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Abstract—The purpose of this paper is to apply the acoustic
features, Mel Frequency Cepstral Coefficient (MFCC) and Gam-
matone Frequency Cepstral Coefficient (GFCC), to underwater
signal classification. Underwater acoustic signals are vibration
signals, and their characteristics are similar to speech signals.
The auditory feature extraction method in speech recognition can
also be applied to the underwater environment. For underwater
communication, we simulate two models designed for underwater
target detection and localization. One is the deterministic model,
which is considered as basic model; the other is to combine
the deterministic model and statistic model, which is called
combined model. The geometric channel model facilitates the
generation of the database for different geometric settings.
The database is generated by adjusting the parameters of the
underwater environment. The classifier adopts a convolutional
neural network (CNN). The input to the CNN is the feature maps
after feature extraction. We choose continuous wavelet transform
(CWT) and short-time Fourier transform (STFT) for comparison.
Experiments show the effectiveness of the system architecture
and superiority of the proposed algorithm in underwater signal
classification and target localization.

Index Terms—Underwater communication, CNN, Mel Fre-
quency Cepstrum Coefficient (MFCC), Gammatone Frequency
Cepstral Coefficient (GFCC)

I. INTRODUCTION

Acoustic sensing in the marine environment is affected by
marine noise, sound velocity characteristics, seabed acoustic
characteristics and other distorting factors like multipath fad-
ing. The feature extraction of underwater acoustic signals has
developed rapidly in recent years, and the most prominent
one is the auditory feature extraction method based on speech
recognition. However, the performances of traditional methods
are not very suitable for various complex environments [1].

Inspired by the cepstral, Steven B. Davis found that the
human ear has a different sensitivity to different frequency

bands through the study of the characteristics of human audi-
tory perception and first proposed the Mel Frequency Cepstral
Coefficient (MFCC) theory [2]. MFCC has good recognition
ability and anti-noise characteristics in speech recognition and
has become the mainstream in speaker recognition applications
for a while. The Gammatone filter was first proposed by
Johanesma in [3]. It has achieved a satisfactory effect on
physiological data in auditory experiments, so it has been
widely used in many fields. The Gammatone filter has a simple
time-domain impulse response, from which a simple transfer
function can be derived, which is convenient for analyzing the
performance of the filter [4].

Underwater acoustic signals are vibration signals, and the
characteristics of it are similar to speech signals. The auditory
feature extraction method in speech signal processing can also
be applied to underwater acoustic signal processing. Brown
et al. theoretically demonstrated the feasibility of underwater
signal analysis using auditory perception [5]. Lu and his team
combined the research on auditory psychology-related theo-
ries, first used MFCC for ship target recognition, and achieved
good results [6]. Compared with the MFCC algorithm, the
GFCC algorithm used the Gammatone filter bank to have a
simple time-domain impulse. In response to this characteristic,
the signal is directly filtered in the time domain, so the GFCC
algorithm avoids the error caused by the spectrum estimation
in the MFCC algorithm [7]. Luo and Feng investigate an
underwater acoustic target recognition method based on target
radiated noise using GFCC and achieve better performance
than the traditional method [8].

In this paper, based on the ray theoretical model, two
used underwater acoustic channel models are established:
deterministic model and combined with statistic model. The



classifier adopts a convolutional neural network which has 3
convolutional layers with feature maps as the input. Feature
extraction uses continuous wavelet transform (CWT) , STFT,
MFCC and GFCC. The rest of this paper is organized as
follows: II introduce the database setting, feature extraction
methods and CNN settings. In III, classification results and
analysis are illustrated in charts and tables. IV is the conclu-
sion and future work.

