
LSTM Autoencoder aided Estimation of Primary
Activity Statistics under Imperfect Sensing

Bhargav Patel∗, Dhaval K. Patel∗, Brijesh Soni∗, Miguel López-Benı́tez†‡, Sagar Kavaiya∗
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Abstract—Primary activity statistics contribute (PAS) signif-
icantly in increasing the efficiency of the dynamic spectrum
access/cognitive radio system. PAS can be estimated from the
spectrum sensing observations. To achieve a precise estimation
of PAS, accurate spectrum sensing is required. However, it
is difficult to maintain perfect spectrum sensing in a realistic
scenario because of various hardware and sensing errors (false
alarms and miss detections). In this work, Long-Short Term
Memory autoencoder based deep learning framework is proposed
to detect the sensing errors in imperfect spectrum sensing
scenarios. Moreover, to correct the sensing errors, we propose
a simple single iteration reconstruction algorithm and further
estimate the PAS. The error in the estimated PAS is quantified
through the Kolmogorov Smirnov distance. Finding suggests that
relative error of estimated mean decreases from 80% to 9%. The
proposed framework doesn’t require any prior knowledge of PU
activity statistics to achieve this performance making it feasible
in realistic scenarios.

Index Terms—LSTM autoencoder, Primary activity statistics,
Reconstruction algorithms, Dynamic spectrum access, Imperfect
spectrum sensing.

I. INTRODUCTION

W ITH the tremendous growth in wireless technology,

IoT devices, and the emergence of 5G communication,

the scarcity of wireless spectrum has arisen [1]. As per the

survey carried out in [2], the overall utilization of spectrum

resources ranges from 7% to 34%, leaving 66% unused.

Dynamic Spectrum Access (DSA) based on Cognitive Radio

(CR) technology is a promising solution for spectrum scarcity.

DSA/CR systems exploit idle periods (spectrum holes) of the

primary channel and allocate it to the secondary (unlicensed)

users (SUs) without any interference to the primary users

(PUs) [3]. This sensing decisions can be used to estimate a

broad range of statistical information which is very useful to

enhance spectrum utilization. To estimate accurate statistics,

perfect spectrum sensing (PSS) scenario is needed which

assumes a sufficiently high signal to noise ratio (SNR) but in

realistic condition imperfect spectrum sensing (ISS) take place.

ISS leads to the inaccurate observation of idle/busy periods

causing erroneous estimation of statistics. Several attempts

have been made to reconstruct the estimated idle/busy periods

from the observation duration under ISS.

A detailed simulation-based study of ISS, its effect on the

estimation of Primary activity statistics (PAS), and various

reconstruction algorithms (RAs) are provided in [4] which

were improved in [5]. Following this work, [6] provides a

set of closed-form expressions, and a set of novel estimators

to accurately estimate the PAS. Above mentioned algorithms

assume perfect knowledge of the minimum periods for which

PU is active, which in the realistic scenarios may be unknown

to the DSA/CR system. This issue is addressed in [7], in

which RA depends on the mean of idle/busy periods which

is calculated using the mean estimator proposed in [8].

To acquire accurate results of spectrum sensing at low SNR

is a challenging task for conventional methods. The emergence

of Deep Learning (DL) in recent years has impacted many

areas in the industry as well as academia and has shown great

improvement compared to conventional methods. In [9] and

[10], artificial neural network-based hybrid spectrum sensing

framework is proposed which outperforms the conventional

method of spectrum sensing. Following this work, in [11]

Long-Short Term Memory (LSTM) and in [12], LSTM along

with PAS are considered for spectrum sensing. Authors of

[13] and [14] proposed a convolutional neural network (CNN)

based approch for spectrum sensing which outperform model-

based algorithms. A more complex model, namely as CNN-

LSTM architecture is consider in [15] and [16] for effective

spectrum sensing. In [17], detailed work on the feasibility of

using DL for pro-active spectrum prediction is investigated.

LSTM models are very effective in modeling the sequential

data and finding in [18] suggests that spectrum occupancy

data is in a sequential format. In this context, we exploit the

capability of LSTM network to model the sequential data with

the generative capability of autoencoder and propose a novel

Long-Short Term Memory Autoencoder (LSTM-AE) based

framework to detect sensing errors in sequential data and a

simple single iteration RA to reconstruct the idle/busy period

observed under ISS and estimated the PAS from reconstructed

data, which to the best of the author’s knowledge is new

in the existing literature. This approach doesn’t require any

prior knowledge of statistics making it practically feasible with

significant improvement in the estimation of PAS. The major

contributions of the paper can be summarised as:

• Firstly, to model the spectrum occupancy data and learn

the representation of the input, a novel deep learning

based LSTM-AE framework is proposed. Model learns

the latent representation of the original data which con-

tains the features such as trend and cyclicity of the input

data and use the learned representation of true data to

detect the sensing error in the data observed under ISS.

