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Abstract—Energy detection has proved to be a promising
technique for spectrum sensing owning to its simplicity and low
implementation and computational costs. However, the signals
present in the sensed band are ambiguous and are not fully
known beforehand which is referred to as the signal uncertainty.
Signal and noise uncertainties are prone to degrade the detection
performance. This paper presents an analysis of the impact of sig-
nal and noise uncertainties under an Improved Energy Detection
(IED) algorithm for spectrum sensing. Step by step derivation and
analysis of signal detection with signal and noise uncertainties
under the considered IED algorithm are carried out in detail.
The obtained analytical results are compared with experimental
results obtained with a spectrum measurement platform, which
not only demonstrate the validity of the mathematical analysis
presented in this work but also show that IED outperforms the
classical energy detection algorithm even in presence of both
signal and noise uncertainties, an important fact of practical
relevance that had not been demonstrated to the date in the
existing literature.

Index Terms—Cognitive radio, Improved energy detection,
Low SNR regime, Noise uncertainty, Signal uncertainty

I. INTRODUCTION

Cognitive radio (CR) has been foreseen as an effective and

reliable solution for the efficient utilization of the radio spec-

trum. The spectrum unavailability issue arising due to static

and exclusive frequency allocation can be alleviated using

CR. CR is a radio network technology that has knowledge

of its operational and geographical environment and adapts

to it intelligently to provide a highly reliable communication

[1], [2]. With the help of CR, unlicensed users can access the

spectrum temporarily unexploited by the licensed user in a

non-interfering manner.

The spectrum sensing act of reliably and autonomously

identifying the unused frequency bands is foreseen as one of

the main functionalities of CRs [3]. Several spectrum sensing

algorithms have been proposed to reliably and autonomously

identify the unused frequency [4]–[8]. A CR user in most

cases is unaware of the primary signals present in it’s sensed

frequency band. The energy detection (ED) technique of spec-

trum sensing doesn’t require any prior information of the pri-

mary signals and has been one of the most preferred approach

due to it’s simple implementation and low computation costs.

The classical energy detection (CED) is the simplest energy-

based algorithm for spectrum sensing. Enhanced energy-based

algorithms of modified energy detection (MED) and improved

energy detection (IED) [9] outperforms the well-known CED

method. The interest of this work is in the IED method, which

outperforms the previously proposed algorithms.

Factors like sensing time, accuracy of the decision made

regarding channel occupancy, fundamental limits in the sens-

ing algorithm due to uncertainties, shadowing and hidden

PU problems characterizes the sensing algorithm. As uncer-

tain factors commonly exist in practical networks, a perfect

knowledge of the signals present in the sensed band is not

possible. In ED, the receiver has no prior information about

the primary signal being detected and its features such as

the energy variation pattern. This is commonly referred to

as signal uncertainty (SU) [10]. Apart from SU, there exists

noise uncertainty (NU) arising as a result of the inability to

quantify the system noise perfectly [10]. The ED performance

degrades heavily under NU conditions, in particular in the

low SNR regime [11], [12]. A spectrum sensing system with

dynamic noise variance was described in terms of a dynamic

state space model in [13]. Uncertainties impose fundamental

limitations upon the sensing event and could lead to faulty

decisions. Hence, uncertainties can’t be neglected and ought

to be considered whilst analyzing the overall performance of

spectrum sensing algorithms.

The potential effects that both SU and NU may have on the

practical performance of the CED algorithm were analyzed in

[10]. However, while broadly used in the literature, CED pro-

vides in general a poor detection performance. Other methods

such as IED have been shown to outperform CED significantly

at no extra cost. However the impact of SU and NU on IED

has not been investigated yet. In this context, this work fills

the existing gap by providing a detailed mathematical and

experimental performance evaluation of the IED algorithm

under both SU and NU, and compares the performance of

IED to the CED method under the effect of both degrading

effects (as opposed to the study presented in [9] where the IED



TABLE I: Notation used in this work.

Parameter Definition

Pd Probability of detection

Pfa Probability of false alarm

Pmd Probability of mis-detection

γ Signal to noise ratio (SNR)

γ0 Average SNR

N Sensing sample size

L Number of last sensing events considered

M Number of sensing events where a

primary signal was actually present

α Noise uncertainty parameter

β Signal uncertainty parameter

method was proposed, where IED and CED were compared

assuming ideal conditions for both signal and noise powers).