II. METHODOLOGY

A. Datasets

For underwater communication, we simulate two models
for underwater target detection and localization. One is the
deterministic model, which is considered as basic model; the
other is to combine the deterministic model and statistic mod-
el, which is called combined model. The geometric channel
model facilitates the generation of the database for different
geometric settings. To generate underwater signal database, we
consider the following characteristics for each model:

(1) Ocean simulation: we use a ray-tracing model to simu-
late underwater acoustic channels. From Fig. 1, we consider 4
types of propagation paths from source S and receiver R with
different reflection groups: Top-Bottom (TB), Top-Bottom-Top
(TBT), Bottom-Top (BT) and Bottom-Top-Bottom (BTB). If
the propagation could not form a group, we set the number
of reflection groups as zero. Assume the source signal is
s(t) = Acos(ω ∗ t), the received signal at time can be
calculated as:

r(T ) =

4∑
j=1

N∑
i=1

(−1)i ∗A∗aj(i)∗∗cos(ω ∗ (t−dj(i))+pj(i))

(1)
Where T is the first time the receiver received the signal. N
denotes the number of the received signal of one reflection
group type, aj is the attenuation coefficients of th reflection
type with different numbers of reflection group, dj is the time
delay of th reflection type, and pj is the phase shift of th reflec-
tion type. There are two underwater communication models in
our experiment: the deterministic model, which is considered
a basic model; the other is to combine the deterministic and
statistic models, which is called the combined model.

Fig. 1. The refection chain of propagation paths

In an example reflection group in Fig. 2, H denotes the depth of
the ocean, Zs denotes the depth of source, Zr denotes the depth
of receiver, and L denotes the horizontal distance between
sound source and receiver. For simplicity, assume that the
sound beam propagates in an underwater area along a straight
line with the constant sound speed v. Also, we consider that
the sea bottom is a plane and ignore the scattering.

Length =
√
L2 + (Zs+H + (H − Zr)2) (2)

sinθ =
L

Length
(3)

delay time(dj) =
Length

v
(4)

Fig. 2. Example of one reflection group of TB

(2) Noise type: All the noise data are from [9], we choose
Cargo Ship, Croaker, Drum Fish, Humpback Whale, Ice Flow,
Rain Squall, Snorkeling Submarine, White Whale and AWGN
nine noise recordings with different SNR to generate the
database. One example of noise and its frequency response
is shown in Fig. 3.

Fig. 3. Time and frequency response of White Whale noise

(3) Classification settings: There are six signal classifica-
tions for signal frequency, ocean depth, source depth, receiver
depth, the horizontal distance between source and receiver,
and ocean bottom type, each with 5 classifications. Through
SNR = −5 : 5 : 40, 10 SNRs and 9 kinds of noise are
generated, and each situation generates 10*9 signals. The
database has 450 data, 315 for training and 135 for testing. For
signal frequency, which is abbreviated as f , we set the carrier
frequency is from 400 Hz to 2000 Hz with a step of 400 Hz.



Ocean depth, abbreviated as H , takes a value every 10 m from
40 m to 80 m. source depth and receiver depth are from 10 m
to 50 m with a step of 10 m, abbreviated as Zs and Zr. The
horizontal distance, which denotes L, takes a value from 1500
m to 3500 m. There are 5 types of ocean bottom: Clay-silt,
Sand-silt-clay, Silt, Sand-silt, and Coarse sand, which denote
as B1, B2, B3, B4, and B5. We consider the [0, 3s] window
for further processing for each signal. An example of the signal
is shown in Fig. 4. Neural Network structure is the same, but
each method is run 10 times to average accuracy for each
method. To investigate the relationship between accuracy and
SNR, we randomly chose several noise types and generated
1200 data for one SNR; 840 for training and 360 for testing.
SNR takes a value every 10dB from -10dB to 40dB, totally 6
values.

Fig. 4. An example of [0, 3s] observation window

B. Preprocessing Method

We consider several feature extraction methods to process
the one-dimension signals to two-dimensions feature maps as
the input of Neural Network. Traditional signal processing
techniques, continuous wavelet transform (CWT) and short-
time Fourier transform (STFT) are included. In addition,
two auditory-based feature extraction methods, Mel frequency
cepstral coefficient (MFCC) and its derivative methods, and
Gammatone frequency cepstral coefficient (GFCC) and its
derivative methods, which have been widely used in speech
classification and underwater acoustic target recognition, are
also investigated in our experiment.

