% of the channel bandwidth.

Step 2. Add noise to the test grids: Noise is added to the
test grids generated in the previous step. The noise affects both
types of tiles (idle and busy). In this process, the test grid’s
idle tiles may change to a busy state according to a predefined
probability of false alarm, while busy tiles may change to
an idle state according to a given probability of missed
detection. The false alarm and missed detection probabilities
are calculated according to an ED set for a Constant False
Alarm Rate (CFAR) [9]. Fig. 2b shows, as an example, the
test grid of Fig. 2a, as detected when the decision threshold
is set based on the CFAR method with a target false alarm
probability of 10% and an SNR of –8 dB.

Step 3. Estimate the SAs: In this step, one of the SA
detection methods described in Section II-B is applied to the
noisy test grid to estimate the SAs present in the original clear
test grid. We used the MA method in combination with the CT-
SA and SSA algorithms as pre- and post-processing techniques
(i.e., before, after, or before & after). Examples of the SAs
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Fig. 3: An example of SAs estimated by (a) the CT-SA method, (b)
MA method before CT-SA, (c) MA method after CT-SA, (d) MA
method before & after CT-SA [SNR = –8 dB, γthreshold = 2].
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Fig. 4: An example of SAs estimated by (a) the SSA method, (b)
MA method before SSA, (c) MA method after SSA, (d) MA method
before & after SSA [SNR = –8 dB, γthreshold = 2].

estimated by CT-SA, SSA, with and without the MA method
(before, after, and before & after) based on the test grid of
Fig. 2b are shown in Figs. 3 and 4 with an MA threshold
value of γthreshold = 2 busy tiles. As it can be appreciated,
the application of the MA method removes most false alarms
and fills several gaps created in the SAs by missed detections.

Step 4. Assess the accuracy of the estimated SAs: The final
step involves evaluating the accuracy of the estimated SAs by
comparing the set of SAs estimated by the considered method
with those present in the original test grid. The accuracy is
evaluated based on the performance metrics explained below.

B. Performance Metrics

The probabilities of detection and false alarm are commonly
used to assess the performance of signal detection methods.
However, these metrics are of little use in the context of
SAE since the focus is not the accuracy of the detection
on every individual tile of the time/frequency signal grid
but the set of SA present. Accordingly, they result from
some reconstruction processes in which subsets of tiles are
associated and recognized together as a SA. The analysis

of these two probabilities individually does not provide a
complete characterization of the reconstruction’s efficacy in a
SAE method. Therefore, these probabilities are not considered
separately in this work. Instead, other metrics that take into
account the combined impact of these metrics are factored in.

The accuracy of the studied SAE methods could be assessed
based on a simple accuracy metric defined as the percentage
of tiles (in either state, idle or busy) that are correctly detected
in their real condition, which can be obtained as the sum of
true positive and true negative detection rates. However, the
tiles in one of the states (idle/busy) may outnumber the tiles in
the other state, thus biasing the value of such accuracy metric.
This motivates using the F1 score as the main performance
metric, which considers the possible imbalance between the
number of tiles in idle and busy states in the original test
grid. The F1 score metric is defined by [11] as follows:

F1 =
2× TP

2× TP + FP + FN
(1)

where TP is the number of tiles that are a true positive, FP
is the number of tiles that are a false positive, and FN is
the number of tiles that are a false negative. If the number
of TP and TN (true negative) tiles is the same, the F1 score
metric is equivalent to the accuracy metric defined previously.
In general, the F1 score is a better metric when the ratio of
actual idle/busy tiles is imbalanced, which is usually the case.

The computation time of a SAE method will affect the
overall performance in practical system implementations and
is evaluated as part of this study. Thus, given the existence of
a direct correlation between computation time and the overall
cost of implementation, as observed by [8], finding the method
that attains the lowest computation time is preferable.

IV. RESULTS

The performance of the proposed MA method, both as a
standalone SAE method and as a pre/post-processing method
for other SAE methods, is evaluated by simulations based on
100 different randomly generated test grids. The performance
is compared with the CT-SA and SSA methods. For the SSA
method, the parameters are configured as recommended in [4].