• Secondly, to make the proposed error detection model

robust and unbiased towards different sensing time (Ts),

training data is prepared to include data at various sensing

periods. This ensure that the error detection does not
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Fig. 1: Estimation of period duration from spectrum sensing
decisions: (a) Perfect sensing, (b) Imperfect sensing.

deteriorate for different sensing time.

• Thirdly, a simple RA is proposed to correct the sensing

errors detected by LSTM model in a single iteration.

• Morever, the proposed LSTM model and RA is validated

on the prepared dataset with different duty cycle (Ψ),

i.e., Ψ = 0.5 & Ψ = 0.8 and a comparison is provided

to quantify the accuracy gain in calculation of PAS using

the proposed method.

II. SYSTEM MODEL

Fig. 1 describes the occupancy pattern of a single PU. It

consists of idle/busy periods sequence represented as Ti (i = 0
represents idle and i = 1 represents busy). The duration of the

idle and busy periods (Ti) is modeled to follow Generalized

Pareto (GP) distribution as per [19]. DSA/CR system will

perform spectrum sensing by observing the primary channel

at a particular time duration known as sensing period Ts.

After every spectrum sensing event, a binary decision is made

based on various parameters of the channel depending on

the spectrum sensing algorithms. A decision can either be

H0 which represents the idle state or H1 which represents

a busy state. Idle/busy duration can be estimated from the

generated sequence. When a channel changes its state from

idle to busy or vise-versa, the time interval T̂i is calculated

from last change which represents the estimation of the real Ti

as described in Fig. 1(a) under PSS scenario but this scenario

is not feasible in practice as errors are likely to occur. These

errors can be classified as false alarm (Pfa,idle state consider

as busy) and miss detection (Pmd, busy state consider as idle)

as shown in Fig. 1(b). T̆i represents the estimation of channel

occupancy duration under ISS scenario as shown in Fig. 1(b)

in which the impact of false alarm and miss detection is

illustrated. These sensing errors are modeled as independent

and identically distributed (I.I.D) random variables for each

sensing event with a fixed probability of false alarm and the

probability of miss detection. Here, Pfa & Pmd are assumed

to be constant with the value of 0.1.

The reliability of data is an integral part of any DL al-

gorithm. Steps to generate data (Ti, T̂i, & T̆i) are similar to

[4]. Here, Ti, T̂i, & T̆i represents value of duration for which
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Fig. 2: LSTM autoencoder model architecture

PU was active actually, under PSS and under ISS condition

respectively.

III. PROPOSED DATA RECONSTRUCTION FRAMEWORK

LSTM-AE architecture is used to learn the representation

of spectrum occupancy data under PSS condition and then

sensing errors are detected in spectrum occupancy data under

ISS condition. Detected errors are reconstructed using a simple

RA.

A. Long-Short Term Memory Autoencoder

An autoencoder is a type of neural network which is trained

to reproduce its input to its output [20]. In this paper, LSTM-

AE is used because LSTM networks are designed to handle

the sequential data and autoencoder architecture can learn the

latent representation of the given data. Both together makes a

state-of-the-art DL model that can learn the representation of

sequential data. The internal structure of the LSTM unit can

be found in [12].

LSTM-AE is typically trained in a way that DL model

tries to recreate the input. As shown in Fig. 2, LSTM-AE is

designed in a way that makes the recreation of data challenging

by creating a bottleneck structure in the middle. In LSTM-AE

architecture, first the encoder LSTM model reads the entire

input sequence. After reading the whole input sequence, model

represents an internal learned representation of the entire input

sequence as a fixed-length vector. The fixed-length vector

works as an input of the decoder model that interprets it as

each step in the output sequence is generated. Fig. 2 describes

the details of LSTM architecture.

B. Network Training

The training is implemented in python 3 using Keras API

with Tensorflow [21] as backend. Data captured under PSS

condition with total of 560,000 samples is splitted into 90/10

ratio as training and validation data keeping the duty cycle fix.

PSS data is converted into LSTM input format i.e. [batch size,
time step, features] with the time step (look-back factor)

equals to 3. The model is built with iterative experiments

and the final hyperparameters are given in the table III-B.

Early stopping is used to halt the training procedure when

validation loss become stable which works as a regularizer to

avoid overfitting. It can be easily observed from the training

and validation loss curves of Fig. 3 that model is perfectly fit.
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Fig. 3: Training loss and Validation loss for Ψ=0.8 and Ψ=0.5

Hyperparameters Value

Initial learning rate 0.001

Batch size 32

Time step 3

Max epochs 15

Number of hidden layers 4

Optimization algorithm Adam

Activation Function ReLU

Loss Function Mean Absolute Error

C. Sensing Error Detection

Error detection is a task of detecting outlier samples in

the data. Firstly, the model is trained with the data generated

under PSS condition. Then threshold is decided on the basis

of distribution of mean absolute error (MAE) obtained from

making predictions on training data and then calculating MAE

by comparing with ground truth values. ISS data is given as an

input to the model, as the model has learned the representation

of PSS data, it will try to map the ISS data to PSS data. The

output of model is compared with the original ISS data and

MAE is calculated. After this, MAE of every ISS data sample

is compared with threshold and the sample which has MAE

higher than threshold is labeled as sensing error.

