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Abstract: 
Active pulse design, target detection and classification play 

an essential role in underwater acoustic sensing. This paper 

addresses the system design with three kinds of pulse signals, 

including continuous wave (CW) linear frequency modulation 

(LFM) signal and rational orthogonal wavelet (ROW) signal. 

The detector design has an architecture of feature extraction 

and convolutional neural network (CNN) based classification. 

A geometric underwater channel model is adopted to facilitate 

the generation of training datasets with designated geometric 

underwater environment parameters. The simulated received 

pulse signals are converted into feature maps as the input of the 

classifier. This paper applies the acoustic features, Short Time 

Fourier Transform (STFT), Mel Frequency Cepstral 

Coefficients (MFCC) and Gammatone Frequency Cepstral 

Coefficients (GFCC) to construct different feature maps. A 

lightweight CNN model is used as the classifier. Experiments 

demonstrate the superiority of the ROW wavelet pulse signals 

and the proposed algorithm in target localization and 

underwater signal classification. 
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1. Introduction 

Ocean noises, sound velocity characteristics, subsea 

acoustic properties, and other distorting factors, such as 

multipath attenuation, influence acoustic sensing in the 

marine environment. In recent years, feature extraction of 

underwater acoustic signals has grown fast, the most 

prominent of which are speech recognition-based auditory 

feature extraction methods. However, the performance of 

traditional methods could not be well suited to a variety of 

complex environments [1]. 

Steven B. Davis first proposed the theory of Mel 

Frequency Spectral Coefficients (MFCC) by studying the 

characteristics of human hearing and finding that the human 

ear has different sensitivities to different frequency bands [2]. 

The gammatone filter has a simple time-domain impulse 

response [3]. 

Underwater acoustic signals have similar characteristics 

to speech signals. The auditory feature extraction methods 

used in speech signal processing can also be applied to 

underwater acoustic signal processing. The feasibility of 

using auditory for underwater signal analysis was 

theoretically demonstrated by Brown et al. [4]. Gammatone 

frequency cepstral coefficient (GFCC) algorithm avoids the 

errors caused by the spectral estimation in the MFCC 

algorithm because the signal is filtered directly in the time 

domain [5].  

The wavelet transform provides a more accurate 

localization both in the time and frequency domains. The 

multi-resolution of the wavelet transform facilitates the 

extraction of different features at each resolution. Research 

has shown that wavelets have been applied to speech signal 

feature extraction with good results. The non-smooth nature 

of underwater signals is well suited to applying the wavelet 

transform.  

The rest of this paper is organized as follows: Section 2 

introduces the broadband underwater ray-tracing model, the 

database construction, feature extraction methods and our 

CNN architecture. In Section 3, classification results and 
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analysis are presented in bar charts. Section 4 is the 

conclusion and future work. 

2. Methodology 

Classical ray tracing (geometric acoustics) was used to 

synthesize the echo generated when the target is impacted in 

a simple horizontal layered three-layer marine acoustic 

environment. We only consider plane waves processed by 

their associated rays, which are vectors perpendicular to the 

wavefront. Next, three different signals will be considered as 

the transmitted signals.  

2.1. Underwater channel model 

A ray-tracing model was used to simulate broadband 

underwater acoustic channels. Figure 1 shows the 

underwater environment simulation. Target moving 

directions are illustrated as 270o, 90o and 0/180o. 

 
Figure 1: Underwater environment simulation 

2.2. Transmitted pulses 

The available pulse types are CW (Continuous Wave), 

LFM (Linear frequency modulation) and ROW (Rational 

Orthogonal Wavelet). CW is a narrow-band signal, and LFM 

and ROW are broadband signals. 

The CW pulse is of the form: 

ω(𝑡) ∗ 𝑒𝑥𝑝(−𝑖 ∗ 2𝜋𝑓𝑐𝑡)             (1) 

Where 𝑓𝑐 is the carrier frequency, and the LFM is 

𝜔(𝑡) ∗ 𝑒𝑥𝑝(−𝑖 ∗ 2𝜋(𝑓𝑎𝑡 + (𝑓𝑏 − 𝑓𝑎) ∗ 𝑡
2/(2 ∗ 𝑇))))   (2) 

Function 𝜔(𝑡)  is a "window", being rectangular in our 

experiment, 

𝜔(𝑡) = 1                    (3) 

Where 𝑓𝑎  is the low frequency and 𝑓𝑏  is the high 

frequency, T is the pulse duration. 