A. MA as Standalone SAE Method

The proposed MA method can be employed as a standalone
SAE method directly applied to the ED outcomes only. The
performance for different thresholds is illustrated in Fig. 5a.
These results indicate that no single value of the threshold can
provide the best performance over the whole range of SNR val-
ues. This outcome suggests that a dynamic threshold approach
that dynamically selects the best performing threshold based
on the current SNR could improve the method’s performance.
According to the results in Fig. 5a, threshold values of 2, 3 and
4 should be used for SNR values in the ranges SNR < –6 dB,
SNR ∈ [–6, –5] dB, and SNR > –5 dB, respectively. As shown
in Fig. 5b, this dynamic MA approach clearly outperforms ED
as an SAE technique over the whole range of SNR values and
CT-SA over most of the SNR range (with the exception of the
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Fig. 5: F1 score as a function of the SNR for the different SAE
methods (ED, CT-SA, SSA) and the standalone MA method with:
(a) static threshold approach, and (b) dynamic threshold approach.

range from –7 dB to –5 dB, where the accuracy is slightly
lower). When compared to the SSA method, the standalone
MA method performs worse below –6 dB and better above
–6 dB. As mentioned earlier, false alarms can lead the SSA
method to detect SAs where they do not exist (this problem
has been addressed in other works such as [2], which are out of
the scope of this work and therefore not considered here). At
high SNR values (above –5 dB), the proposed MA method as
a standalone SAE technique can provide improved F1 scores,
reaching values close to 100% (the only SAE method that
achieves this high accuracy).

When compared to the CT-SA and SSA methods, the
standalone MA method is associated with a much lower
computational cost (see Fig. 6) due to the more straightforward
processing, which leads to a computation time similar to that
of a simple ED strategy regardless of the threshold used for
MA. Consequently, the proposed MA technique with an SNR-
based dynamic threshold selection can deliver a performance
better than CT-SA and comparable to that of SSA (and better
at high SNR values) at a much lower computational cost.
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Fig. 6: Computation time as a function of the SNR for the different
SA estimation methods (ED, CT-SA, SSA) and the proposed MA
method as a standalone SAE technique.

B. MA as Pre/Post-Processing for Other SAE Methods

The proposed MA method can also be employed as a
pre/post-processing technique for other SAE methods such as
CT-SA and SSA. In this case, the MA method is combined
with an existing SAE method in order to correct spectrum
sensing errors before applying another SAE method (pre-
processing) and/or errors introduced by the other SAE method
itself (post-processing). The results in Fig. 7 show the perfor-
mance of the CT-SA and SSA methods used as standalone
SAE methods and also combined with the proposed MA
method used as a pre/post-processing technique. In general,
one can state that applying the MA method before the other
SAE method results in a slightly better accuracy than using
it afterwards. However, with some exceptions, the highest
improvement is in general achieved by employing the pro-
posed MA mechanism both before and after the SA estimation
method (i.e., as pre- and post-processing simultaneously).

The results shown in Fig. 8 indicate that the total computa-
tional time of the CT-SA and SSA methods is not significantly
affected regardless of whether the proposed MA method is
applied. This can be explained by the fact that the MA method
is based on a straightforward and much simpler process than
CT-SA and SSA and therefore its contribution to the total
computation time is very low compared to that of the CT-
SA and SSA methods. Consequently, the introduction of the
MA method as a pre/post-processing technique does not affect
significantly the total computational time of the other SAE
methods. Interestingly, we find that, in some cases, the MA
mechanism can in fact reduce the total computational time.
This phenomenon may be due to the MA method’s potential
to eliminate some errors in the original signal grid, thus sim-
plifying the other SAE methods’ reconstruction procedure and
therefore reducing the total computation time. This explanation
seems to hold true mostly in the region of low SNR values.
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Fig. 7: F1 score as a function of the SNR for different combinations
of the proposed MA method and: (a) CT-SA, (b) SSA.

V. CONCLUSION

A minesweeper-based algorithm (MA) has been proposed
as an effective approach for improved Signal Area Estimation
(SAE). The method has a low computational cost and can
be employed both as a standalone SAE method as well as
a pre/post-processing technique for other SAE methods (to
correct sensing errors or errors introduced by the other method
itself). In both cases the proposed MA helps detect the signal
area more accurately at a low computational cost.
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