The major contributions of this work are as follows:

• Firstly, a comprehensive analysis of the fundamental

bounds on the detection performance in low SNR regime

in the presence of both SU and NU when using IED is

presented. A closed-form expression is obtained analyti-

cally to model the average detection probability of IED

considering the impact of SU and NU at the CR receiver.

• Secondly, the validity and accuracy of the obtained ana-

lytical results are corroborated using empirical measure-

ment data obtained with an experimental hardware setup.

• Thirdly, we investigate the computational complexity of

both methods (CED and IED) under both scenarios (with

and without uncertainties) and demonstrate that their

respective computational complexities are not affected

significantly by the presence of uncertainties.

The rest of the paper is organized as follows. First, Section

II introduces the concept of spectrum sensing in the context of

ED and provides an overview of the theoretical performance

of IED under NU conditions. Section III then incorporates

the impact of SU into the analysis and derives a closed-form

expression for the detection probability based on a generic

mathematical model for the received SNR under variable

primary transmission power patterns, which is formulated and

approximated by a modified Gaussian distribution. Section IV

presents the hardware setup employed in this work to capture

the empirical data used to validate the obtained analytical

results. Section V presents and provides a detailed discussion

of the obtained theoretical and experimental results. Finally,

Section VI summarizes the main findings of this work. The

notation employed in this work is summarized in Table I.

II. THEORETICAL PERFORMANCE OF IED UNDER NOISE

UNCERTAINTY

The decision to be made regarding the occupancy of the

channel can be represented with a binary hypothesis model,

namely H0 (null hypothesis) and H1 (alternative hypothesis):

H0 : y(n) = w(n) n = 1, 2, 3, . . . , N

H1 : y(n) = x(n) + w(n) n = 1, 2, 3, . . . , N
(1)

where, y(n) represents the received signal at n-th instant, w(n)
is the AWGN noise and x(n) represents the transmitted signal.

Here H0 states that primary signal are absent in the sensed

spectrum band, and hypothesis H1 indicates the presence of

some licensed user signal x(n). N denotes the number of

samples collected during the signal observation interval (i.e.,

the sensing sample size).

NU mostly resulting from varying thermal noise in com-

ponents caused by temperature variations (non-uniform, time-

varying), noise due to transmissions by other users or noise

power calibration errors is likely to affect the practical net-

works. Variations in the noise power adds NU in the CR [14].

The noise power is uncertain and this can be modelled within

a range [15] as σ̂2
w ∈ [σ2

w, ασ
2
w] , where σ̂2

w is the estimated

noise power, σ2
w is the nominal noise power and α > 1 is the

NU parameter.

The detection probability of IED under AWGN for perfectly

known signal and noise powers was presented in [9]. The

introduction of NU in the analysis presented in [9] leads to

the following new result for the detection probability of IED

in the presence of NU as a function of the SNR (derivation

details are omitted due to the lack of space):

Pd
IED(γ) = Q(ζ(γ)) +Q(ζ(γ))

(

1−Q(ζ(γ))
)

Q(ξ(γ)) (2)

where Q(ζ(γ)) represents the probability of detection of the

CED algorithm, which under NU is obtained to be given by:

Q(ζ(γ)) = Q

(

αQ−1 (Pfa)
√
2N −N (γ + 1− α)√

2N (1 + γ)

)

(3a)

while the term Q(ξ(γ)) is given by:

Q(ξ(γ)) = Q









αQ−1 (Pfa)
√
2N − MN

L
γ + (α− 1)N

√

2N
L

(

1 + M
L

[

(1 + γ)
2 − 1

])









(3b)

where Q(·) is the Gaussian Q-function, Pfa represents the

target probability of false alarm, γ is the SNR, L is the number

of sensing events over which the IED algorithm is run, and

M is the number of sensing events (out of the considered L
sensing events) where a primary signal was actually present.

The Gaussian Q-function is defined as Q(x) = 1
2erfc

(

x√
2

)

,

where erfc(·) is the complementary error function such that

erfc(x) = 2√
π

∫∞

π
e−t2dt.

In low SNR regime (γ ≪ 1), these expressions reduce to:

Q(ζ(γ)) ≈ Q

(

αQ−1 (Pfa)−
√

N

2
(γ + 1− α)

)

(3c)

Q(ξ(γ)) ≈ Q

(

αQ−1 (Pfa)
√
L−M

√

N

2L
γ + (α− 1)

√

NL

2

)

(3d)

Since α ≥ 1 and the Q-function is a decreasing function of

its argument, it can be observed from (3) that Pd for the IED

algorithm degrades under NU and decreases with an increase

in the uncertainty parameter α. With an increase in the sensing



sample size N , the value of the Q-function increases and so

does the resulting detection probability.