1) MFCC: MFCC feature extraction consists of two key
steps: conversion to Mel frequencies, followed by cepstral
analysis. The Mel frequency is proposed based on the acoustic
characteristics of the human ear, and it has a nonlinear corre-
spondence with the Hz frequency. MFCC uses this relationship
between them to calculate the Hz spectral characteristics,
and MFCC has been widely used in speech recognition.
Equation (5) is the conversion calculation from frequency
to Mel frequencies [10]. Fig. 5 is the progress flowchart of
MFCC. Fig. 6 is an example of a Mel filter bank.

Mel = 2595 ∗ log10(1 +
f

700
) (5)

Fig. 5. MFCC flowchart

Fig. 6. Mel filter bank

Our experiment set 13 MFCC features and its first derivation
and second derivation, a totally 39 features in one frame. So
feature map size is 39 ∗F , where F is the number of frames.
Fig. 7 is examples of MFCC feature map as the input of Neural
Network with different ocean depth H . It is impossible to
classify which ocean depth classification it belongs to directly
from the picture. It can only be classified by inputing it into
the CNN.

(a)

(b)

Fig. 7. MFCC feature map: (a) H=80m, SNR=-10dB; (b) H=80, SNR=10dB

2) GFCC: The Gammatone filter was first proposed by
Johanesma in [3]. It is a signal processing structure that
mimics the human cochlea, and its performance theoretically
approaches the resolution of the best sonar, but discards
frequency components outside the hearing range [11]. The
impulse response in time domain of a Gammatone filter is
defined as [12]:



g(f, t) =

{
atn−1e−2πbtcos(2πft+ φ), t ≥ 0

0, else
(6)

where f is the centre frequency of the filter, t refers to time,
the constant a defines the output gain, n is the order of the
filter, b is related to filter bandwidth, and φ is the phase that is
usually set to zero. The bandwidth of each Gammatone filter
is the value of Equivalent Rectangular Bandwidth (ERB) and
each band are related to the human ear’s critical band. A Gam-
matone filter bank involves a set of Gammatone filters with
different center frequencies fc, and these center frequencies
are equally distributed on the ERB scale. The relation between
ERB scale and Hz is defined as:

E = 21.4log10(1 +
4.37f

1000
) (7)

Fig. 8 is the frequency response of a Gammatone filter bank.
Fig. 9 is the flowchart of GFCC progress.

Fig. 8. Gammatone filter bank

Fig. 9. GFCC flowchart

Our experiment also set 13 GFCC features and their first
derivation and second derivation, a totally 39 features in one
frame. So feature map size is 39 ∗ F , where F is the number
of frames. Fig. 10 is one example of a GFCC feature map as
the input of Neural Network.

(a)

(b)

Fig. 10. GFCC feature map: (a) H=80m, SNR=-10dB; (b) H=80, SNR=10dB

3) STFT: STFT use the same window size, overlap sam-
ples and FFT numbers as MFCC and GFCC to obtain the
same feature map size. Fig. 11 is the feature map of STFT
with different SNR. Since now it is a narrow band signal,
SFTF features have obvious characteristics at the position of
carrier frequency set before. Scatters will happen around the
distinctive characteristics when adding noises with different
SNR, especially when SNR = −10dB in Fig. 11(a).

(a)

(b)

Fig. 11. STFT feature map: (a) H=80m, SNR=-10dB; (b) H=80, SNR=10dB

4) CWT: Currently, we use simple CWT with MATLAB
function and apply analytic Morse wavelet. To compare with
other processing methods, we will resize the CWT feature
map to 39 ∗ F . Fig. 12 is the feature map of CWT. Like
STFT features extraction, CWT features also have obvious
characteristics at the carrier frequency position especially
when SNR = 10dB in Fig. 12(b). In Fig. 12(a), the signal
characteristic is hard to find. Because we resize the feature
map, the position is a little different from the STFT feature
map in Fig. 11.

(a)

(b)

Fig. 12. CWT feature map: (a) H=80m, SNR=-10dB; (b) H=80, SNR=10dB

C. Convolutional Neural Network

In our experiment, we consider a 3-convolution-layer CNN
structure. Fig. 13 is the structure of CNN. Conv is the con-
volution layer, and Fc is the fully connected layer. The input



is 39 ∗ F ∗ 1 feature map. The last layer gives a classification
score to 5 categories for each underwater signals settings.

