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Abstract—This work presents exact and approximated expres-
sions for the outage probability and average error performance of
modulation schemes under η-µ and κ-µ fading channels. Under
physical fading models the analytical results can be expressed in
terms of elementary functions of the relevant parameters, which
not only leads to more tractable expressions but also more efficient
numerical evaluations. Simple asymptotic approximations are de-
rived as well. While exact results are given in infinite series forms,
a convergence analysis demonstrates that truncated versions of
the series with very few terms can achieve the desired level of
accuracy. The comparison with simulation results demonstrates
the correctness of the exact theoretic expressions as well as the
accuracy of their approximated forms.
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I. INTRODUCTION

The η-µ and κ-µ distributions [1] have become popular
models for small-scale fading under various non-line-of-sight
and line-of-sight conditions, respectively. These models have
been proven to fit experimental data more accurately than
other fading models such as one-sided Gaussian, Rayleigh,
Nakagami-m, Nakagami-q (Hoyt) and Nakagami-n (Rice) [2],
which can be obtained as particular cases of these distribu-
tions. While some expressions are known in the literature for
the outage probability and average error rate of modulation
schemes under η-µ and κ-µ fading channels, the existing
theoretical results are valid for particular classes of modulation
formats and/or based on complicated functions that are difficult
to manipulate in analytical studies and lead to inefficient
numerical evaluations.

In [3], expressions are provided for the moment generating
function (MGF) and average error rate of some binary coherent
modulations, which are given in the form of infinite series of
Meijer’s G-functions [4, eq. (9.301)]. While a simpler form
for the MGF based on elementary functions is provided in
[5], it cannot be easily manipulated analytically owing to its
algebraic form, thus requiring the numerical evaluation of the
average error performance [5, eq. (10)]. Exact expressions are
provided in [6] for the average of the Gaussian Q-function
and the average of the product of two Gaussian Q-functions
over η-µ and κ-µ distributions, which are frequently found in
the evaluation of the average error performance of modulation
schemes under fading channels. The results are given in

terms of Appell’s hypergeometric [6, eq. (12)] and confluent
hypergeometric [6, eq. (14)] functions of two variables and
their Lauricella’s counterparts of three variables [6, eqs. (19)
and (21)]. A general expression for the outage probability
under η-µ fading channels is provided in [7] in terms of a
Lauricella’s confluent hypergeometric function of two vari-
ables [4, eq. (9.261.2)], which under physical fading models
can be expressed as a series of first-order Marcum Q-functions
[2, eq. (4.33)], modified Bessel functions of the first kind [4,
eq. (8.431)] and Jacobi polynomials [4, eq. (8.960.1)]. Some
other related studies have evaluated analytically the outage
probability under η-µ and/or κ-µ fading channels considering
more specific scenarios with diversity combining techniques,
background noise and interference with different combination
of fading models in the interfered and interfering links [8–11].
However, the results given are typically expressed in terms of
equally complex functions.

As it can be observed from the discussion above, the theo-
retical results known in the literature are based on complicated
functions that are difficult to manipulate in analytical studies
and usually lead to inefficient numerical evaluations.

In this context, this work derives new expressions that can
readily be employed in the evaluation of the outage probability
and error performance of a broad range of modulation formats
under η-µ and κ-µ fading channels. Moreover, it is shown that
under physical models the exact results can be expressed in
terms of elementary functions, which are well suited for both
analytical manipulations and efficient numerical evaluations.

The rest of the paper is organised as follows. First, Section
II provides novel analytical results for the outage probability
under η-µ and κ-µ fading channels. The counterpart results
for the average probability of error are provided in Section
III. The validity of the exact analytical results along with the
accuracy of the proposed approximated forms is demonstrated
with some numerical results in Section IV. Finally, Section V
summarises and concludes the paper.