III. THEORETICAL PERFORMANCE OF IED UNDER BOTH

NOISE AND SIGNAL UNCERTAINTIES

This section extends the result introduced in Section II

by taking account the impact of the SU on the detection

performance of the IED method, thus providing a closed-form

expression for its detection probability under both SU and NU.

In real scenarios, the SNR at the CR receiver depends on

both the propagation environment and the primary transmis-

sion power pattern. The transmission power of the primary

user may vary over time, which would lead to a varying SNR

at the CR receiver even under an ideal propagation channel.

Moreover, the propagation channel introduces attenuation,

shadowing and multipath fading, which leads to additional

fluctuations in the instantaneous SNR observed at the CR

receiver. Since the detection probability depends on the SNR,

its instantaneous value will fluctuate as well. The average

detection probability P
IED

d for an average SNR γ0, which

would be a more meaningful parameter in this case, can be

computed as:

P
IED

d (γ0) = E
[

P IED
d (γ)

]

=

∫

γ

P IED
d (γ)fγ(γ)dγ (4)

where P IED
d (γ) is the detection probability for an instanta-

neous SNR γ as given by (2) and fγ(γ) is the probability

density function (PDF) of the instantaneous SNR. The focus

of this work being on the primary transmission power pattern

(i.e., SU), it is assumed that fγ(γ) is mostly due to the

primary transmission power pattern. An exact expression for

fγ(γ) cannot be determined since this would require a perfect

knowledge of the primary transmission power statistics, which

is in not known to the CR receiver. However, based on the

empirical results obtained in [16], it was concluded in [10]

that fγ(γ) can be accurately modelled in most practical cases

with either a Rayleigh or a gamma distribution. For these two

distributions, the variance and the average value are related by

a constant factor. Concretely, the variance of the instantaneous

SNR, σ2
γ , can be written in terms of the average SNR, γ0, as

σ2
γ = βγ2

0 [10], where β = σ2
γ/γ

2
0 > 0 can be regarded as the

normalized variance of the received SNR, which can be used

to quantify the uncertainty of the received primary signal at

the CR receiver (i.e., the SU). The value of β is constant for

the Rayleigh (β ≈ 0.27) and gamma (β ≈ 0.5) distributions

and therefore these models are not suitable for scenarios with

variable SU levels. In order to model the effect of SU for any

arbitrary β, a truncated modified Gaussian PDF is employed

in this work, whose PDF is defined as follows [10]:

fγ(γ) ≈
K√
2πσγ

e
− 1

2

(

γ−γ0

σγ

)

2

, γ > 0 (5)

where K is a normalization factor required by the truncation

of the original Gaussian distribution, which is given by:

K =
2

1 + erf
(

γ0√
2σγ

) (6)

where erf(·) is the Gaussian error function. The variance

of this modified Gaussian distribution is independent of the

average SNR and therefore can be employed to quantify any

arbitrary level of SU at the CR receiver through β = σ2
γ/γ

2
0 .

The average probability of detection for the IED algorithm

under both SU and NU can be obtained by introducing the

expression obtained in (2)–(3), which only accounts for the

NU, into the integral in (4), which would lead to a result

that also includes the impact of SU (i.e., both SU and NU).

Given the analytical complexity of the resulting integral, a

number of approximations are needed. First, the expression in

(2) needs to be used along with the low SNR approximations

in (3c) and (3d). In most practical scenarios, CR devices are

expected to operate under low SNR conditions, therefore this

assumption is reasonable (an indeed, it has been commonly

used in the literature). Secondly, the Gaussian Q-Function can

be approximated using a second-order exponential function as

follows [17]:

Q(x) ≈
{

e−(ax2+bx+c), x ≥ 0

1− e−(ax2−bx+c), x < 0
(7)

where a = 0.3845, b = 0.7635 and c = 0.6966 are fitting

coefficients [17]. Introducing (7) into (3c), Q(ζ(γ)) can be

further approximated as:

Q(ζ(γ)) ≈























e−(a[ζ(γ)]
2+bζ(γ)+c)

= e−(Ωγ2+Ψγ+Φ), ζ(γ) ≥ 0

1 − e−(a[ζ(γ)]
2−bζ(γ)+c)