ROW signals are designed wavelet signals in [6], the 

formulation is  
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{
 
 

 
 (2𝜋)

−
1

2𝑒𝑗
𝜔

2 sin(
𝜋

2
𝛽(

𝑞

𝜔1
|𝜔| − 𝑞)), 𝜔1 ≤ |𝜔| ≤ 𝜔2

(2𝜋)−
1

2𝑒𝑗
𝜔

2 cos(
𝜋

2
𝛽(

𝑞

𝜔2
|𝜔| − 𝑞)), 𝜔2 ≤ |𝜔| ≤ 𝜔3

0,                                                       |𝜔| ∉ [𝜔1,   𝜔3]

  (4) 

Where 𝑞 is the dilation factor of ROW, and  

𝜔1 = 𝑎0 ∙ (𝑞 −
𝑞

2𝑞+1
) 𝜋,  𝜔2 = 𝑎𝜔1, 𝜔3 = 𝑎𝜔2 = 𝑎

2𝜔1  (5) 

𝛽(𝑥) is the construction function and has the form in (6). 

It is not unique. 
𝛽(𝑥) = 𝑥4(35 − 84𝑥 + 70𝑥2 − 20𝑥3)        (6) 

Figure 2 illustrates the time responses of three different 

transmit pulses. For ROW pulses, we will also consider various 

dilation factors of rational orthogonal wavelets. 

 
Figure 2: Three different transmit pulses: (a) CW; (b) 

LFM; (c)ROW. 

2.3. Database construction 

2.3.1. Noise type 

All the noise data are from the underwater sound 

recording database [7]. We selected two ambient noises, two 

whale calls, two sea fish noises, two boat noises and AWGN, 

nine noises with different SNRs to generate the database. The 

complexity of the channel strongly influences the 

performance of underwater acoustic communication systems. 

Noise interfering with underwater acoustic communication 

includes underwater dynamics, activity noise generated by 

aquatic organisms, and natural noise from sea surface waves 

and storms. These noises can seriously affect the SNR of the 

signal. Therefore, our SNR setting is from -45dB to 0dB with 

a step of 5dB. 

2.3.2. Preprocessing method 

In our experiments, three feature extraction methods 

were considered to transfer one-dimension signals to two-

dimensions feature maps as the input of the Neural Network. 

Short-time Fourier transform (STFT) is the comparison 

traditional signal processing technique benchmark. In 



 

 

addition, two auditory-based feature extraction methods, 

MFCC and GFCC, are also investigated in our experiment. 

Their derivative features are also introduced in feature 

extraction to incorporate dynamic features. Figure 3 shows 

examples of MFCC and GFCC feature maps. Our 

investigation set 13 MFCC and GFCC features and their first 

and second derivation, totalling 39 features in one frame. So 

feature map size is 39 ∗ F, where F is the number of frames. 

 
Figure 3: Feature map examples: (a) GFCC; (b) MFCC 

2.3.3. Classification setting. 

In our experiment, we consider a 3-convolution-layer 

CNN structure. Figure 4 is the designed structure of CNN. 

Conv denotes the convolution layer, and Fc represents the 

fully connected layer. The input is a 39 ∗ F ∗ 1 feature map. 

The last layer gives a classification score to five categories 

for each underwater signal set. 

 
Figure 4: CNN architecture 

3. Underwater classification 

In our experiments, we choose target depth, speed, and 

distance to classify for underwater target localization and 

tracking. Each situation has five classes. We will introduce 

five pulses (CW, LFM, ROW q=2, ROW q=8, ROW q=50) 

and three preprocessing methods (STFT, MFCC, GFCC). 

For each classification situation, we selected the average of 

the results of 10 CNN classifications as the final result for 

comparison. 