D. Proposed Reconstruction Algorithm

After detecting sensing errors in T̆i, indexes of error samples

are extracted and provided to the RA described as Algorithm-

1. Whenever a sensing error is detected due to false alarm

or miss detection, it divides a single idle period into 3

periods, similarly, if K sensing error are detected in a single

duration then, that one instance will be divided into 2K + 1
segment. Summing up this segment with the assumption that

detected error is at the center point is one way to reconstruct

the distorted distribution. The value of K has a significant

impact on reconstructing the data as it decides the amount of

surrounded values to sum up. Fixing the value of K is still

a trial and error approach to get the optimal results. After

correcting detected sensing errors, the method given in [4] is

used to estimate the PAS and perform the analysis.

Algorithm 1: Proposed Reconstruction Algorithm

Initialize: T̃i = [ ] ; � Empty list
Output: The reconstructed periods (T̃i)
Input: The estimated periods under ISS (T̆i),

MAE loss threshold (Threshold)
Trained LSTM-AE model (Model),

while i ≤ no. of columns in (T̆i) do
index = Model((T̆i[i]))
j=1 ; � Initialize j
while j ≤ len(index) do

if (j +K) in index then
if (j + (2K + 1)) ≤ len(T̆i[i]) then

m = j ; � Iterator
while m ≤ (2K + 1) do

T̃i[j] = T̃i[j] + T̆i[m];
m = m+ 1;

end
else

pass;
end
j = j + (2K + 1);

else
pass;

end
end
i = i+ 1;

end

IV. NUMERICAL RESULTS

The performance of the proposed method is evaluated by the

means of simulations. As discussed in section-II, data follows

GP distribution with parameters such as location (μ0) 10, Scale

(λ0) 30, and Shape (α0) 0.25. From Fig. 4, we can observed

that the relative error decreases significantly from 80% to 9%,

when the mean is estimated from the reconstructed data. An

important thing to notice here is that, relative error remains

nearly constant regardless of any sensing time Ts, even for

the Ts < μi. Whenever a sensing error occurs, it divided

the period but the sum of divided periods remains constant.

Proposed RA use this fact and summed up the surrounded

K value from the index of detected sensing error. Due to

this summation, distorted period are reconstructed and relative

error in mean decreases. This also indicates that the LSTM-

AE has been able to detect sensing errors effectively and it is

generalized well over the training data.

The comparison of distribution of reconstructed data and

original data is performed using the classic Kolmogorov-

Smirnov (KS) distance [22]. Here, FTi
(Ti) is in continuous

domain, while FT̆i
(T̆i) is in discrete domain. Since it is not

possible to compare continuous and discrete domain directly,

interpolation is used to convert FT̆i
(T̆i) in to continuous do-

main represented as FT̆i
(Ti). Fig. 5 compares the KS distance

of the proposed framework with the KS distance resulting from

the direct estimation under ISS scenario. The improvement

of the proposed framework can be assessed by the fact that

KS distance has decreased significantly. The proposed RA is

dependent on the input from the LSTM-AE i.e. the index

values of detected sensing errors. Due to this, RA can miss the
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sensing errors which are not detected by the LSTM-AE. It can

be observe that for Ts = 3 we get ∼35% gain and for Ts = 5
we get ∼20% gain in estimation accuracy. As the sensing time

Ts increases, the ability of the system to detect state change

for duration less then Ts decreases. This causes hindrance in

detecting sensing errors for LSTM-AE at higher Ts. From Fig.

5, it can be easily observed that proposed framework leads

to a significantly improved accuracy in the estimation of the

original distribution for Ψ = [0.5, 0.8] for Ts < 8 t.u. without

requiring any prior knowledge of PU activity statistics.

V. CONCLUSIONS

This paper has addressed the problem of accurately estimat-

ing the PAS under ISS condition by proposing a deep learning-

based LSTM-AE approach to detect sensing errors and a sim-

ple RA to correct them. The performance has been evaluated

using computer simulations. We notice that the LSTM-AE has

been effective in learning the latent representation of the data

and use this learning to detect sensing errors. The proposed

RA is effective in correcting sensing errors in single iteration.

With the proposed framework, relative error of estimated

mean decreases from 80% to 9%. The proposed schema has

significantly improved the estimation of PAS without requiring

any prior knowledge of PU activity statistics to reconstruct the

data, making it practically implementable.
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[6] O. H. Toma, M. López-Benı́tez, D. K. Patel, and K. Umebayashi,
“Estimation of primary channel activity statistics in cognitive radio based
on imperfect spectrum sensing,” IEEE Trans. Commun., vol. 68, no. 4,
pp. 2016–2031, 2020.
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[10] D. K. Patel, M. López-Benı́tez, B. Soni, and et al., “Artificial neural
network design for improved spectrum sensing in cognitive radio,”
Wireless Netw, pp. 1–20, Aug. 2020.

[11] N. Balwani, D. K. Patel, B. Soni, and M. López-Benı́tez, “Long short-
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