II. OUTAGE PROBABILITY

The probability of outage, Pout, defined as the probability
that the instantaneous signal-to-noise ratio (SNR) per symbol,
γ, falls below a specified SNR threshold, γth, is here obtained
by evaluating:



Pout = P (γ ≤ γth) =

∫ γth

0

fγ(γ)dγ (1)

where fγ(γ) is the probability density function (PDF) of the
instantaneous SNR per symbol. Analytically tractable expres-
sions in terms of elementary (power and exponential) functions
are derived in this section for η-µ and κ-µ fading channels.

A. Outage Probability under η-µ Fading

Under η-µ fading the instantaneous SNR per symbol, γ, is
distributed according to [1, eq. (26)]:
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where γ is the average SNR per symbol, η and µ are the fading
parameters, h and H are functions of η (see [1] for details),
Γ(·) is the gamma function [4, eq. (8.310.1)], and Iν(·) is
the νth-order modified Bessel function of the first kind [4,
eq. (8.431)]. Since µ represents half the number of multipath
clusters, 2µ takes integer values in physical fading models.
Taking this into account, introducing [4, eq. (8.445)] into (2)
and integrating between zero and γth with the aid of [4, eq.
(3.351.1)] leads to the following results:
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The more compact expression of (3), which depends on the
lower incomplete gamma function γ(·, ·) [4, eq. (8.350.1)],
is more suitable for numerical evaluations while (4), which
only depends on elementary (power and exponential) terms
of γth/γ, provides a more tractable expression suitable for
analytical manipulations. Interestingly, the result in (3) is valid
for any arbitrary value of µ (including non-integer values of
2µ). Notice that both results also represent the SNR CDF.

As mentioned in Section I, the result given in [7] for the
outage probability under η-µ physical fading models is a series
of first-order Marcum Q-functions [2, eq. (4.33)], modified
Bessel functions of the first kind [4, eq. (8.431)] and Jacobi
polynomials [4, eq. (8.960.1)]. The expressions in (3)-(4) also
provide exact results with much simpler forms.

B. Outage Probability under κ-µ Fading

Under κ-µ fading the instantaneous SNR per symbol, γ, is
distributed according to [1, eq. (10)]:
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where κ and µ are the fading parameters (see [1] for details).
Taking into account that µ represents the number of multipath
clusters (i.e., it takes integer values in physical fading models)
and following the same procedure as in Section II-A, the
following results for the outage probability are obtained:
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The comments made for (3)-(4) are also applicable to (6)-
(7). To the best of the author’s knowledge, no comparable
results are known in the literature.

III. AVERAGE ERROR PROBABILITY

The conditional bit and symbol error probability of modu-
lation schemes frequently involves terms of the form Q(α

√
γ),

where:
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1√
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is the Gaussian Q-function and α is a constant that depends on
the particular combination of modulation format and detection
method [2]. As a result, obtaining the average error probability
under fading requires the evaluation of integrals of the form
[2, eq. (5.1)]:

I =

∫

∞

0

Q(α
√
γ)fγ(γ)dγ =

∫

∞

0

erfc

(

αz√
2

)

fγ
(

z2
)

zdz

(9)

where the right-hand side of (9) is obtained for convenience
by applying the change of variable γ = z2 and employing the
relation:
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where



erfc(x) =
2√
π

∫

∞

x

e−t2dt (11)

is the complementary Gaussian error function. Exact solutions
to (9) and asymptotic approximations in terms of elementary
functions are derived in the following sections.

A. Average Error under η-µ Fading

Introducing [4, eq. (8.445)] and (2) into (9), the resulting
integral can be solved with the aid of [12, eq. (4.3.9)] to yield:
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where 2F1(·, ·; ·; ·) is the Gauss hypergeometric function [4,
eqs. (9.11)]. Taking into account that 2µ takes integer values
in physical fading models, a more tractable expression in terms
of elementary (power) functions of γ can be obtained by
introducing (21) from the Appendix into (12), which yields:
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where (x)n = Γ(x + n)/Γ(x) is the Pochhammer symbol.
Notice that (13) is given in terms of elementary functions of γ
and therefore not only provides a more tractable algebraic form
but also a significantly more efficient numerical evaluation than
the known results in terms of hypergeometric functions.