= 1− e−(Ωγ2+Ξγ+θ), ζ(γ) ≤ 0

(8)

where:

Ω =
aN

2

Ψ = −aαQ−1(Pfa)
√
2N − aN (α− 1)− b

√

N

2

Ξ = −aαQ−1(Pfa)
√
2N − aN (α− 1) + b

√

N

2

Φ = a

[

αQ−1(Pfa) + (α− 1)

√

N

2

]2

+ b

[

αQ−1(Pfa) + (α− 1)

√

N

2

]

+ c

θ = a

[

αQ−1(Pfa) + (α− 1)

√

N

2

]2

− b

[

αQ−1(Pfa) + (α− 1)

√

N

2

]

+ c

Similarly, introducing (7) into (3d), Q(ξ(γ)) can be further

approximated as follows:

Q (ξ(γ)) ≈























e−(a[ξ(γ)]
2+bξ(γ)+c)

= e−(Ω1γ
2+Ψ1γ+Φ1), ξ(γ) ≥ 0

1 − e−(a[ξ(γ)]
2−bξ(γ)+c)

= 1− e−(Ω1γ
2+Ξ1γ+θ1), ξ(γ) ≤ 0

(9)



where:

Ω1 =
aNM2

2L

Ψ1 = −aαQ−1(Pfa)M
√
2N − aMN (α− 1)− bM

√

N

2L

Ξ1 = −aαQ−1(Pfa)M
√
2N − aMN (α− 1) + bM

√

N

2L

Φ1 = a

[

α
√
LQ−1(Pfa) + (α− 1)

√

NL

2

]2

+ b

[

α
√
LQ−1(Pfa) + (α− 1)

√

NL

2

]

+ c

θ1 = a

[

α
√
LQ−1(Pfa) + (α− 1)

√

NL

2

]2

− b

[

α
√
LQ−1(Pfa) + (α− 1)

√

NL

2

]

+ c

With the approximations described above, the average prob-

ability of detection for the IED algorithm under both SU and

NU can be obtained. Concretely, an approximated version of

the expression in (2) is obtained by using the approximated

form of Q(ζ(γ)) in (8) and the approximated form of Q(ξ(γ))
in (9). This approximated version of (2) can then be introduced

into (4), while fγ(γ) in (4) is given by the truncated Gaussian

model shown in (5). The integral obtained after these substi-

tutions has an algebraic form that is tractable, even though

its resolution is quite tedious. After numerous algebraic ma-

nipulations, which do not involve major analytical difficulties

and are therefore here omitted due to the lack of space, the

expression shown in (10) is finally obtained as a result, where

erf(·) the error function, Υ = α
√

2/NQ−1(Pfa) + (α − 1),
Υ1 = (L/M)[α

√

2/NQ−1(Pfa) + α− 1], and:

Ω2 =

(

Ω+ Ω1 +
1

2σ2
γ

)

Ω3 =

(

2Ω + Ω1 +
1

2σ2
γ

)

Ψ2 =

(

Ψ+Ψ1 −
γ0
σ2
γ

)

Ψ3 =

(

2Ψ + Ψ1 −
γ0
σ2
γ

)

Ξ2 =

(

Ξ + Ξ1 −
γ0
σ2
γ

)

Ξ3 =

(

2Ξ + Ξ1 −
γ0
σ2
γ

)

Φ2 =

(

Φ+ Φ1 +
γ2
0

2σ2
γ

)

Φ3 =

(

2Φ + Φ1 +
γ2
0

2σ2
γ

)

θ2 =

(

θ + θ1 +
γ2
0

2σ2
γ

)

θ3 =

(

2θ + θ1 +
γ2
0

2σ2
γ

)

Some of the terms in (10) are numerically similar and there-

fore cancel out each other when the expression is evaluated.

This observation leads to the slightly simplified form shown

in (11). This approximation is valid over a wide range of SNR

values and becomes tighter for high N and low Pfa values.

IV. MEASUREMENT SETUP AND DATA ACQUISITION

The accuracy of the mathematical model developed in this

work for the performance of the IED algorithm under both SU

and NU was assessed based on empirical data captured with a

spectrum measurement platform (see Fig. 1), which was placed

on the roof-top of the School of Engineering and Applied

Science (SEAS) of Ahmedabad University. The measurement

platform is composed of two measurement setups. Setup I

consists of a discone antenna (Diamond D-3000N) and a

digital spectrum analyzer (Rigol DSA-875) connected to a

control PC. This setup is used to analyze the presence/absence

of radio signals by observing the power spectral density on

the spectrum analyzer screen when tuned to a particular band.