Fig. 13. CNN archtecture

III. UNDERWATER SIGNAL CLASSIFICATION

A. Basic model

The final classification results of the basic underwater model
are shown in Table I. For frequency and horizontal length,
each processing method all achieve good results. For the
depth of ocean, source and receiver, GFCC achieves the
best accuracy, and CWT achieves the lowest accuracy. Its
because wavelet transform needs to choose a suitable wavelet
and proper decomposition level. Fig. 14 is the bar chart of
accuracies. Frequency and horizontal length classifications
have the best performance with each feature extraction method.
The accuracy of feature maps with GFCC features is highest
so that it is more suitable for underwater target classification.

TABLE I
CNN ACCURACY FOR UNDERWATER BASIC MODEL

Accuracy(%) CWT STFT MFCC GFCC
Frequency 97.484 99.038 99.186 97.854
Ocean depth 36.445 79.408 84.517 87.186
Source depth 44.074 74.962 78.815 82.812
Recerver depth 53.48 77.408 68.741 85.037
Horizontal length 100 100 100 100
Bottom type 67.483 69.777 63.481 79.481

Fig. 14. Bar chart of accuracies of bascic model

TABLE II
CNN ACCURACY FOR UNDERWATER BASIC MODEL WITH DIFFERENT SNR

Acc(%) SNR f H Zs Zr L B

CWT

-10 100 43.667 44.137 39.918 100 41.917
0 99.748 43.192 47.055 51.084 100 70.332
10 99.553 54.473 63.362 68.527 100 80.724
20 99.888 91.611 97.778 97.277 100 80.721
30 100 98.387 99.331 99.916 100 95.5
40 100 98.749 100 100 100 97.722

STFT

-10 99.055 44.694 46.141 42.583 100 52.333
0 100 61.304 62 54.722 100 71.89
10 99.972 94.333 96.501 95.39 100 76.611
20 100 99.916 100 100 100 75.999
30 100 100 99.972 100 100 87.75
40 100 100 100 100 100 91.055

MFCC

-10 99.666 58.306 77.25 66.472 100 30.277
0 99.917 71.332 72.639 71.196 100 45.636
10 100 90.889 81.111 94.334 100 68.001
20 100 99.944 94.583 99.972 100 96.499
30 100 100 96.416 100 100 100
40 100 100 98.001 100 100 100

GFCC

-10 92.862 79.222 74.83 75.722 100 42.971
0 98.806 88.861 74.20 79.305 100 40.917
10 99.832 84.502 88.807 86.806 100 49.111
20 100 96.831 97.722 91.831 100 52.862
30 100 99.861 96.222 99.806 100 81.006
40 100 99.167 97.194 98.25 100 91.083

Table II is the accuracies in different SNR. Signal frequency
is abbreviated as f . Ocean depth is abbreviated as H . Source
depth and receiver depth are abbreviated as Zs and Zr.
Horizontal distance denotes as L. Ocean bottom type denotes
as B. Obviously, higher SNR has better classification accuracy.
Fig. 15 are the line charts of each feature extraction method.
GFCC and MFCC achieve better classification performance
in lower SNR situations than other methods; GFCC is better
than MFCC. When SNR reaches about 30dB, the classification
performances are similar. When the signals are significantly
disturbed by noise (SNR=-10dB and 0dB), the four feature
extraction methods have no significant difference in the basic
model for the signal frequency and the horizontal distance
between the source and the receiver. However, for ocean depth,
source depth, receiver depth and bottom type, MFCC and
GFCC can still achieve good classification results, about 80%.
Severely corrupted signals are best to use GFCC and MFCC
feature extraction methods to classify.

B. Combined model

Tabel III is the accuracy for the underwater combined
model. All of them achieve good classification performances.
Fig. 17 is the bar chart of accuracies. The classification results
are better than the basic model. Every methods’ accuracy
achieves more than 90%. GFCC achieves the best classification
performance as the basic model. However, STFT features have
excellent performance when classifying ocean bottom type and
ocean depth (H).