A simple asymptotic approximation under high SNR con-
ditions (γ → ∞) can be obtained by taking the first term (i.e.,
k = 0) of the sum in (12) and noting that 2F1(a, b; c; 0) = 1:
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which provides a tractable form and a simple relation between
the involved parameters and the resulting error performance.

B. Average Error under κ-µ Fading

Introducing [4, eq. (8.445)] and (5) into (9), the resulting
integral can be solved with the aid of [12, eq. (4.3.9)] to yield:
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A more convenient expression in terms of elementary
functions of γ can be obtained based on (21) as follows:
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The asymptotic approximation for high SNR is given by:
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which is a simple power function of γ.

IV. NUMERICAL RESULTS

The theoretical expressions derived analytically in this
paper were evaluated numerically and compared (for validation
purposes) with results obtained from Monte Carlo simulations.
To obtain the simulation results, a sufficiently large number
of random SNR values were generated according to the SNR
distribution of the considered fading channel. Then, for each
SNR value: 1) an outage decision was made by comparing
the SNR value with the SNR threshold γth, and 2) an error
decision was made by comparing a random number uniformly
distributed in the interval [0, 1] with the instantaneous prob-
ability of error given by Q(α

√
γ). The resulting vectors of

outage and error binary decisions were used to compute the
average outage and error probabilities, respectively.

Figs. 1 and 2 compare the exact expressions for the
outage [(4) and (7)] and average error [(13) and (16)] prob-
abilities (considering a sufficiently large number of terms in
the truncated series) with results obtained from Monte Carlo
simulations. As it can be appreciated, there are no differences
between analytical and simulation results, which corroborates
the correctness of the obtained theoretical expressions. Note
the higher error rates in Fig. 2 for lower values of α, which
are due to the inversely proportional relation between α and
the modulation order of M -ary modulations (i.e., higher-order
modulations, which are less robust against radio propagation
errors, are characterised by lower values of α [2]). This results
in a certain SNR penalty (e.g., ≈13 dB in the case of Fig. 2).
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Fig. 1. Outage probability as a function of the average SNR (γth ∼ 10 dB).
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Fig. 2. Error performance integral I as a function of the average SNR.

Fig. 2 also illustrates the asymptotic approximations in (14)
and (17). Notice that only selected cases are shown for the
sake of clarity (the same trend was observed in all cases). As it
can be observed, these asymptotic approximations provide very
accurate results in the region of high SNR (i.e., the SNR region
of interest in the design of wireless communication systems).
The level of accuracy provided by these approximations along
with their analytical tractability make of these expressions
useful tools that can be employed to obtain simple yet accurate
estimations of the performance of a broad range of modulation
formats under practical operation conditions.

Figs. 3 and 4 illustrate the convergence rate of the exact
theoretical expressions in terms of the maximum relative error
as a function of the value of k (i.e., number of terms considered
in the truncated versions of the infinite series minus one).
As appreciated, the relative error quickly decreases as the
number of terms employed in the truncated series increases,
indicating that the evaluation of just a few terms is sufficient
to provide accurate numerical results. It is interesting to note
the existence of a lower bound in the relative error, which
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Fig. 3. Relative error of Pout as a function of k (γth ∼ 10 dB).
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Fig. 4. Relative error of I as a function of k (α = 1).

is due to the finite precision of the employed computer. It is
also worth mentioning that the relative errors shown in Figs.
3 and 4 correspond to the maximum relative error observed
over the whole range of SNR values. This maximum error
usually occurs in the region of low SNR. At higher SNR
values, which is the typical region of operation targeted by
wireless communication systems, the actual relative error is
lower than the values shown in Figs. 3 and 4. These relative
errors represent the worst-case (i.e., low SNR) relative errors.

Tables I and II show the minimum number of terms
required in the truncated series for the outage probability and
the error performance integral I, respectively, to guarantee a
relative error no greater than 1%. As observed, only a few
terms are sufficient to provide accurate (virtually exact) results.