Setup II consists of a discone antenna (Diamond D-3000N)

and a USRP N210 connected to a control PC running GNU

Radio, which is used to capture the actual spectrum data on

those channels where activity is detected with the spectrum

analyzer. A Python script executed in GNU Radio is in charge

of acquiring raw I/Q signal samples from the USRP. The

captured data are stored for subsequent off-line processing in

MATLAB. The configuration parameters for the USRP and the

spectrum analyzer are shown in Tables II and III, respectively.

V. THEORETICAL AND EXPERIMENTAL RESULTS

This section compares the theoretical IED performance with

the experimental performance based on empirical data. The

analysis was performed for the different radio technologies

shown in Table II and similar conclusions were obtained in

all cases. However, due to the limited space available, only

the results for the captured E-GSM 900 DL signal are shown

in this section. Results were obtained for sensing sample sizes

N = {10, 100, 1000}. NU was reproduced by shifting the

energy detection threshold with respect to its nominal value.

The amount of SU is calculated for each measured signal

based on its SNR (β = σ2
γ/γ

2
0 ). Measurements were carefully

performed to ensure that the impact of fading is minimized

(e.g., selecting nearby transmitters with direct line of sight and

high SNR conditions) so that the observed signal variability is

mostly due to the transmission power pattern of the measured

transmitter.

Figs. 2 and 3 illustrate the impact of different parameters

on the performance of the IED algorithm by evaluating the

Receiver Operating Characteristic (ROC), i.e., the probability

of detection as a function of the probability of false alarm,

based on the theoretical results obtained in Section III. As

it can be appreciated from Fig. 2, where the impact of the

SU (β) and the sample size (N ) are illustrated, the presence

of SU degrades the performance of IED (in particular, the

performance is more severely degraded for higher values of the

signal variability/uncertainty β), however this can be overcome

by increasing the sample size N . Fig. 3 shows the impact of

M (number of sensing events over which the IED algorithm is

executed where a primary signal is present), indicating that, as

expected, a higher value of M leads to an increased detection

performance. This is because the averaging process performed

by the IED method can detect a primary signal more reliably

when it is present in a higher number of sensing events (again,

the detection performance improves with the sample size).



P
IED

d (γ0) ≈
K

2

{

erf

(

Υ1 − γ0√
2σγ

)

− erf

(

Υ− γ0√
2σγ

)

+ erfc

(

Υ1 − γ0√
2σγ

)

+

√

1

2σ2
γΩ3

exp

(

Ξ2
3

4Ω3
− θ3

)

erfc

(

2Ω3Υ1 + Ξ3

2
√
Ω3

)

+

√

1

2σ2
γΩ2

exp

(

Ξ2
2

4Ω2
− θ2

)

erfc

(

2Ω2Υ1 + Ξ2

2
√
Ω2

)

−
√

1

2σ2
γΩ3

exp

(

Ψ2
3

4Ω3
− Φ3

)[

erf

(

2Ω3Υ+Ψ3

2
√
Ω3

)

− erf

(

Ψ3

2
√
Ω3

)]

+

√

1

2σ2
γΩ3

exp

(

Ξ2
3

4Ω3
− θ3

)[

erf

(

2Ω3Υ1 + Ξ3

2
√
Ω3

)

− erf

(

2Ω3Υ+ Ξ3

2
√
Ω3

)]

}

(10)

P
IED

d (γ0) ≈





1

1 + erf
(

γ0√
2σγ

)





{

erfc

(

Υ1 − γ0√
2σγ

)

+

√

1

2σ2
γΩ2

exp

(

Ξ2
2

4Ω2
− θ2

)

erfc

(

2Ω2Υ1 + Ξ2

2
√
Ω2

)

−
√

1

2σ2
γΩ3

exp

(

Ψ2
3

4Ω3
− Φ3

)[

erf

(

2Ω3Υ+Ψ3

2
√
Ω3

)

− erf

(

Ψ3

2
√
Ω3

)]

−
√

1

2σ2
γΩ3

exp

(

Ξ2
3

4Ω3
− θ3

)

erf

(

2Ω3Υ1 + Ξ3

2
√
Ω3

)

}

(11)

(a) Setup I
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Discone antenna

(b) Setup II

Fig. 1: Spectrum measurement platform used in this work for spectrum data acquisition.