(a) (b)

(c) (d)

Fig. 15. Line chart of each method with different SNR: (a) CWT; (b) STFT (c) MFCC; (d) GFCC

(a) (b)

(c) (d)

Fig. 16. Line chart of each method with different SNR: (a) CWT; (b) STFT (c) MFCC; (d) GFCC



TABLE III
CNN ACCURACY FOR UNDERWATER COMBINED MODEL

Accuracy(%) CWT STFT MFCC GFCC
Frequency 96.744 99.408 97.928 98.964
Ocean depth 98.742 99.852 98.742 99.186
Source depth 99.89 100 99.408 98.742
Recerver depth 97.41 98.89 99.408 99.038
Horizontal length 100 98.594 100 100
Bottom type 98.816 99.556 98.964 99.26

Fig. 17. Bar chart of accuracies of combined model

TABLE IV
CNN ACCURACY FOR UNDERWATER COMBINED MODEL WITH DIFFERENT

SNR

Acc(%) SNR f H Zs Zr L B

CWT

-10 84.222 86.305 87.472 86.25 88.75 87.528
0 99.637 99.473 99.693 99.86 99.776 99.832
10 100 100 100 100 100 99.472
20 100 100 100 100 100 100
30 100 100 100 100 100 100
40 100 100 100 100 100 100

STFT

-10 86.306 85.585 87.75 83.805 86.612 85.028
0 99.916 99.58 100 99.972 99.944 99.72
10 100 99.972 100 100 100 100
20 100 100 100 100 100 100
30 100 100 100 100 100 100
40 100 100 100 100 100 100

MFCC

-10 80.498 81.444 79.583 83.083 88.446 96.499
0 99.278 99.666 99.498 99.888 99.832 99.693
10 100 99.944 100 99.916 99.972 100
20 100 100 100 100 100 100
30 100 100 100 100 100 100
40 100 100 100 100 100 100

GFCC

-10 18.307 78.305 18.22 19.504 89.112 97.332
0 98.583 99.527 99.22 99.332 100 98.028
10 100 100 100 100 100 100
20 100 100 100 100 100 100
30 100 100 100 100 100 100
40 100 100 100 100 100 100

Also, Table IV is the accuracies in different SNR. Obvious-
ly, higher SNR has better classification accuracy. Fig. 16 is the
line chart of each method. If signals are not severely distorted,
each feature extraction method could perform well. Even at S-
NR = -10 or 0dB, GFCC and MFCC have no advantage except
bottom type classification. The simulation model combined

with the statistic model has better classification performance
than the statistic model. MFCC features’ performance is more
stable in noisy signals than GFCC.

IV. CONCLUSION AND FUTURE WORK

In this paper, a deterministic underwater model and the
model combined with the statistic model are simulated to
generate underwater acoustic signals database. The geometric
channel model facilitates the generation of the database for
different geometric settings. Then we compared several feature
extraction methods to construct the input of CNN. Experiment
results verify that GFCC and MFCC feature extraction meth-
ods are more suitable for underwater signals classifications, e-
specially severely disturbed signals with lower SNR scenarios.
GFCC method could even achieve higher accuracies. When the
signals are significantly disturbed by noise (SNR=-10dB and
0dB), the four feature extraction methods have no significant
difference in the basic model for the signal frequency and the
horizontal distance between the source and the receiver. How-
ever, for ocean depth, source depth, receiver depth and bottom
type, MFCC and GFCC can still achieve good classification
results, about 80%. Severely corrupted signals are best to use
GFCC and MFCC feature extraction methods to classify. On
the combined model, all four feature extraction methods have
good results, and for severly disturbed signals, GFCC and
MFCC have no advantage. The simulation model combined
with the statistic model has better classification performance
than the statistic model. In the future, more suitable feature
extraction methods will be explored through different wavelet
filters and different decomposition layers. Similar to MFCC
and GFCC filter bank, wavelet filter bank could also be applied
to extract wavelet features.
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