3.1. Target depth 

For the target depth, we chose the direction of motion 

to be 90 degrees because the target moves in a 90-degree 

direction with no change in depth, as shown in Figure 1. 

Other parameters, such as target speed and distance between 

receiver and target, are fixed. Figure 5 shows the 

classification results of 5 pulses under three different 

preprocessing methods for target depth.  

Figure 5: Target depth classification results. 



 

 

We can find from the figures that the GFCC method 

generally outperforms the other two methods when SNR=-

45dB to -25dB. When SNR is very low, the MFCC method 

also has better performance than the STFT method. However, 

as SNR increases, the MFCC method, on the other hand, 

produced the worst results due to the fact that the results of 

the MFCC were erratic and intermittently high and low over 

the ten classifications of each case, resulting in a lower mean 

value than the other two methods. Therefore, for target depth 

classification, GFCC is the best choice when the SNR is very 

low. However, the traditional STFT method has no 

advantages as the SNR increases, especially with ROW pulse 

signals. 

3.2. Distance between target and receiver 

For the distance between the target and receiver, we 

chose the direction of motion to be 0 degrees because the 

target moves in a 0-degree direction with no change in initial 

distance, as shown in Figure 1. Other parameters, such as 

speed and depth, are fixed. Figure 6 shows the classification 

results of 5 pulses under three different preprocessing 

methods for distance. 

The five pulses of GFCC are clearly superior at SNRs 

below -20dB, and MFCC has a slight advantage over STFT 

when SNR is very low. ROW pulse signals do not have an 

absolute advantage over other pulses. At low SNRs, the five 

pulses are similar due to the effectiveness of GFCC, and at 

higher SNRs, ROW pulse signals are more effective for 

GFCC and MFCC. This phenomenon also verifies the 

superiority of the GFCC method in underwater target 

localization. 

3.3. Target speed 

For the target speed, we chose the direction of motion 

to be 0 degrees because when the target moves at 0 degrees, 

the distance to the receiver does not change, as shown in 

Figure 1. Therefore, the Doppler effect due to the relative 

motion of the target does not exist. Since the Doppler effect 

is related to the velocity of the movement, other directions of 

movement can be classified by the Doppler effect. Without 

the Doppler effect, it would be difficult to classify the 

velocity of the target's motion, which in turn would validate 

the advantages of ROW pulses. Other parameters, such as 

speed and distance, are fixed. Figure 7 shows the 

classification results of 5 pulses under three different 

preprocessing methods for target speed. 

The GFCC method generally outperforms the other two 

methods in most SNR conditions. MFCC method performs 

poorly in almost all SNR conditions. The figures also 

illustrated that ROW pulse signals have a significant 

advantage over traditional pulses CW and LFM, especially 

when dilation factor q equals 8 and 50. When SNR increases, 

the STFT method achieves better performance than the 

GFCC method. Therefore, for a target moving speed 

classification, since we choose the motion degree 0 so that 

there is no Doppler effect to help classification, the GFCC 

method with ROW pulse signals is the optimal choice when 

the SNR is not very high. However, as the SNR increases, 

the traditional method of STFT still has advantages, 

especially combined with ROW pulse signals. 

Figure 6: Distance classification results. 



 

 

4. Conclusions 

The paper applied several feature extraction methods 

covering STFT, MFCC and GFCC. The extracted feature 

maps serve as the input of CNN. Traditional pulse signals of 

CW and LFM signals are compared with the ROW signals of 

different dilation factors to find more effective pulse signals 

for target localization in the underwater environment. The 

echo signals were simulated by a geometric acoustic ray 

tracing channel model under designated scenarios. 

Experiments show that the GFCC method has superiority 

over the other two feature extraction methods in most 

situations, especially when the SNR is very low and the 

underwater acoustic signals are severely distorted. For target 

speed classification, ROW pulse signals show their 

significant superiority over traditional pulses when there is 

no Doppler effect. A higher dilation factor leads to better 

performance. In future work, more experiments should be 

conducted in the direction of motion, and the classification 

of the target direction of movement can also be investigated 

under the same framework. The fusion of different features 

may achieve better system performance. 
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