Fig. 4 shows the theoretical and empirical detection prob-

ability of both CED and IED as a function of the SNR in

the absence of NU, while Fig. 5 shows the counterpart for

the case of 1-dB NU. The IED algorithm is executed over

blocks of L = 3 sensing events and the theoretical results are

plotted for the whole range of M = {1, 2, 3}. Notice that the

value of M in the case of empirical measurements is unknown

since the number of sensing events where the primary signal

was actually present cannot be determined reliably, therefore

M can only be considered in the case of theoretical results.

Nevertheless, it can be observed from Fig. 4 that the empirical

IED performance for the scenario without noise uncertainty

overlaps perfectly with the theoretical IED performance for

M = 2. This indicates that, in average, the measured primary

signal was present in two out every three sensing events

(M = 2, L = 3). Moreover, note that this is observed

for all the considered values of the samples size N , which

corroborates the validity of the obtained analytical results in

Section III. In the case with noise uncertainty (Fig. 5), a slight

deviation is observed between the theoretical and experimental

IED performances for M = 2, which can be explained by the

difficulty to have a perfect measure of the actual NU as a

result of the variability of the noise power at the hardware

receiver during the interval over which measurements were

carried out. The obtained results show that IED outperforms

CED even in the presence of both SU and NU, however the

detection performance is lower bounded in both cases by the

same SNR wall, which is inherent to the ED principle itself.



TABLE II: USRP configuration and channels measured in this work.

Radio Channel fstart fcenter fstop Signal bandwidth Gain Decimation Sampled

Technology Number (MHz) (MHz) (MHz) (MHz) (dB) Rate Bandwidth (MHz)

FM broadcasting – 96.500 96.700 96.900 0.2 45 64 1

UHF television (Band IV) U-33 566 570 574 8 45 8 8

E-GSM 900 DL 77 950.2 950.4 950.6 0.2 45 64 1

DCS 1800 DL 690 1839.6 1840.8 1841 0.2 45 64 1

TABLE III: Spectrum analyzer configuration.

Parameter Value

Frequency range 75-2000 MHz

Frequency span 45-600 MHz

Frequency bin Depends on band selected

Resolution bandwidth (RBW) 10 kHz

Video bandwidth (VBW) 10 kHz

Measurement period 5-15 mins

Sweep time 1 second

Scale 10 dB/division

Input attenuation 0 dB

Detection type RMS detector

Finally, Fig. 6 shows the experimental computational cost

of CED and IED for different sample sizes in terms of the

average time required to execute each algorithm on a general

purpose processor (Intel i5 Quad Core at 2.66 GHz), averaged

over 8000 Monte-Carlo iterations. As it can be appreciated,

the computational cost of IED is slightly higher than CED, in

particular at lower sample sizes, as a result of the additional

calculations required to average the energy values observed

over several sensing events. In practice, a relatively large

number of signal samples are required to provide a reliable

sensing decision, meaning that in most practical scenarios the

IED/CED algorithms will be operating in the region of larger

sample sizes shown on the right-hand side of Fig. 6, where

the computational costs of CED and IED are equivalent. This

same behaviour was also observed in [9] in the absence of

SU and NU. Interestingly, the results in Fig. 6 show that the

computational cost of the IED algorithm is not significantly

affected by the presence of SU and NU and, as a result,

the performance improvements of IED over CED that were

observed [9] at no extra computational cost, are also observed

here in the presence of SU and NU, again at no extra cost.

VI. CONCLUSION

Several energy-based spectrum sensing algorithms have

been proposed in the literature with the aim to improve

the performance of the well-known CED method. This work

focuses on the IED method proposed in [9], which has been

shown to outperform CED at no extra computational cost.

The performance of the IED method was analyzed in [9]

under ideal conditions where the signal and noise powers were

assumed to be perfectly known by the CR receiver. On the

other hand, this work has provided a more realistic analysis

where the impacts of SU and NU on the IED performance have

been analyzed mathematically. The obtained analytical results

have been compared with experimental data obtained with a
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spectrum measurement platform. The obtained results have not

only demonstrated the validity of the mathematical analysis

presented in this work but also showed that IED outperforms

the CED algorithm, not only under ideal conditions but also

in presence of both signal and noise uncertainties.
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[16] M. López-Benı́tez, F. Casadevall, and C. Martella, “Performance of

spectrum sensing for cognitive radio based on field measurements of
various radio technologies,” 2010 European Wireless Conference, pp.
969–977, 2010.
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