Tables III and IV show the average time of computation
required with the obtained analytical expressions to produce
numerical results with a maximum relative error of 1% (based
on the number of terms shown in Tables I and II). These results
were obtained with an average general purpose computer (Intel
Core i3-3220 CPU at 3.30 GHz with 8 GB of DDR3 SDRAM



TABLE I. NUMBER OF TERMS IN (4) & (7) FOR 1% MAXIMUM

RELATIVE ERROR.

η κ

0.2 0.5 0.8 0.5 1.5 2.5

µ = 1 2 4 11 4 6 8

µ = 2 2 5 15 5 9 12

µ = 3 2 6 18 6 11 16

TABLE II. NUMBER OF TERMS IN (13) & (16) FOR 1% MAXIMUM

RELATIVE ERROR.

η κ

0.2 0.5 0.8 0.5 1.5 2.5

µ = 1 2 3 9 3 6 7

µ = 2 2 5 14 5 8 12

µ = 3 2 5 17 6 11 15

TABLE III. AVERAGE COMPUTATION TIME (MS) REQUIRED TO

EVALUATE (4) & (7) TO 1% MAXIMUM RELATIVE ERROR.

η κ

0.2 0.5 0.8 0.5 1.5 2.5

µ = 1 4.2 6.9 17.0 4.8 6.8 8.8

µ = 2 4.2 8.4 23.3 5.9 10.0 12.8

µ = 3 4.2 9.9 27.5 7.0 11.9 16.9

TABLE IV. AVERAGE COMPUTATION TIME (MS) REQUIRED TO

EVALUATE (13) & (16) TO 1% MAXIMUM RELATIVE ERROR.

η κ

0.2 0.5 0.8 0.5 1.5 2.5

µ = 1 5.1 6.9 22.7 5.7 11.0 12.7

µ = 2 5.5 12.8 43.9 9.6 15.8 25.3

µ = 3 6.1 13.8 61.3 12.3 23.7 34.5

at 1600 MHz) by averaging the computation times observed
in a set of 1000 evaluations of the corresponding analytical
expressions. As it can be appreciated, the analytical results ob-
tained in this work, which are based on elementary (power and
exponential) functions, are computationally efficient and lead
to an almost instantaneous evaluation in all cases. Note that the
evaluation of other results in the existing literature, which are
based on hypergeometric or other complex functions, would
in general require significantly longer computation times (de-
pending on the particular value of the parameters), which can
be typically in the order of up to several seconds.

V. CONCLUSIONS

This work has introduced a set of novel exact and ap-
proximated expressions for the outage probability and av-
erage error performance of modulation schemes under η-µ
and κ-µ fading channels, which have been given in terms
of elementary functions. Owing to the algebraic simplicity
of elementary functions, the presented expressions are well
suited not only for analytical manipulations but also efficient
numerical evaluations. The comparison with simulation results
has corroborated the correctness of the obtained exact results as
well as the accuracy of their approximated forms. The provided
expressions can be used in a large range of scenarios, including
cases not covered by previous known results.

APPENDIX

A GAUSS HYPERGEOMETRIC FUNCTION

IN TERMS OF ELEMENTARY FUNCTIONS

This appendix expresses the Gauss hypergeometric func-
tion 2F1(n, n + 1

2 ;n + 1;x), where n ∈ N, in terms of
elementary functions. The Gauss hypergeometric function is
commonly defined as an infinite series given by [4, eq.
(9.14.1)]:
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∞
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where (x)n = Γ(x+n)/Γ(x) is the Pochhammer symbol. The
definition in (18) is valid for |x| < 1 (i.e., the convergence
region of the series). Outside such interval, the function can
be defined as the analytic continuation of the sum with respect
to x, with the parameters a, b, c held fixed, which yields:
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Using [4, eq. (9.131.1.3)], the function of interest becomes:
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1
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1
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Introducing (19) into (20) the following simpler expression
is obtained after some algebraic manipulations:
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Since (1−n)j is zero for j > n−1 the infinite sum can be
truncated, thus leading to the convenient form in (21) which
has a finite number of terms based on elementary functions.
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